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Abstract

Recent advances in T cell repertoire (TCR) sequencing allow for the characterization of rep-

ertoire properties, as well as the frequency and sharing of specific TCR. However, there is

no efficient measure for the local density of a given TCR. TCRs are often described either

through their Complementary Determining region 3 (CDR3) sequences, or theirV/J usage,

or their clone size. We here show that the local repertoire density can be estimated using a

combined representation of these components through distance conserving autoencoders

and Kernel Density Estimates (KDE). We present ELATE–an Encoder-based LocAl Tcr

dEnsity and show that the resulting density of a sample can be used as a novel measure to

study repertoire properties. The cross-density between two samples can be used as a simi-

larity matrix to fully characterize samples from the same host. Finally, the same projection in

combination with machine learning algorithms can be used to predict TCR-peptide binding

through the local density of known TCRs binding a specific target.

Author summary

T cell repertoires contain a vast amount of information on the donors, and can be used to

characterize the donor, and apply machine learning algorithms on such repertoires. A

limiting factor in the analysis of such repertoire is the lack of a good representation of the

T cell receptors. We here propose an autoencoder, named ELATE to present receptors as

real vectors. We show that this encoder can be used to characterize both full donors and

specific receptors using either supervised or unsupervised methods.

Introduction

T-cell receptor (TCR) repertoire formation results from two major procedures: Rearrange-

ments of the TCR α and β chains gene segments (V (D) and J) and formation of the junctions

between them [1]. During segment-joining, nucleotides are inserted and deleted at the junc-

tions between pairs of rearranging genes, forming the highly variable complementarity deter-

mining region 3 (CDR3) that is directly implicated in antigen recognition, and further

augmenting diversity [1,2].
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Repertoire next-generation immune-sequencing methods (often denoted rep-seq)[3] sup-

ply detailed measures of T cell clone frequencies in samples[4–8]. At the broad level, Rep-Seq

methods have three main usages: A) Descriptive—general statistics of the repertoire, including

clone size distribution, V, D, and J usages, CDR3 length, descriptions of alleles and haplotypes,

and in B cells also properties of somatic hypermutations and clonal trees[3,9]. B) Comparative

—comparison between different hosts or different compartments within the same host and the

sharing of clones between such compartments, comparison between repertoires in different

conditions (e.g. patients with specific diseases), and even comparisons between B and T cells

[10,11]. C) Predictions and Machine learning, including prediction of receptor targets, and

prediction of compartments using CDR3 composition or V gene usage [12].

The full sequence of T cell receptors is typically not studied. Instead, sequences are charac-

terized by their V and J genes, their observed clone size, and CDR3 sequence[13]. The CDR3

sequence, the V-beta usage, and the clone size distribution are usually analyzed as distinct fea-

tures of the repertoire[2,14,15]. The separation between these components is mainly the result

of the different representations (categorical for V(D)J usage, CDR3 sequence, and counts for

clone size). There is a need for an efficient framework to unify them into a single coherent

representation. Moreover, while there are standard methods to compare V(D)J usage (e.g.

Kullback Leibler divergence on the distributions [16]) or the clone size distribution (e.g.

entropy or Simpson index [14]), an efficient measure to define TCR local density based on the

CDR3 sequence is still needed. The local density of a TCR can be defined through the distance

of a TCR to other nearby TCRs. Such a density, requires a definition of a distance between

TCRs—for example, the edit distance between CDR3 sequences. However, computing the edit

distance (see Methods) between each pair of CDR3 sequences is prohibitively expensive. for

large samples.

Estimating the TCR local density in the receptor space has important applications, includ-

ing the comparison of densities of different TCR groups, estimating the cross density of differ-

ent repertoires (i.e. the density of one TCR from one repertoire around TCRs from a different

repertoire), and characterization of the TCR distribution properties. For example, to follow

the developmental stages of T cells, one may want to detect regions in receptor space that are

evolving to become denser or less dense. Similarly, one can ask whether some regions are

“holes” in the repertoire, with a very low receptor density. We here propose that through auto-

encoders and kernel density estimators, CDR3 sequence, V/J gene and clone size can be uni-

fied to provide a computationally efficient description of the repertoire, and the local density

in receptor space around each TCR can be properly defined.

Autoencoders are typically used for dimensionality reduction[17]. An autoencoder is an

encoder-decoder combination where the output of the decoder is simply the input to the

encoder, and the goal is to minimize the difference between the two. Autoencoders are used to

design efficient data representation. Encoders project an input vector to a lower dimension.

The decoder projects the low-dimensional vector back to the original dimension. In neural-

networks-based autoencoders, during the training process, the autoencoder minimizes the dif-

ference between the input of the encoder and the output of the decoder. The low-dimensional

projection is then used as an efficient representation of the input vector.

We propose the following outline for repertoire characterization by developing ELATE

(Encoder based LocAl Tcr dEnsity), with each step further explained in the Results and Meth-

ods sections:

A) Use an autoencoder (either distance maintaining or not) to project each CDR3 sequence

into a Z dimensional real space.

B) Project repertoires using a constant number of clones from each repertoire.

PLOS COMPUTATIONAL BIOLOGY T cell repertoire density estimate
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C) Define cross/self repertoire local density in this Z-dimensional space using KDE methods

[18].

To test the possibility of estimating the local density of T cell receptor sequences as defined

by their CDR3 sequence, their V gene, and their clone size, we developed the ELATE encoder.

This analysis is mostly focused on the beta chain since it has been assumed the repertoire

diversity and its binding to target MHC-peptide are determined more by the beta chain than

the alpha chain[19], and there are more beta than alpha-beta published datasets However,

ELATE can be equally applied to the alpha chain.

Results

ELATE can produce accurate reconstruction and also accurate TCR

distances

ELATE projects the CDR3 sequence and optionally the V gene using a Multi-Layer Perceptron

(MLP) based AE (see Methods and Fig 1 for encoder structure and the computational flow for

a single receptor). A Long-Short-Term-Memory (LSTM) recurrent neural network [20] based

approach to handle different lengths was also tested but had a lower decoder accuracy. Simi-

larly, when comparing encoder and LSTM for predicting TCR-peptide binding, encoders pro-

vided better results[21]. We have also tested other approaches, such as aligning the CDR3 to

the C and N termini and zero padding in the middle or limiting the analysis to CDR3

sequences of a given length. All such attempts led to a lower accuracy.

The decoder predicts the entire input vector, including the stop signal and what comes after

it. All values after the predicted stop signal are then zeroed. To evaluate the performance of the

AE, we used the percentage of sequences successfully reconstructed with up to K errors, where

a mismatch in length was defined as an error for all Ks. Note that the current definition does

not take into account the similarity between amino acids as measured through either their evo-

lutionary distance or through their biochemical distances[22]. Such distances can be easily

integrated in both the training and evaluation stages of ELATE.

In all the observed datasets, very few pairs of CDR3 sequences differ by less than 2 AA one

from each other (more precisely have an edit distance of less than 2). Indeed, when the distri-

bution of edit distance between every pair of sequences from pairs of random samples is calcu-

lated, the distributions are consistently normal, with practically no values below 2 (see a

representing example in Fig 2A). Thus, even an AE producing 1 or 2 errors would lead to a

representation closer to the original CDR3 than the vast majority of other sequences in a dif-

ferent sample. Note that the absolute number of non-shared CDR3 sequences within 2AA of a

CDR3 sequence from another sample depends on the sampling depth. We thus report the frac-

tion of sequences successfully reconstructed with 0, 1, or 2 errors (Fig 2).

To test the applicability of the AE, several previously published datasets with different cate-

gories were used in this analysis. The first set studied was the GLIPH dataset which is com-

posed of seven TCR samples, where all TCRs in a sample share specificity to the same peptide

[23]. Two more datasets of tumor-bearing mice from ImmunoMap and TILs[24] were used.

The first had two categories: CD8 T cells responding to TRP2, a shared self-peptide tumor

antigen, and SIY, a model foreign-antigen. The second is composed of samples taken from

mice treated with RT and 9H10 immunotherapies and a combination of both. Also, a set of

sorted naïve and memory cells (Benny Chain dataset), CD4+ and CD8+ from alpha and beta

chains of three donors was collected[25]. To explore variations over time, we used the response

to the yellow fever vaccine from different time-points in three pairs of identical twins[26].

Finally, a collection of TCRs with one sample from each host with any type of cancer and
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samples from healthy donors were collected from the Immune Epitope Database (IEDB).

The cancer analysis was performed to show the applicability of ELATE to TCR samples not

directly taken from deep sequencing experiments. The GLIPH and Benny Chain datasets

(Table 1) do not contain V usage in their repertoire and the GLIPH dataset has no frequencies

of clones.

While ELATE can quite precisely encode the CDR3 distribution (Fig 2C and 2D), it fails to

reproduce the distance between TCRs (Fig 2E). To handle that, we produced a novel distance

maintaining encoder (EM). In this framework, besides minimizing the reconstruction error.

An embedding loss (lossDIS, see Methods) of the sum over pairs of TCRs of the difference

between the Euclidean distance between the embeddings and the original Euclidean distance

Fig 1. A. Autoencoder description. The autoencoder is composed of two models: encoder and decoder. Encoder’s input: a vector of n dimensions of concatenated

one-hot (oh) vectors, representing a CDR3 sequence. Encoder’s output (decoder’s input): the embedded representation with 30 dimensions. Decoder’s output: the

reconstructed vector. The autoencoder is trained by minimizing the reconstruction MSE (Mean Squared Error). The classifier is a combination of the encoder (with

fixed weights) and 4 more fully connected layers. The classifier is trained by minimizing the BCE loss (Binary Cross Entropy). B. Data preprocessing and distance

maintaining. Encoder’s input: Two 1× n one-hot representations of TCR sequences (x1, x2). Each amino acid is represented by a 21 long one-hot representation, that

includes the possibility of the end of the CDR3, followed by a one hot representation for the stop signal for the end of the CDR3 and, when applicable, a nV dimensional

one-hot vector (where nV is the number of all possible Vs in a given dataset) for the V gene (optionally). The encoder’s output and decoder’s input is a 1× 30 embedded

vector with lower dimension z for each input sequence (z1, z2). Decoder’s output: a 1× n reconstructed one-hot vector for each input (x01, x02). In the EMB model, an

additional loss term is added to reduce the difference between the original distances (Euclidean distances between every x1 and xj) and embedded vectors distances

(Euclidean distances between every zi and zj). The distance is computed on the output vector. However, when reporting the results, the definition of the accuracy is

based on a vector after the max argument on each 21 positions is performed.

https://doi.org/10.1371/journal.pcbi.1009225.g001
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between the CDR3 one-hot vectors is added at the hidden layer. When the V gene of each TCR

was provided, a V gene-specific E was also concatenated to the CDR3 encoder. The V-based

encoder can be used with or without the embedding loss.

The accuracies with zero, one, and two mismatches for all four models (E, VE, EM, VEM)

are shown for the test set of all datasets (except for GLIPH and Benny Chain when analyzing

V) in Fig 2C, 2D, 2G and 2H. None of the receptors in the test set were used for either training

or hyper-parameter tuning. The accuracy of E is consistently much higher than the EM, with

or without V, with high accuracy of>90% in multiple data sets for 2 mismatches accuracy.

The models with the additional embedding constraints have lower accuracy (Fig 2G and 2H),

as expected given the need to minimize in parallel two loss functions. Similarly, encoding with

V gives a lower accuracy than without it, again as expected from the larger number of degrees

of freedom. However, as will be further shown, the encoding with the embedding is better for

multiple applications. To test whether the addition of the distance loss does maintain the dis-

tance distribution, the pairwise edit distances of the input one-hot vectors of the CDR3s in the

original set and the all distances in the new representations set were compared (Fig 2E and

2F). The correlation is higher in the constrained model (Fig 2F) with a Spearman correlation

of 0.9 (p<1.e-100), compared with the regular AE (correlation of 0.5, Fig 2E).

Fig 2. A. Edit distances distribution. Histogram of edit distances between all pairs of CDR3 sequences from two samples. Few sequences have 2 or

fewer mismatches. B. Models glossary. The table describes the model and model acronym used in all the following figures and in the text. C. E

accuracy. All accuracies of E for the different datasets with no mismatches (fully matched, red), 1 mismatch (orange), and 2 mismatches (blue). D.

VE accuracy. All accuracies of VE for the different datasets (except for datasets without Vs). E. Encoder and CDR3 distances correlation. Pairwise

Euclidean distances in the set of CDR3 one-hot vectors (Xs) in the x axis and pairwise Euclidean distances in the embedded set (Zs) predicted by E

in the y axis. The legend contains the Spearman correlation between the axes. F. Encoder’s distances correlation when combined with distances.

Pairwise Euclidean distances in the set of CDR3 one-hot vectors (Xs) in the x axis and pairwise Euclidean distances in the embedded set (Zs)

predicted by EM in the y axis. G. EM accuracy. All accuracies of EM for the different datasets. H. VEM accuracy. All accuracies of VEM for the

different datasets.

https://doi.org/10.1371/journal.pcbi.1009225.g002

Table 1. Description of each category.

DATA SET TAGS Description

GLIPH CTELKLSDY TCRs with shared specificity to CTELKLSDY peptide

VTEHDTLLY TCRs with shared specificity to VTEHDTLLY peptide

GLCTLVAML TCRs with shared specificity to GLCTLVAML peptide

GILGFVFTL TCRs with shared specificity to GILGFVFTL peptide

TPRVTGGGAM TCRs with shared specificity to TPRVTGGGAM peptide

NLVPMVATV TCRs with shared specificity to NLVPMVATV peptide

LPRRSGAAGA TCRs with shared specificity to LPRRSGAAGA peptide

ImmunoMap TRP2 TCRs responding to TRP2 immunotherapy in tumor-bearing mice

SIY TCRs responding to SIY immunotherapy in tumor-bearing mice

Benny Chain Memory TCR samples from memory cells

Naive TCR samples from naïve cells

Vaccine 7 D Pre TCR samples collected 7 days before immunization

0 D Post TCR samples collected on the day of immunization

7 D Post TCR samples collected 7 days after immunization

15 D Post TCR samples collected 15 days after immunization

45 D Post TCR samples collected 45 days after immunization

2 Y Post TCR samples collected 2 years after immunization

Cancer Healthy TCRs collected from healthy hosts

Cancer TCRs collected from hosts with different types of cancers

https://doi.org/10.1371/journal.pcbi.1009225.t001
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ELATE can be used to detect features of single clones

To highlight the importance of the encoding, we first tested whether the encoder reveals the

reported selection against specific AA in CDR3 sequences[27]. Samples composed of 100 TCR

per sample from the Benny Chain dataset were projected using the AE. To properly visualize

the projection, TSNE was used to lower the dimensions to 2 (Fig 3A). Although we used TCR

from different samples, consistently, TCRs with Cysteines (red color) were projected as clus-

ters (Fig 3A). To quantify the clustering, we divided all TCRs in the sample into two sub-

groups: all TCRs that contain Cysteine, and TCRs that do not contain Cysteine in the CDR3

beyond the first position. We computed the distance between each TCR to the closest TCR

that contains a Cysteine. We performed T-test on these two subgroups (p-value = 3.3e-94,

average with Cysteine = 5.072, average without Cysteine = 6.558).

Moreover, CDR3 sequences containing a Glycine have lower densities than other CDR3

sequences (Fig 3G). A similar difference is observed for Cysteine, but it fails to reach a signifi-

cance level. For Proline, we observe an interesting difference, where TCRs with a single Proline

are denser than either without or with 2 (Fig 3G). We currently have no clear explanation for

that.

Next, we tested whether the AE captures the CDR3 length distribution of the repertoire.

Indeed, if distances are maintained, similar length CDR sequences should have close projec-

tions. Moreover, CDR3 with much longer or shorter than average sequences should be again

projected to the periphery, as they are also less frequent and selected against[27,28]. Again, the

AE projects the mid-length CDR3 sequences to the center of the distribution and the long and

short CDR3 sequences to the periphery (Fig 3B, where each color is a different length).

Public TCRs have been described in a variety of immune responses[29]. A public clone is a

clone shared by different donors. Again, if the encoded projections represent the functionality

of the repertoire, one would expect public clones to be more central. We calculated the radius

from the center of mass of all projected TCRs in Benny Chain dataset. Note that such an analy-

sis is only possible following the translation to real-valued representations. We computed the

radius of TCRs vs their publicity, where the publicity of each sequence is defined as the num-

ber of samples containing it, out of 56 samples (Fig 3C). Indeed, public clones are more central

(spearman correlation, p<0.001). We further tested if public clones are in denser regions of

the projection, where the self-density was defined as the density of other TCR projections

from the sample around the clone. Density was estimated using a Kernel Density Estimation

(KDE). Again public clones reside in denser regions than private clones (spearman correlation,

p<0.001) (Fig 3C and 3D).

Finally, we checked the overall characterization of the TCR repertoire as a possible bio-

marker for different diseases[30], for example, a biomarker for cervical cancer[11]. We expect

TCR samples (those are not actual rep-seq, but rather samples of reported TCRs) in such con-

ditions to show distinct projections compared with random repertoires. To evaluate the scat-

tering of different categories in the embedded space, we used the AE projections in two disease

state datasets. Again, the vectors were projected to 2 dimensions using TSNE to visualize their

positions. When analyzing the GLIPH data set, all of the T cells’ clones that recognize the

TPRVTGGGAM peptide are significantly clustered together (Fig 3E). In the cancer data set,

when projecting the Cancer vectors to 2 dimensions, a separation between most TIL and naïve

TCRs emerged (Fig 3F, and t-test with the y-axis position p<0.001). In contrast with the previ-

ous tests, the cancer samples are from the IEDB and are enriched for disease-specific TCRs.

One can now use this density to estimate whether peptide-specific TCRs are in denser regions

than random peptides from the same sample. For almost all targets, TCRs specific for this tar-

get have a higher density than random TCRs, not defined to bind a known target. This could

PLOS COMPUTATIONAL BIOLOGY T cell repertoire density estimate
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Fig 3. A. Encoder’s projection TSNE (Benny Chain dataset). TCRs with Cysteine are colored in red. B. Encoder’s

projection TSNE (Benny Chain dataset). Colored by CDR3 length. C. Radius vs Publicity (Benny Chain dataset). The x

axis is the number of samples containing this TCR clone and the y axis is the distance from the center of all projections.

The Spearman correlation is in the legend. D. Self-density vs Publicity (Benny Chain dataset). Axes: y- The KDE

between a TCR clone and its sample, x- number of samples that contain this TCR clone. E. Encoder’s projection TSNE

PLOS COMPUTATIONAL BIOLOGY T cell repertoire density estimate
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be a sampling bias or a real difference, but the current method is the first that allows for such a

measurement (Fig 3G).

ELATE with KDE can be used to cluster samples

The autoencoder can be used to compare samples and not only to compare TCRs within a

sample. Again, we used a constant sample size (100 here) to avoid sample size bias. We then

defined a similarity between samples and tested whether this similarity can be used to detect

which sample comes from the same host. The similarity was defined using the AE, the Kull-

back- Leibler (KL) divergence of the V gene usage on the sample, or the edit distance (ED)

between CDR3 of different samples. The ED distance between each sequence from one sample

and each sequence from the other was computed. The distance between the two samples was

defined as the average of all minimum ED values (see Methods). For the AE-based distance,

the similarity between samples A and B is defined as the average KDE-based density of sample

A projected sequences based on the projected sequences of sample B. The distance was com-

puted for different variants of the AE, including the basic autoencoder (E), the autoencoder

combined with V (VE), or with CDR3 distances (EM) and combined with both (VEM). The

KDE was performed twice, one time with the original set of vectors, and again when the clones

frequency was incorporated (see Methods). We analyzed the vaccine dataset. This dataset con-

tained samples from three pairs of identical twins. The samples were taken at six different time

points before and after a yellow fever vaccination. Hierarchical clustering was performed using

the distance/similarity definitions above. The clustering that best reproduces the division to

hosts is VE (Fig 4A). Moreover, twins are closer to each other in the hierarchy than unrelated

donors. When computing the distances using only the V usage (KL distance), the clusters are

shuffled, with some distinction of twins but no clear separation of hosts (Fig 4B). To quantify

the distance method that best characterizes hosts, we tested the hierarchical clusters host ID

frequency and time-points entropies for each method (Fig 4C and 4D). All AEs produce a bet-

ter detection of hosts (lower entropy) than ED and KL methods, and the basic autoencoder

combined with V (VE) without the frequencies is the best method among all models (Fig 4C).

However, none of the methods separates samples by time-points (Fig 4D). To test the similar-

ity within and between hosts and between twins using VE, we divided all distances into three

groups: within-host, between twins, and between non-twin hosts. We performed an ANOVA

on the distances (p = 3.735e-108). We then compared each group using a two-sample two-

sided t-test, and indeed the within-host distances (3.1e13 +/- 4.8e12) are much shorter than

the between twins distance (1.9e14 +/- 9.7e12, p = 1.36e-48), and those are much shorter than

the between non-twins (3.0e14 +/- 6.0e12, p = 2.6e-16).

ELATE with KDE can be used for supervised sequence classification

Another important application of AE is sequence classification. A classifier was built on top of

the AE. The classifier is a combination of the encoder with three fully connected layers, which

replace the decoder (Fig 1). After the autoencoder was trained to predict the vector representa-

tion of the CDR3 set, the classifier layers are trained using a binary cross-entropy loss on the

class detection problem. Such a classifier was built and trained for each of our four

(GLIPH). TCRs with specificity to TRPVTGGGAM peptide are colored in red. The other groups are colored in grey. F.

Encoder’s projection TSNE (Cancer dataset). TCRs from hosts with cancer are colored in red and TCRs from samples

collected from healthy hosts are colored in grey. G. Average self-density per feature. The average self-density of all 7

peptides in GLIPH data set and for TCRs with a specific number of G (Glycine), C (Cysteine) and P (Proline). The p-

value of t-test is shown as � (<0.05), �� (<0.01), ��� (< 0.001).

https://doi.org/10.1371/journal.pcbi.1009225.g003
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autoencoders. Each classifier was trained as one vs all classifier (i.e. for each class, this class vs

all others), for each of the categories (Table 1). All test set AUC values are shown in Table 2.

We compared the first two datasets with DeepTCR results for a single sequence classifier.

When analyzing GLIPH and Benny Chain datasets, no Vs are provided, so there are no models

with the combination of V. As for the last three datasets (Benny Chain, vaccine, and cancer),

we have no comparison since there are no previous classifications for these repertoires. Deep-

TCR’s based classifiers typically outperform ELATE on GLIPH. However, ELATE based

classifier outperforms the Deep-TCR’s sequence classifier when classifying TRP2 and SIY sam-

ples (ImmunoMap) with an average AUC of 0.81 vs 0.71. ELATE also performs best when han-

dling TCR samples taken from healthy hosts and hosts with cancer, with an average AUC of

0.925. Here, different combinations of the autoencoder show different results in different data-

sets and there is no clear pattern or preference for any model. No significant difference was

Fig 4. A. KDE dendrogram. Hierarchical clustering distances were computed on the KDE distance matrix (without the clone frequencies) of the vectors samples

predicted by the autoencoder combined with Vs (VE). Samples are colored by hosts and twins are colored using similar colors (P1 and P2: blue and light blue, S1

and S2: red and salmon, Q1 and Q2: spring green and lawn green). B. KL dendrogram. Hierarchical clustering distances were computed on the KL distance matrix.

C. Clusters entropies by hosts. All hosts (P1, P2, S1, S2, Q1 and Q2) entropies through the different methods (labeled with a combination of: E = AE, EM = AE+DIS,

V = with v genes, F = with frequencies). D. Clusters entropies by time-points. All time-points (7 D pre, 0 D post, 7 D post, 15 D post, 45 D post and 2 Y post-

vaccination) entropies through the different methods.

https://doi.org/10.1371/journal.pcbi.1009225.g004
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found between the EM or the VEM (whenever V was available) and the DeepTCR (p-

value = 0.418).

Self-density estimate using ELATE

Finally, we checked whether the AE can be used to determine how dense is a given sample.

This can be defined by the average similarity between TCR in a dataset, or the frequency of

other TCRs from the same dataset around each TCR. We analyzed again the Benny Chain data

set of TCR repertoires, and compared alpha to beta chains, naïve to memory and CD4 to CD8

cells self-densities. The self-density of a given sample S is formally defined as the KDE-based

density between S and itself, where each TCR is ignored for the computation of the density at

its own projection. The average density of all groups was normalized to 0 over all projections

for the ease of presentation (Fig 5).

We computed the log of the self KDE values among all samples for the two autoencoders

(E, EM), with or without the frequencies, alpha chains have a lower self-density than beta

chains. This is surprising given the theoretically much larger beta repertoire. When the embed-

ding is used, a clear hierarchy can be observed alpha is less dense than beta, CD4 is on average

less dense than CD8 and naïve are slightly less dense than memory. In the encoder or when

the clone size is used, the same order is kept, but with a much noisier separation. Thus, again

the embedding seems to be the method to represent receptors as real-valued vectors.

Discussion

Characterization of the repertoire can serve as an indicator for immune monitoring and prog-

nosis assessment for different diseases[11]. Next-generation sequencing (NGS) allows massive

Table 2. AUC values for each category for our four models (E, VE, EM, VEM) and DeepTCR.

DATASET CATEGORY E AUC VE AUC EM AUC VEM AUC Deep-TCR

GLIPH CTELKLSDY 0.4 x 0.47 x 0.5

VTEHDTLLY 0.58 0.6 0.7

GLCTLVAML 0.64 0.64 0.6

GILGFVFTL 0.61 0.67 0.65

TPRVTGGGAM 0.81 0.54 0.83

NLVPMVATV 0.65 0.56 0.73

LPRRSGAAGA 0.58 0.47 0.58

Average 0.61 0.56 0.65

ImmunoMap TRP2 0.78 0.74 0.74 0.8 0.71

SIY 0.68 0.79 0.78 0.82 0.71

Average 0.73 0.765 0.76 0.81 0.71

Benny Chain Memory 0.58 x 0.57 x x

Naive 0.57 0.57

Average 0.575 0.57

Vaccine 15 D Post 0.54 0.53 0.52 0.52 x

7 D Post 0.5 0.49 0.48 0.48

2 Y Post 0.6 0.63 0.64 0.62

0 D Post 0.49 0.49 0.49 0.48

7 D Pre 0.51 0.51 0.49 0.5

45 D Post 0.49 0.51 0.5 0.48

Average 0.52 0.52 0.52 0.51

Cancer Healthy 0.87 0.91 0.93 0.91 x

https://doi.org/10.1371/journal.pcbi.1009225.t002
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analysis of the TCR repertoire with high-throughput and provides descriptive and comparative

analysis for million TCRs. The repertoire can be analyzed through different features such as

the CDR3 set or V gene usage and more. However, current methods of analyzing the repertoire

are focused on one measure or another. We have here proposed ELATE a method to integrate

them. ELATE, is a projection of TCRs that combines different aspects of the repertoire into a

coherent real-valued representation of each clone. ELATE conserves important features of the

repertoire. It can be used with unsupervised and supervised methods to distinguish different

groups and assign a sequence to a group. ELATE is highly efficient and can be applied to reper-

toires with millions of clones using standard hardware.

Representing clones as vectors in real space has many advantages, including the possibility

of measuring the repertoire density to detect sparse vs dense regions, computing the similarity

between repertoires, using clones for machine learning applications, which are often based on

real-valued input and visualizations. We have here shown that ELATE can indeed perform

Fig 5. Encoders’ self-density (Benny Chain dataset). A. Average KDE density within the set of vectors predicted by the basic autoencoder (E). B. Average KDE

density within the set of vectors predicted by the basic autoencoder combined with the clone frequencies (EF). C. Average KDE density within the set of vectors

predicted by the autoencoder combined with the CDR3 distances (EM). D. Average KDE density within the set of vectors predicted by the autoencoder combined

with the CDR3 distances and the clone frequencies (EMF).

https://doi.org/10.1371/journal.pcbi.1009225.g005
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these different tasks, and provide important insight on the repertoire, including among many

others:

A) The effect of amino acids in the CDR3 region on the repertoire density (with a decreasing

density as a function of the number of Glycines or Cysteines), or the increased density

around TCR recognizing cognate antigens.

B) The possibility of classifying single clones to specific cognate antigens or specific

compartments.

C) The estimate of the repertoire density and the difference between the density of the reper-

toire in naïve and memory compartments.

D) The similarity between repertoire and showing that samples from different compartments

and time points of the same donor are much more similar to other samples from the same

donor than to any other sample. Samples of twins are much more similar than samples of

non-twins.

While we have shown some typical applications of ELATE, the range of possible applica-

tions is much greater. Each flavor of ELATE has advantages and limitations. Distance main-

taining versions are better for density estimates but produce worse sequence reproduction.

Adding the V gene to the encoder improves the quality of clone classification but further

reduces the reproduction accuracy. Incorporating the clone frequency helps to distinguish

between the average density of some compartments, but often ruins the distance definition

between compartments. Thus, for each application of ELATE, one must consider which ele-

ment should be introduced.

We have used standard parameters for ELATE to ensure optimal reconstruction in the

vanilla flavor of ELATE (AE). One may further improve the accuracy of different tasks by tun-

ing the projection parameters for this specific task. However, we suggest that using a uniform

projection within and between experiments is important to allow for a consistent method to

compare repertoires among different settings.

We have tested other variants of such encoders both in the current analysis, and a TCR-

pMHC binding prediction[21], mainly an LSTM, where the output of the last amino acid is

the encoding. The LSTM accuracy was lower both here and in ERGO. Two main explanations

may be suggested A) There is a limited structure in the center of the CDR3. B) The beginning

and end of the CDR3 are practically constant, so there is no need for an LSTM to capture that.

A previous variational autoencoder (VAE) has been proposed in the literature—DeepTCR

[12]. The autoencoder used here is different than the VAE used in DeepTCR. The main differ-

ences between ELATE and DeepTCR are that in ELATE all CDR3 sequences are converted to

one-hot vectors as opposed to DeepTCR, where the sequences are converted to vectors using a

trainable embedding layer. Given the wide CDR3 length distribution, ELATE uses right zero-

padding to combine different lengths, and a novel loss function to optimize the projection.

Finally, and most crucially, ELATE conserves distances, in contrast with all existing methods,

allowing for the usage of KDE methods on the projection. At the technical level, ELATE uses

only fully connected layers, while DeepTCR uses convolutional layers.

Methods

Studied samples

Six previously published datasets with different categories were collected to test ELATE

(Table 3):
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• GLIPH (Glanville) [23]. TCR sequences were taken from T-cell binding to 7 different target

peptides. Each peptide has one sample of TCRs with a high probability of sharing specificity

to it. The TCRs from different individuals were clustered using the GLIPH algorithm.

• ImmunoMap (Sidhom) [24]. CD8 T cells responding to Kb-TRP2, a shared self-peptide

tumor antigen, and Kb-SIY, a model foreign-antigen, in naïve and tumor-bearing B6 mice.

• TILs (Tumor-infiltrating lymphocytes) Immunotherapies (Rudqvist) [31]. Samples were

taken from cohorts of tumor-bearing mice treated with radiotherapy (RT), anti–CTLA-4

(9H10) and a combination of them.

• Benny Chain[25]. Peripheral blood mononuclear cells (PBMC) of three donors were sorted

into memory (central memory, CM; effector memory, EM; effector memory RA-expressing

revertants, EMRA) and naïve CD4+ and CD8+ populations, alpha and beta chains.

• RF Vaccine[26]. Yellow fever vaccine (YFV) responding TCRs in three pairs of identical

twin donors (P1, P2, Q1, Q2, S1, S2) at different time-points.

• Cancer[32]. A collection of TCRs from human hosts with any cancer and healthy hosts was

downloaded from the Immune Epitope Database (IEDB) (See Github for FASTA file of

healthy and cancer TCRs).

• Not all datasets contain resolved Vs or clone frequencies. All categories, number of samples,

and whether V and frequencies are available are summarized in Table 3 All datasets are avail-

able at https://github.com/louzounlab/Autoencoder.

Table 3. The table contains the dataset name, the categories in each dataset, the number of sequenced libraries for each category, the number of clones in each cate-

gory, whether the dataset contains V gene usage, and whether the dataset details the clone frequencies.

Dataset Category Samples Clones Number of different V genes Frequencies

GLIPH CTELKLSDY 1 25 X X

VTEHDTLLY 1 271

GLCTLVAML 1 739

GILGFVFTL 1 586

TPRVTGGGAM 1 65

NLVPMVATV 1 166

LPRRSGAAGA 1 214

ImmunoMap TRP2 3 488 36 V

SIY 4 1,106

TILs Immunotherapies 9H10 5 3,643 27 V

RT 5 6,707

9H10+RT 5 7,826

Control 5 3,643

Benny Chain Memory 36 675,146 X V

Naive 20 1,557,365

Vaccine 7 D Pre 17 16,786 56 V

0 D Post 28 27,781

7 D Post 24 23,700

15 D Post 23 22,320

45 D Post 30 29,646

2 Y Post 3 2,260

Cancer Healthy 1 7,342 82 V

Cancer 1 409

https://doi.org/10.1371/journal.pcbi.1009225.t003
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Data curation

TCR sequencing files were collected from the sources above. The samples were parsed to com-

positions of CDR3 Amino Acid sequences and when available the V usage and the frequency

per clone. Sequences with non-IUPAC letters (X, �, _, #) were ignored. For each dataset, we

used the pre-processing performed in the original manuscript. The J usage was ignored here

for the sake of clarity. It can be incorporated the same way as V.

Glossary

Table 4 is a detailed glossary of all technical terms used in the analysis.

Data preprocessing

The full flow of analysis is described in Fig 1. Since TCRs have varying lengths of CDR3

sequences, right zero-padding was added to all TCRs to generate a constant length representa-

tion. A stop signal (!) was first added at the right end of each sequence of length l. The

sequence was then converted to a one-hot vector. Each character had a corresponding 21

dimensions one-hot vector (for 20 possible amino acids (AA) and an additional position for

the stop signal). The one hot was right zero-padded to produce a constant length representa-

tion (Fig 1). Note that other alignment options could be considered, such as performing a mul-

tiple sequence alignment on the CDR3 sequences before the encoding. However, the proposed

methods provided the highest accuracy on average on the tested samples.

When combining V usage with the CDR3 sequences, the V genes were represented as nV

dimensional one-hot vectors, where nV is the number of all possible Vs in a given dataset (each

dataset has a different number of different recognized Vs based on the algorithm used for the

clone analysis and the sequencing length). The CDR3 and V one-hot vectors were then

concatenated. The final representation is the concatenated one-hot vectors in this order: AA1,

AA2, . . .., AAl, stop codon, zero-padding, and (optionally) V. The clone size was never used for

the training of the autoencoder.

Table 4. Glossary of terms used for the analysis.

l Length of CDR3 sequence

m Maximal length of CDR3 sequence in an analyzed repertoire

n Dimension of one-hot representation

nV Number of possible Vs in a repertoire

N Size of the training set

b Batch size

DN Distance matrix of all Euclidean distances in the training set

Db Distance matrix of all Euclidean distances in a batch

x Encoder’s input vector

z Encoder’s output vector- embedded vector

Z Length of z

s The sequence form of x

x’ Reconstructed vector from the decoder’s output vector-

s’ The sequence form of x’

V Set of all different V genes

R Number of randomly sampled clones

E R by R edit distance matrix

https://doi.org/10.1371/journal.pcbi.1009225.t004
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Autoencoder (AE) training

The AE of ELATE (all acronyms are detailed in Table 5) has three internal fully connected

symmetric encoder and decoder layers of 300, 100, and 30 nodes. Each layer has a dropout rate

of 0.1 and an ’Elu’ activation function. Beyond that, there are three additional layers in the

decoder (Fig 1A):

A) A reshape layer (to n/21 x 21) that only changes the output vector to a matrix, where each

row represents a position in the CDR3, or the V gene (Technically, the V is represented as

different vectors, since it has a different dimension than the AA).

B) A fully connected layer with ’softmax’ activation function on each row separately

C) Another reshape layer (back to nx1 dimensions).

The AE was trained with an ’Adam’ optimizer with a learning rate of 0.0001 and a Mean

Square Error (MSE) loss (Eq 1). The number of epochs for the training varied for different

datasets, where N is the number of samples in the training set.

lossMSE ¼
1

N
PN

i¼1
ðyi � ŷiÞ

2
1

Training AE to maintain the distance

To combine the original CDR3s distances in the training process, we first computed the NxN

size distance matrix DN of all Euclidean distances among all pairs of one-hot representation of

TCRs from all samples in the training set. Then, batches of b samples were generated from the

training set along with their corresponding b size distances matrices Db produced from DN.

Then, to conserve the distances in the embedded space, the Euclidean distances between

pairs of projections and the original Euclidean distance between the original pairs in the input

set (Eq 2). was added to the loss function (lossDIS).

Table 5. Abbreviations.

KL Kullback-Leibler

ED Edit Distance

KDE Kernel Density Estimator

TSNE T-distributed Stochastic Neighbor Embedding

NGS Next-Generation Sequencing

TCR T Cell Receptor

CDR3 Complementarity Determining Region 3

AA Amino Acid

AE Auto Encoder

VAE Variational Autoencoder

ELATE Encoder based LocAl Tcr dEnsity

LSTM Long-Short-Term-Memory

HCA Hierarchical Cluster Analysis

MSE Mean Squared Error

TIL Tumor-Infiltrating Lymphocyte

YFV Yellow Fever Vaccine

IEDB Immune Epitope Database

PBMC Peripheral Blood Mononuclear Cell

CM Central Memory

EM Effector Memory

https://doi.org/10.1371/journal.pcbi.1009225.t005
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lossDIS ¼
P

i2bð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j>i2bðzi � zjÞ

2
q

� DijÞ
2

2

where zi and zj are the embedded vectors of xi and xj and Dij is the Euclidean distance between

xi and xj.

Autoencoder accuracy

To test the AE prediction, we used the fraction of sequences properly reconstructed, instead of

the loss function used for the learning process (See Fig 1B). The reconstructed sequence was

produced by replacing the softmax with a rigid max in layer B above, and a translation of the

one-hot back to a sequence, stopping at the leftmost stop signal or at the end of the CDR3. All

positions beyond the leftmost stop signal were ignored. If the length of the reconstructed vec-

tor was different than the length of the original vector, the entire reconstruction was defined as

an error. Otherwise, the error level was defined as the number of positions differing between

the original and reconstructed sequence. Thus, an error rate of 15% for one mismatch implies

that 15% of all sequences either had a wrong length or the proper length and one mismatch.

Training classifier

The classifier is composed of the previously described encoder, combined with four fully con-

nected layers with 30, 15, 10 and 1 dimensions, with a dropout of 0.1 after the second and

third layers, and a Tanh activation-function except for the last layer, where we use a sigmoid.

The classifier is trained with similar parameters as the encoder and a cross-entropy loss (Eq 3)

(Fig 1A). When the classifier was trained, the encoder weights were fixed. For multi-class, the

encoder was trained as one vs all.

lossBinaryCrossentropy ¼ �
1

N
PN

i¼1
yilogðpðyiÞÞ þ ð1 � yiÞlogð1 � pðyiÞÞ 3

The classifier was trained as one vs all classifier, for each of the categories in the various

datasets.

The TCRs were divided into a training fraction composed of 500 TCR CDR3 sequences

from each sample and all the remaining CDR3 sequences (the vast majority) as a test fraction.

Hyperparameter tuning was performed using a single dataset and the E encoder.

KL similarity

When analyzing only V gene usage, the V-gene distributions were computed for a random set

of R clones from each sample. Then, the distance between the distribution of a pair of samples

p and q was defined to be their KL divergence [33] (Eq 4).

D pjjqð Þ ¼
P

vi2VpðviÞlogð
pðviÞ

qðviÞ
Þ 4

ED similarity

A two-sample edit distance was determined as the average of all minimum values per row in E,

where E is an RXR distance matrix of the edit distances (Levenshtein distance) of R random

clones in both samples. Levenshtein distance represents the number of insertions, deletions,

and substitutions required to change one word to another29. When computing the self-
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distance, the diagonal values were ignored. Note that the edit distance is different than the

one-hot distance.

KDE similarity

Given two projections of samples, S1 = {x1, x2, . . ., xR} and S2 = {y1, y2, . . ., yR} (or a single pro-

jection if S1 and S2 are the same), we estimated the local density using a Kernel Density Esti-

mator KDE[18]. However, in contrast with standard KDE, we here found the density of each

projection in S1 with respect to the projections in S2 (Eq 5).

fh xð Þ ¼
1

Rh
PR

i¼1
K

x � yi

h

� �
5

where K is the kernel, and h> 0 is a smoothing parameter called the bandwidth. x is the projec-

tion of a TCR in sample S1, while y are all projections in sample S2

We can define the average density of the projections S1 in S2 as the average densities for all

vectors in S1. When measuring the density of samples in S1 vs S2 in combination with the fre-

quencies, each TCR clone was multiplied by its clone size (Eq 6).

fh xð Þ ¼
1

Rh
PR

i¼1
freqxi

K
x � xi

h

� �
6

Also, the new representation of the data allowed us to define for the first time the average

self-density of a given repertoire, as the density when S1 and S2 are the same, and ignoring for

each projected sequence its own contribution to its density. Here, we used Gaussian kernel

and h = 1.06�STD(S)�len(S)��(-1/5) [34].

Statistical analysis

The difference between the various methods in our analysis was tested using two-way

ANOVA[35], and Tukey’s test. An ANOVA test was performed with all autoencoder models.

Then, Tukey’s test was performed between all methods and categories pairs to find which are

significantly different. The clustering of samples was done using Hierarchical cluster analysis

(HCA) [36] using average linkage on the KL, ED, and KDE distances matrices.

Visualization with TSNE

T-distributed Stochastic Neighbor Embedding (TSNE)[37] is a nonlinear dimensionality

reduction technique well-suited for embedding high-dimensional data for visualization in a

low-dimensional space of two or three dimensions. Specifically, it models each high-dimen-

sional object by a two- or three-dimensional point in such a way that similar objects are mod-

eled by nearby points and dissimilar objects are modeled by distant points with high

probability. We here use TSNE to visualize the embedded vectors of 30 dimensions in two

dimensions.
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