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Introduction

Since their discovery 15 y ago, RNA silencing pathways medi-
ated by small RNAs have been presumed to play a role in all 
fields of biology.1 Small RNAs are key because, as regulators 
of gene expression, they affect many processes in most organ-
isms. The best-known examples are development, fertility, and 
maintenance of genome stability.2,3 Additionally, small RNAs are 
widely used as research tools; for example, to study gene function 
or genetic variation.4,5 The accumulated knowledge about small 
RNAs is scattered over numerous research papers. The objective 
of this review is to provide an overview of the three main endog-
enous small RNA silencing pathways in nematodes.

In general, small RNAs affect gene expression specifically 
via a complex formed by the binding of a small, non-coding, 
single-stranded RNA to an Argonaute protein. This complex 

can influence gene expression via translation inhibition, mRNA 
degradation, mRNA storage, or epigenetic changes.3,6 Together, 
and in addition to the “classic” transcription regulator genes, the 
RNA silencing pathways form an extra layer of gene regulation. 
Most of these pathways are conserved throughout the animal 
kingdom.7,8 Related pathways performing similar functions have 
also been found in plants, fungi, and bacteria.3,8,9

Nematodes

Nematodes are the most abundant animals on earth and live 
in a wide range of habitats, including fresh water, salt water, and 
soil.10 Some are free-living, while others parasitize plants, verte-
brates, insects, or other nematodes.10 Studying nematodes pro-
vides knowledge that can have practical applications in the fields 
of agriculture, human, and animal health, as well as fundamental 
knowledge of evolutionarily conserved processes.

A large part of nematode research has been conducted on the 
model species Caenorhabditis elegans (Nematoda; Rhabditidae) 
because of its transparency, ease of cultivation, convenience of 
manipulation, short life cycle, genetic tractability, and relatively 
small, fully sequenced, genome.11,12 Most of the knowledge we 
have on endogenous RNA silencing pathways in nematodes 
comes from studies in C. elegans.

Molecular phylogenetic research has given insight into nema-
tode evolution.10,13-15 Figure 1 shows an overview of phylogenetic 
relationships of nematodes that have (part of) their genome 
published. Comparing different sequenced nematode species 
with C. elegans provides a great opportunity to study the evolu-
tion of small RNAs in evolutionarily near and distant species. 
Sequencing of several nematode species has revealed that many 
proteins found to be essential for the small RNA pathways in C. 
elegans seem not to have orthologs in all species.16 Additionally, 
there is evidence to support the view that throughout evolution 
small RNAs provide a way for nematodes to adapt to changes in 
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The discovery of small RNA silencing pathways has greatly 
extended our knowledge of gene regulation. Small RNAs have 
been presumed to play a role in every field of biology because 
they affect many biological processes via regulation of gene 
expression and chromatin remodeling. Most well-known 
examples of affected processes are development, fertility, and 
maintenance of genome stability. Here we review the role of 
the three main endogenous small RNA silencing pathways in 
Caenorhabditis elegans: microRNAs, endogenous small inter-
fering RNAs, and Piwi-interacting RNAs. After providing an 
entry-level overview on how these pathways function, we 
discuss research on other nematode species providing insight 
into the evolution of these small RNA pathways. in understand-
ing the differences between the endogenous small RNA path-
ways and their evolution, a more comprehensive picture is 
formed of the functions and effects of small RNAs.
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Endogenous Small RNAs and Argonautes

A wide range of small, non-coding RNAs have been found 
in C. elegans (Fig. 2A). The three main endogenous small RNA 
pathways that can be distinguished are: microRNAs (miRNAs), 
endogenous small interfering RNAs (endo-siRNAs), and PIWI 
(P-element-induced wimpy testis) interacting RNAs (piRNAs). 
Each of these pathways use RNAs with different characteristics 
and are active during different processes (Fig. 2B and C). Since 
the full impact of small RNAs has become apparent in C. elegans, 
researchers have been trying to find and analyze small RNAs in 
non-model nematodes, for example, in the animal parasite Ascaris 
suum.20

Argonautes, the effector proteins, fulfill a central role in all 
small RNA pathways. C. elegans has 25 different Argonautes 
clustered into three clades: the Argonaute-like proteins, the 
PIWI-like proteins, and a worm-specific clade of Argonautes, 
the WAGO (Worm Argonautes) proteins.19,21 Several Argonautes 
function only in one specific small RNA pathway. However, the 
exact function, role, and specificity of many Argonautes remains 
unknown.

miRNAs Enforce Robust Developmental Programs

MicroRNAs (miRNAs) were first discovered in C. elegans. 
The lin-4 gene, known to control the timing of C. elegans larval 
development, was found not to encode for a protein, but for a 
small RNA.22 These small RNAs reduced the amount of LIN-
14 protein without noticeably changing the levels of the lin-14 
mRNA. The second miRNA discovered in C. elegans, let-7, was 
found to be present in a wide range of animal species.23,24 Many 
miRNAs have since been discovered both in plant and animal 
species.25 It is very clear that the miRNA pathway as a whole has 
an essential role during development as well as during adulthood 
(Fig. 2C). C. elegans double mutants of both miRNA-specific 
Argonautes ALG-1 and ALG-2, show lethality due to a range of 
severe developmental defects.26,27 Overall, miRNAs help to ensure 
the robustness of developmental and physiological pathways.2

Primary-miRNAs (pri-miRNAs) are the transcripts of 
miRNA genes synthesized by RNA polymerase II (Fig. 3).28 
These pri-miRNAs are cleaved by the RNase III enzyme Drosha 
into ~65 nucleotide precursor-miRNAs (pre-miRNAs).29 Pre-
miRNAs have a characteristic stem-loop structure and are 
transported into the cytoplasm.30,31 There, they are processed 
into mature 22 nucleotide miRNAs by the RNase III enzyme 
Dicer and one of the miRNA-specific Argonaute proteins ALG-1 
or ALG-2 (Table 1).26,32 The mature double stranded miRNA 
is then bound by ALG-1 or ALG-2.26 The Argonaute protein 
will release one of the strands and remain bound to the other 
strand. The complex, consisting of the Argonaute bound to the 
single stranded miRNA, is called the miRNA-induced silenc-
ing complex (miRISC).33,34 The miRISC binds to an mRNA, 
which is complementary to the seed region (see below) of the 
single stranded miRNA in the complex and causes silencing 
of the mRNA. The seed region is approximately six to eight 
nucleotides near the 5′ end of the miRNA. These nucleotides 
are thought to be very important for the specificity of target-
ing mRNAs.35,36 The mechanism by which the bound mRNA is 
post-transcriptionally silenced is still debated.37,38 One currently 
popular model is that miRNAs repress translation and promote 
mRNA de-adenylation. The de-adenylation will cause degrada-
tion of the target mRNA.6,37,39 Because the target mRNA is only 
complementary to the short seed region, accurate in silico predic-
tion of miRNA targets is problematic. Recently, a web accessible 
database (miRNA_Targets: http://mamsap.it.deakin.edu.au/
mirna_targets/) specifically aimed at miRNA target predictions 
has been created to share results.40 But also at miRBase validated 
and predicted targets can be found.25,41

Figure  1. Phylogeny of sequenced nematodes. Phylogenetic relation-
ship of nematodes that have (part of) their DNA sequences published or 
are being sequenced (as indicated on www.wormbase.org). The clades 
are shown according to van Megen et  al. in Arabic numbers and to 
Blaxter et al. in Roman numbers.14,96 in both studies, the phylogenetic 
relationships were determined by the DNA sequences of the small ribo-
somal subunits, with 1215 and 53 sequences, respectively. An asterisk 
indicates that this species has been studied for (some aspects of) the 
small RNA response.
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miRNAs are identified by sequencing small 
RNAs or by predicting miRNAs by means of bio-
informatics analyses. All known miRNAs can be 
found online in the miRBase database.25,41 To pre-
dict miRNA candidates the conservation of the 
seed region is often used as an indicator. When 
several mature miRNAs are derived from different 
genomic loci, but share the same seed sequence, 
they form a “miR family” or “seed family.”20,42

To study miRNA evolution, de Wit et al.43 
sequenced the small RNAs of C. elegans, C. brigg-
sae, C. remanei, and Pristionchus pacificus. They 
showed that more than half of all sequenced miR-
NAs were conserved at the seed region, with only 
a few miRNAs that were species specific within 
these four nematode species.43 This was sup-
ported by deep sequencing of small RNAs from 
C. elegans, C. briggsae, C. remanei, and C. bren-
neri, which identified hundreds of new miRNAs 
and revealed a high conservation of miRNAs 
across C. briggsae, C. remanei, and C. brenneri. 44 Table 2 gives 
an overview of studies on microRNAs in non-model nematodes. 
Although much work still needs to be done to gain a thorough 
understanding of miRNA evolution some surprising observations 
have already been made. For instance, Guo et al.45 showed that 
different miRNAs have different evolutionary patterns. This, 
at least in part, was explained by Chen and Rajewsky.46 They 
argued that miRNAs co-evolve with their targets, so when study-
ing miRNA evolution, also the evolution of the targets should be 
taken in account. Altogether (see papers mentioned in Table 2), 
closely related nematode species have similar miRNAs while dis-
tantly related species have dissimilar miRNAs.

Endo-siRNAs: Flexible and Responsive Pathway 
with a Wide Range of Functions

Small interfering RNAs (siRNAs) consist of two main classes: 
exogenous siRNAs and endogenous siRNAs. Exogenous siRNAs 
(exo-siRNAs) are induced by exogenous long, double stranded 
RNA precursors originating from cellular transfections, micro-
injections, feeding bacteria expressing dsRNA, or from virus-
derived double stranded RNA (either as genomic RNA or as the 

replication intermediate). Here, however, we will focus on the 
endogenous siRNAs (endo-siRNAs) (Fig. 3). Endo-siRNAs do 
not only influence gene expression via the degradation of a tran-
script or by translational inhibition, as was previously assumed, 
but also via modification of chromatin.47,48 The functions that are 
associated with different kinds of endo-siRNAs are very diverse 
and are discussed separately per group. Two major classes of 
endo-siRNAs can be distinguished: 26G RNAs and 22G RNAs 
(Fig. 3).21 These two classes are distinguished by their length and 
by which Argonautes they bind to (Table 1).

The expression levels of endo-siRNAs are often tissue- or 
developmental stage-specific. 26G RNAs are 26 nucleotides long 
and have a 5′ guanine.49 26G RNAs are derived from an ini-
tial endogenous double stranded RNA-trigger by Dicer and the 
RNA-dependent RNA Polymerase (RdRP) RRF-3. They can be 
divided into two subclasses: ERGO-1-bound-26G RNAs, which 
function in oocytes and embryos, and ALG3/4-bound-26G 
RNAs, required for normal sperm development (Table 1).49,50 
The ERGO-1 class of 26G-RNAs are methylated by HENN-1 
while the ALG-3 and -4 26G-RNAs are not methylated.51-53 This 
methylation is required to stabilize the ERGO-1 26G-RNAs.51-53 
26G RNAs are bound to Argonautes and this complex inter-
acts with perfect complementarity to target transcripts.54 This 

Figure 2. Small RNAs and developmental dynamics. Panel A shows an example of the size 
distribution of small RNAs in adult hermaphrodites, adapted from reference 42. These can 
be divided over several classes of small RNAs, which are shown in panel B. in panel B, it 
can be seen that the relative amounts of small RNAs change throughout development and 
are different between sexes, adapted from reference 42. This is illustrated in more detail 
in panel C, where the expression of three different microRNAs is shown throughout the 
hermaphroditic development, adapted from reference 97.

Table 1. Overview of the endogenous small RNAs in C. elegans that are discussed in the main text (for references, see main text)

Signaturea Argonaute Methylation by Henn-1 Functions in

miRNA 22 ALG1/2 No Germline + somatic tissue

endo-siRNA

26G eRGO-1 Yes Oocyte + embryo

26G ALG3/4 No Sperm

22G wAGOs No Germline + somatic tissue

22G CSR-1 No Germline

piRNA
21U PRG-1 Yes Germline

22G wAGO-9 No Germline

a) Signature = length (no. of nucleotides) of small RNA + nucleotide at its 5′ end.
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will lead to a local production of 22G RNAs around the target 
site by the RdRP RRF-1.55-58 However, not all 22G RNAs are 
derived from 26G RNAs, some are derived from piRNAs or from 
exogenous double stranded RNA, and in one case even from a 
miRNA.59-62

22G RNAs are 22 nucleotides long and have a 5′ guanine.63 
They can be divided into two subclasses as well: WAGO-
bound-22G RNAs and CSR-1-bound-22G RNAs.63,64 The 
CSR-1-bound-22G RNAs are essential for proper chromosome 
segregation by targeting germline-expressed genes and also for 
protecting gene expression in the germline against piRNA-medi-
ated degradation.64-68 The WAGO-bound-22G RNAs silence 
transposable elements, aberrant endogenous transcripts, as well 
as certain genes (Table 1).63 Similarly to 26G RNAs, 22G RNAs 
interact with target transcripts with perfect complementarity.69 
There is evidence that the 22G RNAs that are taken up by the 
Argonaute CSR-1 are mainly produced by the RdRP EGO-1.70,71 
Whereas, the WAGO-bound-22G RNAs are thought to predom-
inantly be produced by the RdRP RRF-1 and to a lesser extent 
by EGO-1.55,56,58

Until recently, most experiments in non-model nematodes 
have been focused on exo-siRNAs in hopes of downregulating 
gene transcription levels to study gene-functions (reviewed in 
refs. 72 and 73). However, two studies were published in the last 
few years that shed more light on endo-siRNAs.

Wang et al.20 compared the small RNAs of Ascaris suum to those 
of C. elegans by sequencing. Several differences could be observed 
when comparing the endo-siRNAs. For example, no methylation 
was detected on the 26G RNAs of A. suum. Also, the 22G RNAs 
mapped more frequently toward the 5′-end of the mRNA, while 
in C. elegans they map to both ends. Another difference is that the 
26G and 22G RNAs in A. suum have a different ratio for sper-
matogenesis related genes. In C. elegans, the amount of 26G RNAs 
decreases during spermatogenesis while the amount of 22G RNAs 
dramatically increases. In contrast, the ratio of 26G to 22G RNAs 
in A. suum remains the same during spermatogenesis.20 Together, 
these observations imply that small RNA pathways are flexible and 
can be adapted throughout evolution.

Shi et al.42 reported on the sequenced small RNAs of C. elegans 
and three related nematode species: C. briggsae, C. remanei, and 

Table 2. Overview of studies on microRNAs (miRNAs) in non-model nematodes

Species (clade number)a Number of loci/miRNAs/
miRNA familiesb Observations of conservation and uniquenessc Original paper

Hemonchus contortus (v) 192 mature miRNAs (S/C) 54 of the 192 mature miRNAs are conserved * winter et al., 201281

Pristionchus pacificus (v)

124 loci (S) 30 species-specific loci ** De wit et al., 200943

362 miRNA genes (S)
the majority of miRNA genes of distantly related 

nematodes are not conserved ***
Ahmed et al., 201398

Caenorhabditis elegans (v)

185 loci (S) 7 loci are species-specific ** De wit et al., 200943

106 miRNA families (C)
> 20% of miRNA families are unique, 54 miRNA 

families are conserved ****
Shi et al., 201342

257 miRNA genes (S)
the majority of miRNA genes of distantly related 

nematodes are not conserved ***
Ahmed et al., 201398

Caenorhabditis briggsae (v)

141 loci (S) 8 loci are species-specific** De wit et al., 200943

84 miRNA families (C)
> 20% of miRNA families are unique, 54 miRNA 

families are conserved ****
Shi et al., 201342

Caenorhabditis remanei (v)

109 loci (S) 1 locus is species-specific ** De wit et al., 200943

85 miRNA families (C)
> 20% of miRNA families are unique, 54 miRNA 

families are conserved ****
Shi et al., 201342

Caenorhabditis brenneri (v) 87 miRNA families (C)
> 20% of miRNA families are unique, 54 miRNA 

families are conserved ****
Shi et al., 201342

Strongyloides ratti (iv) 106 miRNA genes (S)
the majority of miRNA genes of distantly related 

nematodes are not conserved ***
Ahmed et al., 201398

Bursaphelenchus xylophilus 
(iv)

810 miRNAs (C) of which 57 miRNAs (S) 10 species-specific miRNAs * Huang et al., 201099

Brugia pahangi (iii) 104 mature miRNAs (S/C) 42 of the 104 mature miRNAs are conserved * winter et al., 201281

Brugia malayi (iii) 32 miRNAs in 24 miRNA families (S/C) the miRNA-36-family occurs only in helminthes * Poole et al., 2010100

Ascaris suum (iii) 97 miRNAs in 59 miRNA seed families (S) 80% of the seed sequences is conserved * wang et al., 201120

Dirofilaria immitis (iii)
1063 conserved miRNA candidates (C) + 

13 novel miRNA (S)
11 of the 13 tested conserved miRNA candidates 

were verified *, *****
Fu et al., 2013101

aClade numbers are derived from references 14 and 96. bS, sequenced; C, computer predicted; S/C, sequenced or computer predicted. cObservations 
compared with miRNAs of the following databases/species: *, all (animal) miRBase entries; **, P. pacificus, C. elegans, C. briggsae, and C. remanei; ***,  
P. pacificus, C. elegans, and S. ratti; ****, C. elegans, C. briggsae, C. remanei, and C. brenneri; *****, Brugia malayi.
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C. brenneri. They found that there is almost no conservation of 
individual endo-siRNAs and that the orthologs of genes targeted 
by CSR-1 in C. elegans are often also targets of small RNAs in the 
other species. But genes targeted by WAGO-bound siRNAs in 
C. elegans are less likely to have complementary siRNAs in other 
species. Furthermore, many features of the pathway in which the 
endo–siRNAs operate are conserved. Some conserved features of 
26G RNAs (in all four species) are the genomic distribution, low 
abundance, sex specificity, and the ability to trigger 22G RNA 
production.42 The conservation of the endo-siRNA pathway, but 
not the individual sequences, shows the flexibility of the endo-
siRNA pathway.16

piRNAs Maintain Genome Stability in the Germline

PIWI-interacting RNAs (piRNAs) are germline-specific 
small RNAs linked to trans-generational silencing. C. elegans 
PRG-1 mutants (that completely lack piRNAs) exhibit a broad 
spectrum of germ line defects.74,75 Knowledge about the targets of 
piRNAs is now becoming available because the “rules of target-
ing” have recently been identified more clearly.59,62 It is  apparent 

that the piRNA pathway has an evolutionarily conserved role in 
maintaining genome stability in the germline of animals by keep-
ing transposons silenced.59,62

C. elegans piRNAs are also known as 21U RNAs because they 
have a length of 21 nucleotides with a uridine at their 5′ end.74,76 
piRNA precursors are thought to be ~26 nucleotide capped small 
RNAs (csRNAs). csRNAs are transcribed by RNA polymerase 
II from two large clusters on chromosome IV and from the 
promoter region of protein coding genes (Fig. 3).76,77 They are 
bound by a PIWI Argonaute: PRG-1.74 Subsequently, the RNAs 
are de-capped and two nucleotides are removed from the 5′ end 
by an unknown mechanism.77 The 3′ ends are trimmed and later 
methylated by HENN-1 with a 2’-O-methyl group stabilizing 
the piRNAs over longer time intervals.51-53

The PRG-1-piRNA-complex recognizes transcripts that are 
partially complementary to the piRNA.59 This leads to a local 
production of 22G RNAs around the piRNA target site by an 
RdRP.59,62 The amount of 22G RNAs is dependent on the com-
plementarity of the piRNA to the target: more mismatches lead 
to less 22G RNAs.59 The 22G RNAs bind to WAGO-9 and cause 
trans-generational silencing via chromatin remodelling.59,62,78-80 
Other Argonautes (WAGO-1 and WAGO-10) have been found 

Figure 3. Small RNA pathways in C. elegans. Overview of the discussed endogenous small RNA pathways in C. elegans. The dashed line between nucleus 
and cytoplasm in the piRNA pathway means that it is not clear when the piRNAs leave the nucleus. For the miRNAs and endo-siRNAs, it is known exactly, 
indicated by a solid line.
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to play a role in this process too.80 To summarize, the initiation 
of silencing depends on PRG-1/piRNAs, but the maintenance of 
the silencing requires WAGO/RdRP/22G RNAs.62,78,80

The first paper describing 21U RNAs in C. elegans already 
noted that when a comparison was made with the 21U RNAs of 
C. briggsae, not a single sequence was shared between these related 
species.76 De Wit et al.43 found 705 21U RNAs in C. elegans, 250 
in C. briggsae, 1314 in C. remanei, and 1123 in P. pacificus. No 
sequence conservation of 21U RNAs across these four species was 
found. It was however observed that within the Caenorhabditis 
clade the genomic regions where 21U RNA precursor clusters are 
highly conserved, while the 21U RNAs precursor clusters found 
in P. pacificus are much smaller and more widespread.43

In the earlier mentioned study on the small RNAs of A. suum, 
the authors also searched for piRNAs.20 Remarkably, it was 
found that all piRNAs and components of the piRNA pathway 
were lost in A. suum. Instead, a subset of endo-siRNAs increased 
and diverged when compared with C. elegans. It was postulated 
that the extra endo-siRNAs in A. suum may have functions that 
are regulated by piRNAs in C. elegans.20 The loss of the piRNA 
pathway is not restricted to A. suum. 21U RNAs are also absent 
in another clade III parasite Brugia pahangi (for the clades, see 
Fig. 1).81 Also, no PRG-like Argonautes are present in A. suum, 
B. pahangi, and other clade III species.19 It is not clear why the 
piRNA pathway is missing in these nematodes. It is however not 
linked to parasitism as piRNAs are present in other, non-clade 
III, parasites.19,81

Recently, it was found that gonochoristic species (which mate 
every generation) have larger numbers of piRNAs and almost 
twice as many Argonautes as androdioecious species (which pri-
marily self-fertilize).42 This suggests that species that mate every 
generation need more piRNAs and Argonautes to deal with the 
great diversity of paternal transposons mixed in every genera-
tion. Overall, the conservation of the piRNA pathway (but not of 
individual piRNAs) in most nematodes investigated, suggests a 
conserved role in protecting germline viability.

Other Small RNA Pathways

When studying the miRNA, piRNA, and endo-siRNA 
pathways in C. elegans, it is clear that they follow the same pat-
tern: a single stranded, small RNA binds an Argonaute, inter-
acts with a transcript, and changes gene expression. Next to 
the Argonautes, also Dicer, RdRPs, HENN-1, and secondary 
RNAs are present in more than one pathway. Other small RNA 
pathways exist in C. elegans that contain the same proteins and 
follow the same pattern. Two of these pathways will be briefly 
discussed below.

The first of these is the previously mentioned exogenous 
siRNA (exo-siRNA) pathway.1,82 An exogenous double stranded 
RNA is cleaved into primary siRNAs (which are 21 nucleotides 
long) by Dicer, which are bound by the Argonaute RDE-1.32,83 
This complex is called the siRNA-induced silencing complex 
(siRISC). Interaction of this siRISC with the target mRNA leads 
to RdRP-production of 22-nucleotide, secondary siRNAs.21,57 

These secondary siRNAs are bound by secondary-siRNA-defec-
tive Argonaute proteins (SAGO proteins, which fall under the 
WAGO-type Argonautes).

The second small RNA pathway, known as nuclear RNAi, 
is found in the nucleus instead of in the cytoplasm.84 Certain 
WAGO-bound 22G RNAs, downstream of ERGO-1-bound 
26G RNAs, interact with the Argonaute NRDE-1.85 This asso-
ciation with NRDE-1 causes the small RNAs to be transported 
to the nucleus where the complex silences target genes.85,86 The 
transport of 22G RNAs links siRNAs and piRNAs to nuclear 
processes such as transposon regulation, heterochromatin forma-
tion, and genome stability.3,87-89

Argonaute Specificity

With all these very similar small RNAs in the cytoplasm, 
how do Argonaute proteins distinguish between different kinds 
of small RNAs? Temporal and spatial distribution of both the 
small RNAs and Argonaute proteins within an organism and its 
cells provides an important limiting factor. But there are addi-
tional factors that determine the specificity of an Argonaute; for 
example, the 5′ nucleotide and length of the small RNA and the 
proteins, which the small RNA is bound to. Another example is 
the precursor structure; the let-7-miRNA precursor is loaded into 
RDE-1 (instead of the normal ALG-1) when specific nucleotides 
are changed to make the stem fully complementary.90 This bind-
ing to RDE-1 activates the downstream exo-siRNA pathway, 
instead of the normal miRNA pathway.90

Some Argonautes however are not specific in binding small 
RNAs. The Argonaute RDE-1 was found to function as a scaven-
ger protein, taking up small RNAs from many different sources. 
In this way, many small RNA species can be used in the exo-
siRNA pathway.60 Related to this, it remains an open question 
which factors determine the uptake of small RNAs into particu-
lar complexes.

Regulation of Small RNAs

Small RNAs themselves are regulated in different ways. For 
example, the miRNA, endo-siRNA, and exo-siRNA pathways 
compete for access to limited resources.91 When C. elegans feeds 
on E. coli expressing double stranded RNA during controlled 
experiments to study gene-function, the expression of miRNA-
regulated genes increases.91 This indicates that miRNAs are less 
effective in downregulating target gene expression. Conversely, 
miRNAs of the “miR-35-41” cluster reduced exo-siRNA sensi-
tivity and enhance endo-siRNA effectiveness, balancing these 
siRNA pathways.92,93 Next to crosstalk between the pathways 
there is also feedback between the small RNAs and their tar-
gets.94 It has been shown that mRNAs targeted by miRNAs 
actually protect the miRNA from degradation; so the level of 
mature miRNAs is modulated by the mRNA target levels.94 This 
modulation provides a way to maintain a diverse set of miRNAs 
of which only the “useful” ones are accumulated.
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Losing and Gaining Pathway Components

As more genome sequences become available and are studied 
for components of the small RNA pathways, it becomes apparent 
that there are many variations in the pathways across the differ-
ent clades (Fig. 4). All investigated nematode species lack at least 
one Argonaute or RdRP compared with C. elegans.16 Genes are 
not only lost, Trichinella spiralis for example was found to have 
119 ALG3/4-like genes, a gain of 117 compared with the two 
C. elegans genes.18,19 The function of these proteins, and which 
RNAs they bind to, is still unknown.

Research in A. suum, B. pahangi, and other clade III species 
indicates that even complete pathways can be lost. The loss of 
the piRNA pathway in A. suum seems to be compensated for 
by extending the endo-siRNA pathway.20 These findings could 
suggest that variations in these pathways are linked to ecology 
and natural history. Devaney et al.17 for instance, discusses that 
it is very likely that drug resistance in parasitic nematodes is at 
least in part mediated by miRNAs, much like the well-studied 
drug resistance in tumor cells.

The loss of the piRNA pathway in clade III species pro-
vides a great opportunity to study how the loss of a complete 
pathway is dealt with. If this loss is an adaptation to a para-
sitic life cycle, the question can be asked why other parasitic 

nematodes, like the clade V nematodes Hemonchus contortus 
and Heligmosomoides polygyrus, do not show this loss. Studying 
the small RNA pathways of these and other parasitic species is 
likely to give more insight into these questions.19,20,81 The before 
mentioned expansion of ALG3/4-like genes in Trichinella spira-
lis might also be an adaption associated with parasitism. It was 
argued that Argonaute diversity in parasitic nematode species 
could be part of regulatory or sensing adaptations associated 
with parasitism.19

Although not an endo-siRNA-mediated pathway, exo-RNA-
mediated interference studies in nematode species other than 
C. elegans can also provide some insights into pathway func-
tionality. An example is a recent study on the effectiveness of 
exo-siRNA/RNAi in non-model grassland inhabiting nema-
todes, Oscheius sp FVV-2., Rhabditis sp, Mesorhabditis sp., and 
Acrobeloides sp. Here it was shown that both feeding bacteria 
expressing dsRNA and injection of dsRNA into the gonad did 
not result in the expected knockdown phenotypes.95 For plant 
parasitic nematodes, treatments with double stranded RNA 
have shown the expected knockdown phenotype (indicating a 
functional exo-siRNA pathway) for many species (for a detailed 
overview, see the review by Maul et al.).73 In the future, func-
tional studies need to be coupled to genome analysis to find the 
cause of this variation.

Figure 4. identified Argonaute orthologs in nematodes. Phylogenetic tree of nematodes researched for Argonaute orthologs and the three groups of 
Argonautes (Argonaute-like, Piwi, and worm-specific).19,21 The three major types of Argonaute proteins are sub-divided into eight homologous groups.19 
The AGO-A group contains the C. elegans proteins ALG-3 and ALG-4 and the AGO-B group contains the C. elegans proteins ALG-1, ALG-2, and HPO-24. 
The Piwi-like group contains eRGO-1, RDe-1, PRG-1, and PRG-2. The different wAGO groups contain wAGO-10, wAGO-11, HRDe-1, C14B1.7 and NRDe-3 
(wAGO-A); CSR-1 and C04F12.1 (wAGO-B); SAGO-1, SAGO-2 and PPw-1 (wAGO-C); wAGO-1, wAGO-2, wAGO-4, wAGO-5, PPw-2, and C06A1.4 (wAGO-D); 
no Caenorhabditis wAGO’s (wAGO-e).
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