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ABSTRACT

Chromatin accessibility, as a powerful marker of ac-
tive DNA regulatory elements, provides valuable in-
formation for understanding regulatory mechanisms.
The revolution in high-throughput methods has ac-
cumulated massive chromatin accessibility profiles
in public repositories. Nevertheless, utilization of
these data is hampered by cumbersome collection,
time-consuming processing, and manual chromatin
accessibility (openness) annotation of genomic re-
gions. To fill this gap, we developed OpenAnnotate
(http://health.tsinghua.edu.cn/openannotate/) as the
first web server for efficiently annotating openness
of massive genomic regions across various biosam-
ple types, tissues, and biological systems. In addition
to the annotation resource from 2729 comprehensive
profiles of 614 biosample types of human and mouse,
OpenAnnotate provides user-friendly functionalities,
ultra-efficient calculation, real-time browsing, intu-
itive visualization, and elaborate application note-
books. We show its unique advantages compared to
existing databases and toolkits by effectively reveal-
ing cell type-specificity, identifying regulatory ele-
ments and 3D chromatin contacts, deciphering gene
functional relationships, inferring functions of tran-
scription factors, and unprecedentedly promoting
single-cell data analyses. We anticipate OpenAnno-
tate will provide a promising avenue for researchers
to construct a more holistic perspective to under-
stand regulatory mechanisms.

GRAPHICAL ABSTRACT

INTRODUCTION

Chromatin accessibility is a measurement of the ability of
nuclear macromolecules to physically contact DNA and is
a critical determinant of understanding regulatory mecha-
nisms (1). For example, accessible genomic regions are re-
garded as the primary positions of regulatory elements (2),
and provide a great opportunity to study transcription fac-
tor binding sites, DNA methylation sites, histone modifica-
tions, gene regulation, and regulatory networks (3,4). Be-
sides, changes in chromatin accessibility have been impli-
cated with different perspectives of human health as a result
of the alterations of nucleosome positioning affected by mu-
tations in chromatin remodelers (5–7). A number of high-
throughput technologies have been developed to profile
chromatin accessibility, such as ATAC-seq (8), DNase-seq
(9), FAIRE-seq (10) and MNase-seq (11). DNase-seq was
widely applied in consortiums such as ENCODE (12,13),
while ATAC-seq, as a more recent technique, can pro-
vide higher accuracy and sensitivity. Both DNase-seq and
ATAC-seq measure the genome-wide chromatin accessibil-
ity and can locate distal and proximal cis-regulatory ele-
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ments (CREs) (14), and we thus focus on these two tech-
nologies in this study.

With the advanced technologies, massive amounts of
chromatin accessibility sequencing data has been generated
by consortiums or individual research groups and accumu-
lated in repositories such as GEO (15), paving the way to
the annotation of chromatin ‘openness’, that is, the accessi-
bility of genomic regions. Annotating openness of genomic
regions of interest is an essential but cumbersome and time-
consuming task that involves several manual and tedious
steps: (i) identifying the relevant chromatin accessibility ex-
periments, (ii) downloading the large raw sequencing data
files, and (iii) calculating the count of reads falling into or
peaks overlapping with each genomic region iteratively. Al-
though there are several existing databases storing chro-
matin accessibility data, such as ATACdb (16), Cistrome
DB (17,18), DeepBlue (19), ENCODE (12,13), Ensembl
(20), GTRD (21) and OCHROdb (https://dhs.ccm.sickkids.
ca/), the comprehensiveness of data collection in most of
these databases is insufficient. For example, ATACdb only
supports human ATAC-seq data. OCHROdb only supports
human DNase-seq data. Both ENCODE and DeepBlue
focus on DNase-seq data while containing only a small
amount of ATAC-seq samples. Besides, databases provid-
ing only open chromatin regions or peaks, such as Cistrome
DB, Ensembl and GTRD, hamper the utilization of raw se-
quencing reads for chromatin accessibility annotation. In
addition, existing databases have mainly focused on data
collection, whereas efforts to systematically utilize the chro-
matin accessibility data for annotating openness in batch for
a set of genomic regions are limited. Recent toolkits such
as Ensembl, Cistrome Toolkit (18) and SCREEN (22) offer
the functionality to query a given genomic region. However,
the annotation of chromatin accessibility by these toolkits is
hindered by the inconvenient use of results for quantitative
analysis and, particularly, the inefficient annotation due to
the manner of one region per query.

To circumvent these bottlenecks, we developed OpenAn-
notate for efficiently annotating openness of massive ge-
nomic regions based on comprehensive chromatin acces-
sibility data and facilitating the understanding of regula-
tory mechanisms (Figure 1). We collected sequencing sam-
ples from ENCODE (12,13,23) and ATACdb (16), and cat-
egorized them into tissues and biological systems hierarchi-
cally. The openness scores are rigorously defined by (i) raw
read openness: the normalized number of reads that fall into
the regions, and (ii) peak openness: the normalized number
of peaks that overlap with the regions. With ultra-efficient
annotation and user-friendly functionalities, OpenAnno-
tate has been successfully applied in revealing cell type-
specificity (24), scoring cell type-specific impacts of noncod-
ing variants (25), identifying regulatory elements (26) and
3D chromatin contacts (27), deciphering gene functional
relationships by gene co-opening networks (28), inferring
functions of transcription factors (29), and unprecedent-
edly promoting the analyses of single-cell data (30). By de-
tailed tutorials and demos of various applications, we ex-
pect that OpenAnnotate will provide a promising avenue for
researchers to construct a more holistic perspective to un-
derstand regulatory mechanisms.

MATERIALS AND METHODS

Data collection and processing

For the openness annotation of genomic regions, we col-
lected a total of 2729 chromatin accessibility samples. As
shown in Table 1, 1236 samples of DNase-seq (82.1%) and
ATAC-seq (17.9%) were downloaded from ENCODE, a
large collaborative project that mainly focuses on provid-
ing comprehensive DNase-seq data rather than other chro-
matin accessibility sequencing data (12,13,23), and 1493
ATAC-seq samples were obtained from ATACdb, the lat-
est chromatin accessibility database which aims to collect
a large number of human ATAC-seq data (16). All col-
lected samples were mapped to a specific reference genome
(i.e. GRCh37/hg19 for Homo sapiens and GRCm37/mm9
for Mus musculus). In addition to BAM/SAM files, we also
collected peaks that are enriched with aligned reads: (i)
for ENCODE data, narrow/broad peaks (peaks/regions of
signal enrichment based on pooled and normalized data)
identified by the ENCODE analysis pipeline, and (ii) for
ATACdb data, peaks identified by the uniform processing
pipeline in ATACdb. We then converted the genome coor-
dinates of BAM and BED files from GRCh37/hg19 and
GRCm37/mm9 to GRCh38/hg38 and GRCm38/mm10,
respectively, using CrossMap (31) with UCSC chain files
(32). To facilitate the data traceability, we also provided
the original biosample ID in the source of each sample
(e.g., ENCBS217AEF in ENCODE and Sample 0001 in
ATACdb).

We further manually annotated each chromatin accessi-
bility sample with extensive details for hierarchical catego-
rization. For ENCODE samples, a list of biosample types
was first extracted from the source information provided
by ENCODE, and then manually classified into different
tissues. For ATACdb samples, biosample types and tissues
were directedly obtained from the metadata annotated by
ATACdb. In total, the chromatin accessibility samples were
derived from 614 biosample types and 91 tissues, and were
finally grouped into stem cell and 10 different biological sys-
tems. Samples without enough source information may be
ubiquitous and were recorded as ‘Multiple systems’. The de-
tailed statistics of samples in different species, including the
number of samples, biosample types, tissues, and biological
systems from different protocols and sources, are shown in
Table 1.

Openness annotation

To annotate the openness of each genomic region in each
biological sample, OpenAnnotate first calculates the fore-
ground read count (N), that is, the number of reads falling
into the region using BAM/SAM file of the sample. To cor-
rect the effect of sequencing depth, the raw read openness
(S) is defined as the average foreground read count in the
region divided by the average number of reads falling into a
background region of size W surrounding the given region,
and can be calculated as:

S = N/L
M/W

https://dhs.ccm.sickkids.ca/
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Figure 1. Schematic representation of the OpenAnnotate workflow. Web features and application scenarios are depicted at the bottom.

where L denotes the length of the given genomic region, and
M the number of reads falling into the background region.
The background-size W is set to 1 million base pairs.

Analogously, OpenAnnotate annotates narrow/broad
peak openness for ENCODE samples and ATACdb peak
openness for ATACdb samples with the average number of
peaks overlapping with the given region of size L divided
by the average number of peaks overlapping with a back-
ground region of size W surrounding the given genomic
region. Together with the two openness scores based on
reads and peaks respectively, OpenAnnotate also provides
the foreground read count (N) for alternative usage. More

discussions on the choice of different openness annotation
approaches are provided in the Application Scenarios sec-
tion.

Implementation

We designed a parallel strategy and deployed OpenAnno-
tate on a high-performance computing cluster to signifi-
cantly decrease the time for openness annotation of massive
genomic regions in a vast amount of chromatin accessibility
samples (Supplementary Note S1 and Supplementary Fig-
ure S1). Considering the annotation results can be large ta-
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Table 1. Statistics of chromatin accessibility data in OpenAnnotate

Species Protocol Source
Number of

samples
Number of

biosample types
Number of

tissues
Number of biological

systems

Homo sapiens DNase-seq ENCODE 871 199 47 11
ATAC-seq ENCODE 89 29 24 9
ATAC-seq ATACdb 1493 310 44 12

Mus musculus DNase-seq ENCODE 144 37 18 10
ATAC-seq ENCODE 132 66 12 7

bles and loading the entire tables directly to the web is prob-
lematic, we adopted WebSocket (https://www.websocket.
org/), which provides full-duplex communication channels
between web and host, to enable real-time browsing of any
part of the resulting large tables. PHP v7.4.5 (http://www.
php.net/) was used for server-side scripting, while Boot-
strap v3.3.7 framework (https://getbootstrap.com/docs/3.
3/) was adopted for the optimization of web-frontend in-
terface. jQuery Plugins and JavaScript Libraries, includ-
ing DataTables v1.10.19 (https://datatables.net), CanvasJS
v2.3.1 (https://canvasjs.com/), and morris.js v0.5.0 (https:
//morrisjs.github.io/morris.js/index.html), were used to im-
plement advanced tables and responsive charts. The current
version of OpenAnnotate runs on a Linux-based Apache
web server v2.4.6 (https://www.apache.org) and supports
most mainstream web browsers, such as Google Chrome,
Firefox, Opera, Microsoft Edge, and Apple Safari.

WEB SERVER USAGE

OpenAnnotate provides typical applications and elaborate
notebooks on the Home page, ultra-efficient openness an-
notation for massive genomic regions on the Annotate page,
intuitive understanding of the openness of a particular ge-
nomic region across various biosample types on the Browse
page, detailed information and statistics of all the samples
on the Statistics page, extensive application scenarios and
step-by-step tutorials on the Tutorial page, and high-lighted
information and features of the web server on the About
page.

Input

The major functionality of OpenAnnotate is maintained
on the Annotate page, which requires a tab-delimited BED
file containing genomic regions to be annotated (with 1GB
maximum file size restriction). Each line in the BED file
represents a genomic region, and has four required fields:
the first three fields and the sixth field, defining the name of
chromosome, the starting position, the ending position and
the strand, respectively. To ensure the number of fields per
line is consistent, the strand and other additional column
information can be filled with a ‘.’ if the field content is un-
known or empty. The BED file can be further compressed
in gzip format to accelerate the uploading. Exemplary input
files are available for facilitating the use of OpenAnnotate.
We also provide users with flexible options to specify the
protocol, source, species, assembly, and biosample type for
openness annotation. Details about the optional biosample
types can be accessed on the Statistics page, which provides
(i) the metadata of chromatin accessibility samples in a table

with advanced features, including searching, sorting, pag-
ing, copying and exporting and (ii) intuitive comparison of
the number of samples across different biosample types, tis-
sues, and biological systems. Furthermore, users can choose
the Per-base pair annotation mode to calculate the open-
ness of each base-pair of genomic regions for bioinformat-
ics analyses such as machine learning tasks demonstrated in
the Application Scenarios section.

Users can obtain a task ID immediately after submitting
an annotation task. This unique identifier can be used to re-
trieve annotation results. We also provide an exemplary task
ID to illustrate the usage. Users can also optionally and con-
veniently archive the task information to a mailbox, includ-
ing links for checking annotation status and downloading
annotation results.

Output

After submitting the annotation task, users can directly
browse real-time annotation results within about 10 s, de-
pending on the input file size and internet speed. Corre-
sponding to different annotation approaches, the annota-
tion results are represented as tables where each row rep-
resents a genomic region and each column represents the
biosample type of a sequencing sample (details can be ob-
tained by hovering over the column name). For browsing,
the submitted genomic regions will be grouped into dif-
ferent chromosomes, and the annotation status in different
chromosomes will be updated in real-time. Users can arbi-
trarily switch between different chromosomes or different
annotation approaches to browse resulting tables. Although
the tables may contain thousands of columns and billions of
rows especially on the Per-base pair annotation mode, users
can browse any part of a large table by scrolling to any row
and any column smoothly. By enabling the Color option,
each element in the table will be colored according to the
openness score for intuitively comparing the openness of
different genomic regions in various sequencing samples.

Because biosample types are used as column names
to provide an intuitive understanding of biosample type-
specificity of open regions, there exist duplicate column
names for the biosample types with multiple replicates.
More detailed information about the sequencing samples
(columns), including original biosample IDs in source, cate-
gorized biosample types, tissues and biological systems, can
be obtained by double-clicking on a row in the table. For the
genomic region of the double-clicked row, we also provide
the option for visualization in UCSC Genome Browser (32)
and the openness scores in various sequencing samples. Af-
ter the annotation task is completed, users can download
the standardized results via the Download button, and ver-

https://www.websocket.org/
http://www.php.net/
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ify the integrity of a downloaded file with the corresponding
MD5 checksum code. Note that the annotation results for
real-time browsing are grouped by chromosomes while the
annotation results for downloading are maintained in the
original order in uploaded BED file.

Intuitively browsing

To study the openness of a particular genomic region more
intuitively, the Browse page provides uniform comparisons
of openness across the hierarchically categorized samples.
After submitting the specified protocol, source, species, as-
sembly, and genomic region, OpenAnnotate offers (i) aver-
age openness scores in different biological systems, tissues,
and biosample types for intuitive comparison, and (ii) de-
fault visualization of the genomic region together with a
hyperlink to customize more annotation tracks in UCSC
Genome Browser (32).

APPLICATION SCENARIOS

OpenAnnotate reveals cell type-specificity of regulatory ele-
ments

The openness annotated by OpenAnnotate provides valu-
able cell type-specific patterns and has been successfully ap-
plied to demonstrate the cell type-specificity of validated si-
lencers (24) and model the openness dependence of a reg-
ulatory element on its underlying DNA sequence and TF
expression for scoring the cell type-specific impacts of non-
coding variants in personal genomes (25). Following the
analysis pipeline in SilencerDB (24), we demonstrate that
OpenAnnotate can also reveal the cell type-specificity of hu-
man A549 enhancers collected from EnhancerAtlas 2.0 (33)
(Supplementary Note S2).

OpenAnnotate facilitates studies of regulatory mechanism

OpenAnnotate has been successfully applied to identifying
regulatory elements (26) and 3D chromatin contacts (27),
deciphering gene functional relationships (28) and inferring
functions of transcription factors (29).

Identification of regulatory elements. A deep convolu-
tional neural network named DeepCAPE has been pro-
posed to accurately predict enhancers via the integration of
DNA sequences and DNase-seq data (26), with the under-
standing that DNase I hypersensitivity is important to iden-
tify active cis-regulatory elements including enhancers, pro-
moters, silencers, insulators, and locus control regions (34).
DeepCAPE consistently outperformed other methods, es-
pecially those use DNA sequences alone (35), for the identi-
fication of cell line-specific enhancers (Supplementary Note
S3). Such machine learning frameworks can also be adapted
for the prediction of other functional elements to establish
a landscape of functional elements specific to a biosample
type that still lacks enough systematic exploration.

Identification of 3D chromatin contacts. A bootstrapping
deep learning model named DeepTACT has been proposed
to integrate DNA sequences and chromatin accessibility

data for the prediction of chromatin contacts between regu-
latory elements (27), indicating that the openness annotated
by OpenAnnotate plays a crucial role in understanding reg-
ulatory mechanisms (Supplementary Note S3).

Co-opening analysis. The genes related to a specific biolog-
ical process tend to be clustered together in gene-gene co-
opening networks, which facilitates the elucidation of gene
functional relationships (28). Besides, co-opening associa-
tions between regulatory regions and nearby genes can pro-
vide an accurate interpretation of transcription factor func-
tions, paving the way to elucidate functions of regulatory
elements (29).

OpenAnnotate sheds light on single-cell data analyses

Bulk chromatin accessibility sequencing data has been suc-
cessfully used as reference data to facilitate characteriza-
tion (30,36) and imputation (37) of single-cell chromatin
accessibility sequencing (scCAS) data. Here, we introduce
a straightforward but practical approach, named refProj,
to incorporate the openness annotated by OpenAnnotate
as a reference for characterizing scCAS data (Supplemen-
tary Note S4). Using the source code obtained from a recent
benchmark study (38,39), we evaluated the effectiveness of
refProj on a scCAS dataset of human hematopoietic cells
(referred as Buenrostro2018, Figure 2A) (36). As shown in
Figure 2B, refProj-peak (peak openness-based) and refProj-
read (read openness-based) achieve the third-best and the
sixth-best clustering performance, respectively. Among the
top-six methods, SnapATAC (40), Cusanovich2018 (41–43)
and cisTopic (44) were shown to be state-of-the-art methods
in the benchmark study (38). Data visualization using the
top-six methods further demonstrates the effectiveness of
refProj to characterize cell heterogeneity (Figure 2C). The
results suggest that the openness annotated by OpenAn-
notate can facilitate scCAS data analyses (Supplementary
Note S4).

Selection of the openness annotation approaches

The above examples demonstrate the extensive application
scenarios of OpenAnnotate, which aims to efficiently anno-
tate raw read openness, peak openness and foreground read
count for massive genomic regions. We note that raw read
openness can provide holistic information of chromatin ac-
cessibility samples. In contrast, peak openness usually has
lower noise but higher sparsity than raw read openness be-
cause it is based on peak regions enriched with aligned
reads. Raw read openness is the most commonly used an-
notation, especially on the Per-base pair annotation mode
because machine learning methods such as convolutional
neural networks have an appetite for dense data. To facili-
tate the analysis of scCAS data in a reference-based man-
ner, peak openness can provide comparable or even better
performance than raw read openness, especially when there
are massive peaks in the scCAS data (30). Foreground read
count can be used in certain cases, such as customizing the
normalization method. Besides, cisTopic has presented ad-
vantages for the analysis of scCAS data (38,44), indicating
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Figure 2. OpenAnnotate facilitates the analysis of scCAS data. (A) Developmental roadmap of cell types in the Buenrostro2018 dataset. (B) Dot plot of
scores for each metric to quantitatively measure the clustering performance of each method, sorted by maximum adjusted Rand index (ARI) score. (C)
UMAP visualization of the feature matrix produced by the top-six methods ranked in (B). Individual cells are colored indicating the cell type labels shown
in (A).

that reference-based topic models that directly model fore-
ground read count data can be developed to further pro-
mote single-cell data analyses.

CONCLUSIONS AND FURTHER DIRECTIONS

Chromatin accessibility profiles accumulated in public
repositories serve as a valuable resource for studies of regu-
latory mechanisms. Recent research has mainly focused on

data collection, whereas efforts to systematically utilize the
data to annotate accessibility of genomic regions are lim-
ited. OpenAnnotate is a web server for efficient chromatin
accessibility annotation in batch of genomic regions. With
comprehensive data collection of 2729 sequencing sam-
ples, hierarchical categorization, user-friendly functionali-
ties, ultra-efficient calculation, real-time browsing, intuitive
visualization, extensive successful applications, detailed tu-
torial, as well as step-by-step demos, OpenAnnotate shows
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numerous advantages compared to existing databases and
toolkits (Supplementary Table S1).

OpenAnnotate has five main application scenarios. First,
biologists without sophisticated programming skills can
conveniently and intuitively compare the openness of ge-
nomic regions or a specific region across various biosample
types, thus facilitating the study of functional implications
(24). Second, computer scientists are currently keen on ap-
plying advanced models to solve biological problems. They
can use OpenAnnotate to circumvent cumbersome data col-
lection and processing, and incorporate openness data into
computational models to introduce cell type-specificity and
achieve superior performance (26,27). Third, high degree of
sparsity and high technical variation constitute the major
hindrances to characterize single-cell chromatin accessibil-
ity sequencing (scCAS) data. The bulk openness of peaks
in scCAS data can be incorporated as a valuable reference
to facilitate the analysis of scCAS data (30,36,37). Fourth,
OpenAnnotate offers the potential to reinterpret abundant
genetic data from large-scale genome-wide association stud-
ies (GWAS). Users can interpret the functional implication
of variants by integrating upstream openness and down-
stream gene expression (25). Finally, the openness anno-
tated by OpenAnnotate can be used for constructing co-
opening networks and associations, which provide a new
perspective to system biology studies (28,29).

In future versions, OpenAnnotate will follow two main
directions. First, we will continue to improve the interfaces
and functionalities of OpenAnnotate. Second, we can ag-
gregate cells of the same cell type as a pseudo-bulk sam-
ple and incorporate them into our web server. This will
make full use of the exponentially accumulated scCAS data
and further extend the scope of OpenAnnotate. We antic-
ipate that OpenAnnotate will benefit both biologists and
data scientists to better model the regulatory landscape of
genome.

DATA AVAILABILITY

The web server is freely available at http://health.tsinghua.
edu.cn/openannotate/ or http://bioinfo.au.tsinghua.edu.cn/
openannotate/. This website is open to all users and there
is no login requirement. Source code and tutorials for com-
piling and executing the OpenAnnotate program are freely
available at https://github.com/RJiangLab/OpenAnnotate.
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