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Abstract

A persistent obstacle for constructing kinetic models of metabolism is uncertainty in the

kinetic properties of enzymes. Currently, available methods for building kinetic models can

cope indirectly with uncertainties by integrating data from different biological levels and ori-

gins into models. In this study, we use the recently proposed computational approach

iSCHRUNK (in Silico Approach to Characterization and Reduction of Uncertainty in the

Kinetic Models), which combines Monte Carlo parameter sampling methods and machine

learning techniques, in the context of Bayesian inference. Monte Carlo parameter sampling

methods allow us to exploit synergies between different data sources and generate a popu-

lation of kinetic models that are consistent with the available data and physicochemical

laws. The machine learning allows us to data-mine the a priori generated kinetic parameters

together with the integrated datasets and derive posterior distributions of kinetic parameters

consistent with the observed physiology. In this work, we used iSCHRUNK to address a

design question: can we identify which are the kinetic parameters and what are their values

that give rise to a desired metabolic behavior? Such information is important for a wide vari-

ety of studies ranging from biotechnology to medicine. To illustrate the proposed methodol-

ogy, we performed Metabolic Control Analysis, computed the flux control coefficients of the

xylose uptake (XTR), and identified parameters that ensure a rate improvement of XTR in a

glucose-xylose co-utilizing S. cerevisiae strain. Our results indicate that only three kinetic

parameters need to be accurately characterized to describe the studied physiology, and ulti-

mately to design and control the desired responses of the metabolism. This framework

paves the way for a new generation of methods that will systematically integrate the wealth

of available omics data and efficiently extract the information necessary for metabolic engi-

neering and synthetic biology decisions.

Author summary

Kinetic models are the most promising tool for understanding the complex dynamic

behavior of living cells. The primary goal of kinetic models is to capture the properties of
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the metabolic networks as a whole, and thus we need large-scale models for dependable in
silico analyses of metabolism. However, uncertainty in kinetic parameters impedes the

development of kinetic models, and uncertainty levels increase with the model size. Tools

that will address the issues with parameter uncertainty and that will be able to reduce the

uncertainty propagation through the system are therefore needed. In this work, we

applied a method called iSCHRUNK that combines parameter sampling and machine

learning techniques to characterize the uncertainties and uncover intricate relationships

between the parameters of kinetic models and the responses of the metabolic network.

The proposed method allowed us to identify a small number of parameters that determine

the responses in the network regardless of the values of other parameters. As a conse-

quence, in future studies of metabolism, it will be sufficient to explore a reduced kinetic

space, and more comprehensive analyses of large-scale and genome-scale metabolic net-

works will be computationally tractable.

Introduction

Kinetic models are one of the cornerstones of rational metabolic engineering as they allow us

to capture the dynamic behavior of metabolism and to predict dynamic responses of living

organisms to genetic and environmental changes. With reliable kinetic models, metabolic

engineering and synthetic biology strategies for improvement of yield, titer, and productivity

of the desired biochemical can be devised and tested in silico [1]. The scientific community has

acknowledged the utility and potential of kinetic models, and efforts towards building large-

and genome-scale kinetic models were recently intensified [2–9]. Nevertheless, the develop-

ment of these models is still facing challenges, such as partial experimental observations and

large uncertainties in available data [10–12].

The major difficulty in determining parameters of kinetic models are uncertainties associ-

ated with: (i) flux values and directionalities [13–16]; (ii) metabolite concentration levels and

thermodynamic properties [13–16]; and (iii) kinetic properties of enzymes [2, 17]. As a result

of interactions of metabolite concentrations and metabolic fluxes through thermodynamics

and kinetics, these uncertainties make parameter estimation difficult. Quantifying these uncer-

tainties and determining how they propagate to the parameter space is essential for identifica-

tion of parameters that should be measured or estimated to reduce the uncertainty in the

output quantities such as time evolution of metabolites or control coefficients [18, 19].

In biological systems, large uncertainties and partial experimental data commonly result in

a population instead of in a unique set of parameter values that could describe the experimen-

tal observations. Such population of parameter sets is typically computed using Monte Carlo

sampling techniques [3–5, 8, 9, 11, 20–28]. However, the problem is when certain properties

differ among models in a model population. For example, one such property is flux control

coefficients (FCCs)[18, 19, 29]. In [30], we used the ORACLE (Optimization and Risk Analysis

of Complex Living Entities) framework [3, 4, 8, 10, 11, 31, 32] to compute a population of

kinetic models along with the corresponding flux control coefficients with the aim of improv-

ing xylose uptake rate (XTR) of a glucose-xylose co-utilizing S. cerevisiae strain. We have

found that in the same population of models that are consistent with the observed physiology

FCCs can be different due to lack of data about kinetic parameters. This can lead to erroneous

or conflicting conclusions and decisions about the system in metabolic engineering and syn-

thetic biology studies.

Model classification for uncertainty reduction
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In this contribution, to resolve such issues, we propose to formulate these problems as

parameter classification: identify which of the parameters, if any, should be constrained so that

the values of studied properties, such as FCCs, are in predefined ranges. For this purpose, we

extended the capabilities of iSCHRUNK (in Silico Approach to Characterization and Reduc-

tion of Uncertainty in the Kinetic Models), a recently introduced machine learning approach

that characterizes uncertainties in parameters of kinetic models, and identifies accurate and

narrow ranges of parameters that can describe a studied physiological state [17]. In

iSCHRUNK, machine learning is combined with methods that generate populations of kinetic

models [3–5, 8, 9, 11, 20–28] to data-mine the integrated data and observed physiology

together with the kinetic parameters. The extended iSCHRUNK workflow is amenable for

identifying parameters that give rise to a wide variety of properties of metabolic responses. The

identified parameters can further be refined in an iterative way using the stratified sampling.

Moreover, a set of improvements in the parameter classification procedure was introduced to

improve the classification accuracy and to allow for dealing with uncertainties in alternative

physiologies, e.g., when multiple metabolite concentrations vectors are consistent with the

observed physiology.

As an illustration of the capabilities of the extended iSCHRUNK, we identified the enzymes

and their kinetic parameters that determine consistent FCC values related to XTR. Our results

showed that by constraining only three parameters, corresponding to xylose reductase (XRI)

and ATP synthase (ASN), consistent FCCs can be obtained for models computed around mul-

tiple steady-state metabolite concentrations. We further showed how the parameter classifica-

tion can be improved to more accurately identify the parameter subspaces that lead to well-

determined model properties.

Results

Uncertainty in the xylose uptake responses to genetic manipulations

In [30], we analyzed the improvement of the xylose uptake rate (XTR) during mixed glucose-

xylose utilization in a recombinant Saccharomyces cerevisiae strain. Here, we revisited that

study and built the kinetic model of S. cerevisiae metabolic network around the reference

steady-state of metabolic fluxes and metabolite concentrations (Methods). The model contains

258 parameters and describes 102 reactions and 96 intracellular metabolites distributed over

cytosol, mitochondria and extracellular environment. The experimentally determined values

of kinetic parameters were missing, and the analyzed system was underdetermined, i.e., we

had 102+96 computed values for steady-state fluxes and metabolite concentrations versus 258

unknown parameters. This meant that a multitude of parameter sets could reproduce the

observed physiology, and we used the ORACLE framework that employs Monte Carlo sam-

pling to generate a population of 200’000 kinetic models. We computed the flux control coeffi-

cients (FCCs) of the metabolic network and used them to rank enzymes according to their

control over XTR, i.e., the highest ranked enzymes were the ones with the largest magnitude

FCCs with respect to XTR. Among the top ranked enzymes, hexokinase (HXK), non-growth

associated maintenance (ATPM), and NADPH reductase (NDR) had ambiguous control over

XTR (Fig 1A). The distributions of the control coefficients of XTR with respect to HXK,

ATPM and NDR (CXTR
HXK; C

XTR
ATPM , and CXTR

NDR, respectively) were extensively spread around zero,

and we could not deduce with certainty whether the control of these enzymes over XTR was

positive or negative.

The population of control coefficients CXTR
HXK was nearly symmetric around zero with a mean

of 0.005 and 47% of samples had negative values (Fig 1B). We split the population of kinetic

models based on the sign of CXTR
HXK; and we analyzed the two populations with a negative (Fig

Model classification for uncertainty reduction
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1C, left) and a positive (Fig 1C, right) control of HXK over XTR. The split in the population

did not have a substantial effect on the majority of the control coefficients. Interestingly, the

Fig 1. Ambiguous control of HXK, ATPM and NDR over xylose uptake (XTR) during mixed glucose-xylose fermentation. (A) Control coefficients of the top

enzymes over XTR. The bars represent the mean values of the control coefficients through XTR. The error bars denote the 1st and the 3rd quartile of the control

coefficients with respect to their mean value, i.e., 50% of the samples closest to the mean value are between the error bars. (B) The distribution of the control coefficient of

HXK over XTR was centered around zero. (C) Pruned population of the control coefficients containing only models that had a negative control of HXK over XTR (left,

green bars) or a positive one (right, red bars). For comparison purposes, the non-pruned population of control coefficients is also shown (left and right, gray bars).

Enzymes: HXK, hexokinase; PGI, glucose-6-phosphate isomerase; TPI, triose phosphate isomerase; ZWF, glucose-6-phosphate-1-dehydrogenase; ATPM, non-growth

associated ATP maintenance; ADK, adenylates kinase; NDR, NADPH reductase; PDA, pyruvate dehydrogenase; XTR, xylose transporters; XRI, xylose reductase; XDH,

xylitol reductase; XK, xylulokinase; The complete list of enzymes and chemical species is provided in S1 Text.

https://doi.org/10.1371/journal.pcbi.1007242.g001
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exceptions were precisely the other enzymes with the ambiguous control over XTR, i.e.,

ATPM and NDR, which exhibited a negative correlation with HXK (Fig 1C). This suggested

that there were two distinct populations of kinetic models. The fact that models within these

two populations have several common metabolic responses further implied that each of these

two populations of models had distinct values of some kinetic parameters that determined

such metabolic responses.

Identification of significant parameters determining control of HXK over

XTR

We used the Classification and Regression Trees (CART) algorithm [33, 34] to identify signifi-

cant parameters that determine responses of XTR to changes in HXK activity. The CART algo-

rithm partitions the parameter space into hyper-rectangles determined by the ranges of

parameters that satisfy the studied property. Here, we used as parameters the degree of satura-

tion of the enzyme active site, σA [10], because this quantity is constrained in a well-defined

range between 0 and 1 (Methods), and the desired property was the negative control of HXK

over XTR. The inputs of parameter classification were: (i) the information for each out of

200’000 parameter sets whether or not it gave rise to the negative control of HXK over XTR;

and (ii) parameter values of 200’000 parameter sets. Subsequently, we will refer to hyper-rect-

angles computed by the CART algorithm as rules.
To measure the performance of parameter classification we defined the performance index

(PI), which quantifies a portion of parameter sets giving rise to the studied property. In this

work, out of all parameter sets that satisfy rules (or a rule) inferred by parameter classification,

PI quantifies how many of them are giving rise to the negative control of HXK over XTR. For

example, within a population of models satisfying a rule, if 40% of models give rise to the nega-

tive control of HXK over XTR, then PI of this rule is 0.4.

Reduced number of parameters determine control of HXK over XTR. We performed

parameter classification on 200’000 parameter sets of 258 parameters, and the algorithm iden-

tified 76 rules. In the identified rules, only 46 out of 258 parameters were constrained, whereas

the remaining parameters had no effect on the control of HXK over XTR, i.e., their σA values

could take any value between 0 and 1 (Methods). Kinetic subspaces defined by these rules had

a portion of parameter sets giving rise to the negative control ranging from PI = 0.50 to 0.78,

i.e., 50–78% of parameter sets satisfying these rules resulted in the negative control (S1 Table).

This was a noteworthy improvement compared to the overall kinetic space with 47% of such

parameter sets.

Preselection and identification of significant parameters. Our finding that a reduced

number of parameters determines control of HXK over XTR suggested that statistical meth-

ods, such as Fisher’s linear discriminant score [35, 36], can be used to preselect the significant

parameters, i.e., the parameters that affect the studied property. Fisher’s linear discriminant

score allows us to quickly preselect parameters by analyzing the parameter distributions

(Methods). We preselected 79 (out of 258) parameters that passed the threshold of 1% of the

maximal Fisher’s linear discriminant score (Methods), and the values of these 79 parameters

in 200’000 parameter sets were then used in the parameter classification. The classification

algorithm inferred 78 rules, and remarkably, 70 of these rules coincided with the ones obtained

in the first study (S1 Fig and S1 Table). As expected, the ranges of the obtained PIs also coin-

cided in the two studies. This result indicated that Fisher’s linear discriminant score is a good

measure for identifying significant parameters and we used this score for parameter preselec-

tion in all further studies.

Model classification for uncertainty reduction
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The 78 rules obtained from the study with the preselected parameters were defined by con-

straints on 39 parameters that corresponded to only 24 enzymes (S1 Table). No rule was

defined with more than 13 parameters and less than four parameters. We ranked the rules in

the descending order according to the number of parameter sets that satisfy them (Methods).

The top rule was defined by constraints on eight parameters, and it enclosed a subspace with

9285 parameter sets and PI of 0.65 (Table 1). The 2nd and 3rd ranked rules had higher values of

PI than the 1st ranked rule (0.73 for the 2nd and 0.76 for the 3rd rule), but smaller subspaces

were enclosed (8049 and 6342 parameter sets for the 2nd and the 3rd rule, respectively). As

expected, the distributions of control coefficients of XTR with respect to HXK corresponding

to the parameter sets that satisfied Rules 1, 2 and 3 were biased toward negative values (Fig 2).

Indeed, compared to the distribution for the overall population of parameters with the mean

of 0.005 and the median of 0.005, the distributions corresponding to the three rules were

shifted toward the negative values with the means of -0.082, -0.111 and -0.132, and the medi-

ans of -0.024, -0.036 and -0.044 for Rule 1, Rule 2 and Rule 3, respectively (Fig 2). These results

demonstrate that the parameter classification algorithm can reliably be used to identify the sig-

nificant parameters and their ranges that give rise to the negative control of HXK over XTR.

Top 3 significant parameters. A closer inspection of the top ranked rules revealed that

there were a few parameters such as sASN
pim

or sXRI
nadhc

(for notation see the caption of Table 1) that

appeared rather consistently throughout the rules (Table 1 and S1 Table). The appearance of a

reduced number of parameters throughout the inferred top ranked rules suggested that these

parameters were essential for a negative control of HXK over XTR. We hence ranked the

Table 1. Output of parameter classification algorithm for CXTR
HXK < 0. Top 3 rules obtained from the parameter classification with preselected parameters. The rules are

ranked according the number of parameter sets that satisfy parameter ranges defined by the corresponding rule. For example, 9285 out of 200’000 (4.6%) generated param-

eter sets are within the subspace defined by the top-ranked rule, Rule 1. The values of σA relate to the Km values as Km = S (1 - σA)/σA, where S is the concentration of the

corresponding metabolite. The notation sEi
Sj cmp represents the degree of saturation of the enzyme Ei by the metabolite Sj, and cmp denotes either cytosolic or mitochondrial

compartment.

Rule Size PI

ðCXTR
HXK < 0Þ

Parameters Km ranges (mM) σA ranges

1 9285

(4.6%)

0.65 sASN
pim

3.5�10−3 6.5�100 0.001 0.651

sTPI
t3pc

2.0�10−5 2.2�10−2 0.476 0.999

sGPD1
dhapc

7.1�10−1 2.0�10+3 0.001 0.737

sGPD2
g3pc

5.1�10−4 1.6�10+1 0.001 0.970

sADK
adpc

3.4�10−2 1.3�10+2 0.001 0.799

sGLYCt
glycc

9.9�10−2 6.9�10+2 0.001 0.875

sXRI
nadhc

5.2�10−2 7.6�10+1 0.001 0.593

sXRI
nadc

3.4�10−4 2.6�10−1 0.561 0.999

2 8049

(4.0%)

0.73 sASN
adpm

2.6�10−3 5.6�100 0.318 0.999

sASN
pim

6.5�10−6 3.5�10−3 0.651 0.999

sASN
atpm

6.2�10−3 1.6�10+1 0.001 0.719

sTPI
t3pc

2.0�10−5 2.5�10−2 0.443 0.999

sXRI
nadhc

1.1�10−1 7.6�10+1 0.001 0.418

3 6342

(3.2%)

0.76 sASN
adpm

5.6�100 2.6�10+3 0.001 0.318

sASN
pim

6.5�10−6 3.5�10−3 0.651 0.999

sASN
atpm

6.2�10−3 1.6�10+1 0.001 0.719

sXRI
nadhc

2.8�10−2 7.6�10+1 0.001 0.733

https://doi.org/10.1371/journal.pcbi.1007242.t001
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parameters based on the number of their occurrences in the rules and by how much their

ranges were constrained (Methods).

We first considered the top rule (Rule 1 in Table 1 and S1 Table), and we computed the

ranking score for the associated parameters. We then ranked the parameters for the top 2 rules

(Rules 1 and 2), for the top 3 rules (Rules 1, 2 and 3), and so forth, and observed how the rank-

ing score of the parameters evolved as we considered a growing number of rules (Fig 3A).

There was a clear separation in the ranking scores of a small number of parameters from the

remaining parameters (Fig 3A). Indeed, the three highest ranked parameters, sXRI
nadhc

; sASN
pim

, and

sTPI
t3pc

, were consistent for a large number of considered rules. This result suggested that it

would be sufficient to constrain a combination of the ranges of the three parameters to ensure

the negative control of HXK over XTR.

Fig 2. The distributions of control coefficients of XTR with respect to HXK for Rules 1, 2 and 3 were clearly

shifted toward negative values compared to the one for the overall population of parameter sets. The horizontal

box plots describe the inter-quartile range (gray box), median (target circle), mean (diamond) and the range of +/- 2.7

standard deviations around the mean (whiskers) of the distributions.

https://doi.org/10.1371/journal.pcbi.1007242.g002
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Qualitative dependency of negative control on top 3 significant parameters. We con-

structed a subspace of parameters by constraining the range of the top significant parameter,

sXRI
nadhc

, according to Rule 1 (Table 1), while the other parameters were unconstrained and could

take any value between 0 and 1. Within this subspace, there were 53% of parameter sets giving

rise to the negative control of HXK over XTR, i.e., PI = 0.53 (Fig 3B, top). In such a way, we

constrained the ranges of sXRI
nadhc

based on the remaining top 10 ranked rules, and we analyzed

how these ranges affected PI (Fig 3B). There was a clear qualitative relationship between the

ranges of sXRI
nadhc

and PI. Indeed, the values of PI ranged from 0.55 (Rule 2) up to 0.57 (Rules 8

and 9) for low values of sXRI
nadhc

, whereas they were as low as 0.46 for middle range values of this

parameter (Fig 3B). We repeated this analysis for sASN
pim

and sTPI
t3pc

, and for higher values of these

two parameters, PI was as high as 0.62 (sASN
pim

) and 0.51 (sTPI
t3pc

), whereas for lower values of these

two parameters PI was as low as 0.4 (sASN
pim

) and 0.43 (sTPI
t3pc

). This observation motivated us to

analyze how PI evolved with the progressive increase of the lower bound for each of the

parameters while keeping their upper bounds at 1. Interestingly, the increase of the parameters

lower bound lead to either a monotonic increase (sASN
pim

and sTPI
t3pc

) or decrease (sXRI
nadhc

) of PI (S2

Fig). Therefore, the effect of the parameters on the control of HXK over XTR was the most

pronounced for the parameter ranges either in the low or the high values but not in the middle

range.

This analysis suggested that a subspace defined by constraining sXRI
nadhc

to low values and sASN
pim

and sTPI
t3pc

to high values was likely to have a high PI.

Constraining top 3 significant parameters ensures the negative control of

HXK over XTR

To combine the distributions of top 3 parameters that ensure a high PI in an unbiased way, we

performed another parameter classification (Methods). The parameter classification algorithm

inferred 66 rules on these three parameters, and the top rule enclosed 9389 samples with PI of

0.73 (S1 Table). The PI value of 0.73 was close to the maximal PI value of 0.78, which was com-

puted for the rules formed with all parameters. As expected, the ranges of the three parameters

defined by the top rule (Fig 4C) were consistent with the analysis presented in the previous

section.

We proceeded with the validation of the ranges of the top 3 parameters on a new population

of models. We imposed the ranges of the top 3 parameters derived from the top rule of the

parameter classification and generated a population of 100’000 models (Methods). We then

computed the control coefficients of the top enzymes over XTR (Fig 4). The control coefficient

CXTR
HXK was distinctively negative with a mean value of -0.09 (Fig 4C), and its distribution was

clearly shifted toward negative values compared to that of the original population of models

(Fig 1B). More than 72% of models had negative values of CXTR
HXK compared to 47% in the origi-

nal population of models. The value of PI of 0.72 obtained from the validation set was strik-

ingly close to the predicted value of 0.73 from the second tree training.

Uncertainty in physiology: Alternative concentration profiles

In Metabolic Control Analysis (MCA), it is considered that the control coefficients depend

only on elasticities, however this holds only when the reactions are irreversible and there are

no conserved moieties. It has been shown that metabolite concentrations affect displacements

of reactions from thermodynamic equilibrium, which in turn influence the control over fluxes

and concentrations in the network [3, 16, 32, 37]. Therefore, when there is uncertainty in

Model classification for uncertainty reduction
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physiology, e.g., when several alternative concentration profiles correspond to experimental

observations, the control coefficients derived from the kinetic models computed for these con-

centration profiles can be significantly different. iSCHRUNK can resolve this kind of problems

by identifying the parameter values that give rise to well-determined control coefficients of the

metabolic network for multiple alternative physiologies.

As an illustration, we analyzed three alternative physiologies characterized with three alter-

native concentration profiles (Reference, Extreme1 and Extreme2) and a common flux profile

Fig 3. Top ranked parameters affecting control of hexokinase (HXK) over xylose uptake (XTR). (A) Evolution of the ranking score for the top

10 parameters as a function of the number of considered rules. (B) The effects of constraining the top 3 parameters individually according to the

ranges of the top 10 rules on PI.

https://doi.org/10.1371/journal.pcbi.1007242.g003

Fig 4. A well-determined control of HXK over XTR. (A) The mean control coefficient of HXK over XTR is negative

after constraining the inferred ranges of only 3 parameters. (B) Distribution of the control coefficient CXTR
HXK . (C) The

inferred ranges of sXRI
nadhc

; sASN
pim

, and sTPI
t3pc

that determined the negative control of HXK over XTR.

https://doi.org/10.1371/journal.pcbi.1007242.g004
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(Methods). We have undertaken to identify significant parameters that ensure a well-deter-

mined control over XTR for these physiologies. For this purpose, we constructed two popula-

tions of 200’000 kinetic models for the Extreme1 and Extreme2 physiology (Methods).

Overall, together with 200’000 parameter sets computed previously for the reference physiol-

ogy (Reference), we had 600’000 parameter sets for parameter classification. In the three popu-

lations of models, 47% (Reference), 46% (Extreme1) and 39% (Extreme2) of the models had a

negative CXTR
HXK .

Significant parameters for negative control of HXK over XTR for three alternative

physiologies. For each of three populations of models, we preselected parameters based on

the Fisher’s linear discriminant score, and we performed the parameter classification to find

parameter ranges that guarantee a negative control of HXK over XTR (S1 Table). We used the

inferred rules from the three parameter classifications to rank the top parameters over the

three alternative physiologies (Methods). Interestingly, the top seven parameters from the Ref-

erence case remained in the group of top seven parameters over the three cases (Fig 3 and S3

Fig). Moreover, the top two parameters (sXRI
nadhc

and sASN
pim

) from the Reference case (Fig 3) were

the top two also for the Extreme1 and Extreme2 case (S3 Fig). In contrast, sTPI
t3pc

was less signifi-

cant for the Extreme1 and Extreme2 case, and it was ranked below sXRI
nadc

in the overall score (S3

Fig).

To refine the distributions of top 3 parameters for each of the three alternative physiologies,

we performed three additional parameter classifications (Methods). However, the refined dis-

tributions of top parameters that ensure a negative control of HXT over XTR might or might

not coincide for the three concentrations. Therefore, to reconcile the parameter distributions

for the three cases, we used the parameter sets defined by the top 3 rules for each of these cases

as input for an additional parameter classification (Methods). The top rule obtained from this

parameter classification enclosed 11’801 out of 600’000 parameter sets, and 70.9% of these

models had a negative control of HXK over XTR (Table 2).

We imposed the robust ranges for the top 3 parameters from Table 2 and generated a popu-

lation of 100’000 models for each of the three alternative physiologies, a total of 300’000 mod-

els. We then computed the control coefficients of HXK over XTR, and a significant

improvement of PI was obtained for all three alternative physiologies. Indeed, the Reference,

the Extreme1 and the Extreme2 cases, had 72%, 72% and 67% of models with a negative CXTR
HXK ,

respectively (compared to the 47%, 46% and 39% of models with unconstrained parameters).

The average PI (0.703) over three populations of models was remarkably close to the predicted

PI (0.709) (Table 2).

Significant parameters for positive control of HXK over XTR for three alternative phys-

iologies. We repeated the procedure from the previous section using the same set of top 3

parameters, but we imposed a positive control of HXK over XTR as the objective for the

parameter classification. The top inferred rule enclosed a significantly higher number of mod-

els (67482) compared to the case with a negative control of HXK over XTR (11801) (Table 2).

Assuming that the parameter space was sampled uniformly, this also suggested that the param-

eter subspace that ensures a positive control of HXK over XTR was larger than the one that

ensures a negative control. Interestingly, there were no overlaps between parameter ranges for

a positive and a negative control (Table 2). The predicted PI for a positive control (0.776) was

also higher than the one predicted (0.709) for the negative control.

We generated a population of 100’000 models for each of the three alternative physiologies

by imposing the robust distributions of the top 3 parameters ensuring a positive control

(Table 2). We obtained PI of 0.747 (Reference), 0.802 (Extreme1), and 0.767 (Extreme2)

(Table 3), which was a notable improvement compared to the population with unconstrained
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parameters with PI of 0.53 (Reference), 0.54 (Extreme1), and 0.61 (Extreme2). Similar to a neg-

ative control study, the average PI over three populations of models (0.772) was remarkably

close to the predicted one (0.776) (Table 3).

These results showed that few parameters determine whether the control of HXT over XTR

is negative or positive, meaning that the operational states of few enzymes are vital to responses

of the metabolic network upon perturbations. For example, a follow-up experiment testing

ambiguous control of HXK over XTR was performed in [30], and it was shown that HXK2
deletion improves xylose uptake rate. Based on this experimental observation, one can hypoth-

esize the operating ranges of top enzymes such as ATP synthase (ASN), triose phosphate isom-

erase (TPI) or xylose reductase (XRI).

The obtained parameter values of kinetic models pertaining to single physiology, e.g., Refer-

ence or Extreme1 had both higher PIs and larger parameter subspaces compared to the ones

inferred from models constructed for the three alternative physiologies. The reason behind

this is that different metabolite concentrations result in different operating ranges of enzymes,

thus affecting the control over the analyzed quantities. One might expect that the distributions

of parameters ensuring a high PI will shift, and possibly shrink or stretch, as concentration

values change. Thus, to obtain values of the studied parameters that ensure a high PI over mul-

tiple concentrations, we combined ranges of parameters computed for individual concentra-

tions and curated them through a parameter classification (Methods).

We computed here robust distributions of parameters for only three, albeit very different,

metabolite concentration vectors, nevertheless, the proposed method can readily be used to

find parameter distributions for a large number of concentration vectors. Thus, iSCHRUNK

can be used to create a mapping between the metabolite concentrations and kinetic parameters

spaces, and identify the regions in the parameters, metabolite concentrations, and thermody-

namic displacements from equilibrium spaces that give rise to a systemic property, e.g., robust

steady-state responses to genetic and environmental perturbations.

Improved parameter classification through reassignment

We found no rule with PI equal to 1 in performed parameter classification studies. This sug-

gested that the parameter subspaces leading to a negative and a positive control of HXK over

Table 2. Robust ranges of the top 3 parameters over 3 concentrations.

Rule Size PI Parameters σA ranges

CXTR
HXK < 0 1 11801

(2%)

0.709 sASN
pim

0.79 0.99

sXRI
nadhc

0.00 0.44

sXRI
nadc

0.78 0.99

CXTR
HXK > 0 1 67482

(11.2%)

0.776 sASN
pim

0.00 0.59

sXRI
nadhc

0.63 0.99

sXRI
nadc

0.00 0.55

https://doi.org/10.1371/journal.pcbi.1007242.t002

Table 3. Validation of the robust distributions of the top 3 parameters for both a negative and a positive control of HXK over XTR.

Reference

physiology

Extreme 1

physiology

Extreme 2

physiology

Average

PI

(CXTR
HXK < 0)

0.719 0.720 0.669 0.703

PI

(CXTR
HXK > 0)

0.747 0.802 0.767 0.772

https://doi.org/10.1371/journal.pcbi.1007242.t003
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XTR were not distinctly separated. To improve the parameter classification for the problems

where the separation between the classes is fuzzy, we propose to employ the k-nearest neigh-

bors (k-NN) algorithm (Methods). The k-NN algorithm allows us to identify the parameter

sets from one class that are surrounded by the parameter sets of the other class and reassign

them to the latter. In the context of finding parameter values that give rise to a certain prop-

erty, this means that the parameter classification algorithm will find only those parameter sets

that are surrounded by a majority of the parameter sets of the same class. This way, the separa-

tion between the classes will be increased at the expense of neglecting parameter sets from the

regions with a heavy overlap of the classes.

We reconsidered the classification for parameters determining a negative control of HXK

over XTR in the Reference case, and we applied the k-NN algorithm with k = 10 over the set of

initial 200’000 parameters in order to find the surrounding for each of parameter sets, and to

perform the reassignment (Methods). If in the group of 10 closest neighbors of a parameter set

the percentage of parameter sets from the same class was less than a reassignment threshold, r,
then that parameter set was reassigned. We performed two parameter classification studies for

two different reassignment thresholds, r, of 30% and 50% (Methods).

We found that as the reassignment threshold was increasing the tree training algorithm was

inferring a smaller number of rules (73 for r = 30% versus 31 for r = 50%). Furthermore, the

inferred rules were enclosing a smaller number of parameter sets for higher values of r, i.e., for

r = 30% and 50%, the top rules enclosed respectively 13427 and 1339 parameter sets (Fig 5 and

S1 Table). In contrast, the obtained PIs, were higher for r = 50% than for r = 30% (Fig 5). For

example, PI of the top rule for r = 50% was 0.83, whereas the one for r = 30% was 0.73 (Fig 5

Fig 5. The rules obtained with the original method versus the ones obtained with the improved parameter classification

algorithm. For each rule, we plot the performance index (PI) as a function of the number of enclosed parameter sets (rule size). The

rules are obtained with: the original method with preselection (red diamonds), the reassignment method with 30% threshold (blue

crosses) and the reassignment method with 50% threshold (green asterisks).

https://doi.org/10.1371/journal.pcbi.1007242.g005
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and S1 Table). A comparison between the original method with preselection, which is identical

to the reassignment method with r = 0% (corresponding to no reassignment), and the reas-

signment methods for r = 30% and 50% showed a general tendency of the latter for obtaining

rules with improved PI and that enclose a smaller number of parameter sets (Fig 5).

We also tested the reassignment procedure for parameters determining a positive control of

HXK over XTR in the case of the reference metabolite concentration with k = 10 and r = 60%.

The classification algorithm inferred 19 rules with PIs ranging from 0.75 to 0.90. The rules

were defined by only 28 parameters (S1 Table). The top rule enclosed 1711 parameter sets with

PI of 0.90, and it was defined by 6 parameters.

To validate the proposed improvement to the parameter classification, we imposed the

distributions of the parameters defined by the top rules for the negative control case with

r = 50%, and for the positive control case with r = 60% (S1 Table). We generated for each study

a population of 100’000 models, and we computed the control coefficients in the network.

In the case of negative control, the distribution of the control coefficient CXTR
HXK was biased

toward negative values with mean -0.13 (Fig 6A and 6B). More than 79% of the computed con-

trol coefficients CXTR
HXK were negative. (Table 4). Similarly, in the case of positive control, the dis-

tribution of the control coefficient CXTR
HXK was shifted toward positive values with the mean of

Fig 6. Validation of the parameter classification with reassignment. Control of HXK over XTR is negative (A) and positive (D) after constraining the inferred ranges of

6 parameters. Distribution of the control coefficient CXTR
HXK for the case of negative (B) and positive (E) control. The inferred ranges of parameters that determined negative

(C) and positive (F) control of HXK over XTR.

https://doi.org/10.1371/journal.pcbi.1007242.g006
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0.21 and a remarkable PI of 0.89 (Fig 6D and 6F, and Table 4). For the negative and positive

cases, the top rules were defined by 6 parameters each, where three parameters, sXRI
nadhc

; sASN
pim

,

and sTPI
t3pc

, were common for both cases (Fig 6C and 6E). These three parameters were also

ranked as the top 3 parameters in the parameter classification with the original algorithm (Fig

4). Moreover, the range of sXRI
nadhc

was constrained toward low values for the negative control

and toward high values for the positive control. In contrast, the parameters sASN
pim

and sTPI
t3pc

were

constrained toward high values for the negative control, and toward low values for the positive

control. These patterns suggest that these three parameters are crucial for determining the sign

of the control of HXK over XTR, whereas the remaining parameters, sGPD1
dhapc

, sASN
atpm

, and sXRI
xltc

for

the negative control case, and sXRI
nadc

, sATPM
atpc

, and sNDR
nadpc

for the positive control case, are likely

having a minor effect on the PI.

This result clearly demonstrated that the reassignment procedure allows for more precise

identification of the subspaces leading to a desired control of HXK over XTR. We observed

improvement of both PI and the mean CXTR
HXK value compared to the results obtained with the

unaltered parameter classification algorithm.

Discussion

Machine learning methods [38–42] have found applications in a large number of biological

and biomedical areas such as cancer research [43–45], population genetics [46, 47], protein

structure and function prediction and phylogenomic mapping [48–52], protein-protein inter-

actions [53–55], medical imaging [56–60], gene expression and microarray data analysis [61–

64], regulatory interactions [65, 66], metabolic pathway dynamics [67], biomarker discovery

and analysis of metabolomics and proteomics data [68–71]. However, the potential of these

methods for detecting patterns in parameters of kinetic models of metabolism and uncovering

hidden relationships between kinetic parameters, omics data, and observed phenotypes

remained largely unexploited.

Machine learning methods require large sets of training data for their successful application

and methods for generating kinetic metabolic models that use Monte Carlo sampling offer an

unprecedented opportunity for employing machine learning to advance our understanding of

metabolic processes in cellular organisms. Kinetic models are usually built around a metabolic

steady-state, which is characterized by the metabolite concentrations and metabolic fluxes, and

the generated populations of kinetic parameters together with the observed steady-state data

contain implicit information about the studied physiology. This information, if extracted sys-

tematically, can be used as guidance for the design of metabolic engineering and synthetic biol-

ogy strategies that ensure the desired metabolic responses of studied organisms.

Table 4. Validation of the ranges of the top 6 parameters obtained with reassignment for both a negative and a positive control of HXK over XTR.

Unconstrained

parameters

Negative

control

(CXTR
HXK < 0)

Positive

control

(CXTR
HXK > 0)

mean ðCXTR
HXKÞ 0.005 -0.13 0.21

% of negative

CXTR
HXK

47 79.4 11.4

% of positive

CXTR
HXK

53 20.6 88.6

https://doi.org/10.1371/journal.pcbi.1007242.t004
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In this work, we have extended iSCHRUNK functionalities to data-mine this information

and systematically reduce uncertainties in the values of kinetic parameters that give rise to the

desired metabolic behavior. As a demonstration, we reduced the uncertainties in the kinetic

parameters that ensure that values of flux control coefficients remain within a pre-specified

range.

iSCHRUNK lends itself to a broad scope of applications ranging from sustainable produc-

tion of biochemicals to medicine and regarding both the analysis and design of metabolism. It

allows us to analyze the relationships between the inferred parameter ranges and the measure-

ments acquired on the actual biological system, and, consequently, to create hypotheses

regarding the operating states of enzymes and provide information about saturations of all

enzymes in the network. This information is crucial for biotechnology studies where living

cells need to be engineered for improved performance, or for drug discovery studies where,

e.g., we want to overproduce a compound that is toxic to a pathogen.

The method can be applied not only to identify distributions of kinetic parameters but also

to determine distributions of the metabolic fluxes and metabolite concentrations satisfying

given requirements. It can also be used for guaranteeing both qualitative and quantitative fea-

tures of metabolism, and several requirements can be combined simultaneously. For example,

iSCHRUNK can be used to identify and quantify the parameters that maintain a redox poten-

tial while enforcing the desired level of yield and specific productivity of a compound of inter-

est. Provided that the desired properties are biologically feasible, the method can be used to

guarantee an arbitrary number of requirements.

Finally, iSCHRUNK can be used to alleviate issues with high computational requirements

of Monte Carlo sampling of kinetic parameters in large- and genome-scale metabolic net-

works. As the size of the models and complexity of studies increases, sampling a kinetic space

becomes increasingly difficult and even intractable. However, iSCHRUNK allows us to iden-

tify relevant kinetic parameters that correspond to the observed physiology. The key finding of

the current and previous studies [17] is that only a small set of parameters corresponding to a

few enzymes is sufficient to characterize the observed physiology. Therefore, once we identify

the most relevant parameters, it suffices to densely sample the identified parameters while fix-

ing the remaining parameters at arbitrary feasible values. This way, iSCHRUNK dramatically

reduces the sampling space, thus enabling computational analyses of large-scale and genome-

scale dynamic metabolic systems.

Methods

Identifying significant parameters that determine studied properties

The computational method for characterization and reduction of uncertainty, iSCHRUNK,

was proposed in [17]. iSCHRUNK involves a set of successive computational procedures that

can help us to ascertain and quantify the kinetic parameters that correspond to a given physiol-

ogy. iSCHRUNK can be used with any method that generates populations of kinetic models

describing given physiology such as ensemble modeling [24] or ORACLE [3, 4, 8, 10, 11, 31,

32]. Here, we extended the original iSCHRUNK workflow (17) by an iterative loop that uses

parameter classification to perform stratified sampling of the kinetic parameters, i.e., it allows

identifying refined sets of parameters that lead to the desired metabolic behavior (Fig 7). We

used the extended iSCHRUNK to identify the distribution of kinetic parameters that deter-

mine the sign in ambiguous distributions of control coefficients as follows:

i. We defined the stoichiometric model of glucose-xylose co-utilizing S. cerevisiae (S4 Fig).

The model consisted of 102 atomically balanced reactions and 96 intracellular metabolites,
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and included glycolysis, pentose phosphate pathway, tricarboxylic cycle (TCA), electron

transport chain (ETC) and XR/XDH xylose assimilation pathway [30, 72]. Based on the

physiological information on the cellular compartmentalization the intracellular metabolites

were categorized as cytosolic or mitochondrial, and the extracellular metabolites were mod-

eled as well. We integrated the thermodynamic constraints based on the information about

the Gibbs free energies of reactions [73–76] together with the fermentation data from Mis-

kovic et al. [30], and we then performed the Thermodynamics-based Flux balance Analysis

(TFA) [4, 13–15, 77, 78] to compute the thermodynamically consistent steady-state flux (S2

Table).

ii. We sampled the space of metabolite concentrations that is consistent with: (i) the direction-

alities of the steady-state flux obtained in step I; and (ii) the available observations of metab-

olite concentration ranges [4, 8]. The displacements of the reactions from thermodynamic

equilibrium that correspond to the sampled metabolite concentration sets were simulta-

neously computed [18, 27].

We then computed the reference vector of metabolite concentrations, Reference, as the sam-

ple that was closest to the mean metabolite concentration vector (S2 Table). The Principal

Component Analysis [4, 79] of the samples was next performed, and we computed two
extreme metabolite concentration vectors, Extreme1 and Extreme2, as the two samples that

were at the extreme ends of the sampled space along the direction of the first principal com-

ponent (S2 Table). In the following steps, we have computed a population of kinetic models

for each of three alternative physiologies. The three physiologies were characterized by the

common flux profile computed in Step I and three alternative concentration profiles (Ref-

erence, Extreme1 and Extreme2) computed in this step.

iii. We assigned a kinetic mechanism to each enzyme-catalyzed reaction using the informa-

tion from literature [18, 80–82]. For reactions without available information about their

kinetic mechanisms, we used the generalized reversible Hill law [83]. The used kinetic

mechanisms included reversible Michaelis-Menten kinetics, Uni-Bi, Bi-Uni, ordered Bi-

Bi, Bi-Ter, Ter-Bi [81]. We also modeled an allosteric regulation for the phosphofructoki-

nase (PFK), where the assigned kinetic mechanism was Hill kinetics with the Hill coeffi-

cient h = 4 (S2–S4 Text). At this point of the procedure, we may integrate available

Michaelis constants, Km, from the literature and databases [84, 85]. In this study, we did

not use Km values from the literature, instead, we sampled the space of Km values indirectly

through the sampling of the degree of saturation of the enzyme active site, σA [10]. For a

vector of metabolite concentrations computed in Step II, we calculated the Km value corre-

sponding to a value σA as Km = Sj(1- σA)/σA, where Sj is the jth element of the metabolite

concentration vector that corresponded to σA [10]. Without prior information, we sam-

pled σA values between 0 (non-saturation) and 1 (full saturation). Otherwise, we per-

formed the stratified sampling where we imposed the σA distributions obtained from the

classification algorithm in Step VII (Fig 7A and 7B). An alternative to sampling σA values

would be to sample the enzyme states [27, 28].

iv. We verified the local stability of the steady-state [10], and we rejected the kinetic parame-

ters corresponding to unstable steady states and the ones that are not consistent with the

experimentally observed data and literature.

Fig 7. Workflow of the computational procedure for uncertainty analysis. (A) The workflow allows us to identify ranges of kinetic parameters ensuring

that a studied property is satisfied, e.g., the sign in ambiguous distributions of control coefficients. (B) Detailed steps of parameter classification.

https://doi.org/10.1371/journal.pcbi.1007242.g007
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v. In this step, we analyze whether or not the studied property is satisfied. If yes then we pro-

ceed to step VII, otherwise we perform the parameter classification in Step VI to find

parameter values that give rise to the studied property. Here, we computed populations of

control coefficients to quantify the responses of the metabolic fluxes and intracellular

metabolite concentrations to changes in activities of the network enzymes. In general, we

can study any property related to metabolic network such as: significant fluxes in the net-

work such as the product flux and the uptake fluxes, yields, key concentrations such as ATP

or NADH, other relevant quantities such as redox potential (NADH/NAD+).

We then verified if the control of HXK over XTR was well determined. We defined the con-

trol of an enzyme over the analyzed quantity as being well determined if 50% of control

coefficients around the mean control coefficient had the same sign. For example, in the

population of the control coefficients of XTR with respect to xylulokinase (XK) all the sam-

ples between the 1st and the 3rd quartile were negative (Fig 1A), and hence we considered

that XK had a well-determined negative control over XTR. In contrast HXK, ATPM and

NDR had an ambiguous control over XTR (Fig 1A). If HXK had well-determined control

over XTR, we proceeded to Step VII. Otherwise, we went to Step VI.

vi. We fed back to the classification algorithm the population of the analyzed control coeffi-

cient from Step V together with the corresponding values of the parameters (degree of sat-

uration of the enzyme active site σA) from Step III. The classification problem was defined

to find the ranges of the σA values (and consequently the ranges of the corresponding Km

values) that determine the sign, positive or negative, of the analyzed control coefficient. We

solved this parameter classification problem using the CART algorithm [33, 34] from the

MATLAB software package.

We then used the output of the parameter classification, the distributions of σA, for the

sampling in Step IIIb (Fig 7A). More details about the parameter classification are pre-

sented in the next section.

vii. In this step, we can postulate hypotheses and design systems biology strategies.

In Step V we entered an iterative loop for identifying the ranges of σA (or equivalently Km)

for which the analyzed control coefficients were well determined (Fig 7). The iteration

started by passing the invalidated σA values from this step to the classification algorithm in

Step VI. We then used the refined σA distributions from Step VI in the sampling proce-

dure in Step III. Next, the refined samples of σA were next tested for consistency in Step

IV, and finally, we constructed a new population of control coefficients in Step V and veri-

fied it. At each iteration, the σA values (Km values) that reduced the ambiguity in the popu-

lation of the analyzed control coefficients were refined and used for stratified sampling in

Step III.

Parameter classification

We carried out the parameter classification in several steps (Fig 7B). We first removed from

the consideration the parameters that were not affecting the control over the analyzed flux. We

then used the CART algorithm with the preselected parameters for three populations of kinetic

models where each population was computed with a different metabolite concentration vector

(see Step II of the framework discussed above). In the third step, we ranked the parameters

over three concentrations, and we chose the top parameters to continue. We next refined the

distributions of the top parameters for each concentration individually, and we then used this

information to determine the consistent distributions of top parameters over all concentra-

tions. We detail the parameter classification steps below.
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Preselect parameters. Our preliminary results indicated that only a subset of kinetic

parameters affected the sign of the analyzed control coefficient. The reduction in the parame-

ter space was in agreement with our previous study [17], and inspired us to assess which

parameters had a negligible effect on the computed control coefficients, to discard them, and

then to proceed with the parameter classification. The benefits of preselecting the parameters

are twofold. First, applying a computationally inexpensive method for preselecting the param-

eters and then using the CART algorithm on the reduced space can significantly reduce

computational requirements of iSCHRUNK. Second, the parameters with a negligible effect

on the control coefficients can introduce a bias in the estimates of key parameters. We can

eliminate this bias by discarding the irrelevant parameters.

We used the Fisher’s Linear Discriminant score [35, 36] to preselect the parameters:

S ¼
jm1 � m2j

2

σ2
1
þ σ2

2

where m1 and m2 denote the mean values of the parameter populations that result in negative

(or positive) and non-negative (or non-positive) control coefficients, while s2
1

and s2
2

are the

corresponding variances. The higher S was, the larger was the influence of the analyzed param-

eter in discriminating between a positive and a negative control. We ranked the parameters

according to this score, and we kept the parameters whose scores were at least 1% of the high-

est obtained score.

Train classification tree and rank inferred classification rules. For each of the three

metabolite concentration vectors, we trained a classification tree. The classification algorithm

inferred classification rules based on the values of the preselected σA parameters and the out-

comes, e.g., negative and non-negative control coefficients, obtained with these σA parameters.

Each rule corresponds to a set of inequalities defined on different parameters. Thus, a rule is a

hypercube in the parameter space. The number of inferred rules depends on the properties of

the parameter space to be classified and also on the number of parameter sets that are used to

train the algorithm. In order to prevent the overfitting, we fixed to 200 the minimal number of

parameter sets that the algorithm can use to construct a rule [17, 34, 86]. The rules defined by

a large number of parameter sets are “more certain”. Besides, assuming that we sampled the

parameter space uniformly, the “more certain” rules will likely enclose a larger volume of the

parameter space with the well-determined control. Therefore, for each metabolite concentra-

tion vector, we ranked the inferred classification rules according to the number of parameter

sets they contained.

Rank parameters across classification rules and over all concentrations. To rank the

parameters of the models obtained for a concentration vector such as reference concentration

vector or one of the extreme concentration vectors, we defined the following score for parame-

ter j:

SCj ¼
1

Na

XNr

i¼1

ð1 � Ri;jÞ

where Na denotes the number of rules over which we performed the ranking, Nr denotes the

number of rules, a subset of Na rules, that constrained parameter j, and Ri,j is the range of

parameter j defined by the rule i. This score incorporates two factors: (i) a number of occur-

rences of parameters across classification rules–parameters that appear in more rules are more

relevant; (ii) how much parameters are constrained–less important parameters are less

constrained.
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To rank the parameters of the models obtained over all concentrations, we computed the

aggregate score:

SCAgg
j ¼

1

Nc

XNc

k¼1

SCk
j

where Nc denotes the number of metabolite concentration vectors and SCk
j is the score com-

puted for the concentration k. Observe that values of Na, Nr and Ri,j may differ for different

concentrations.

We can choose to perform the ranking across: (i) all rules returned by the classification

algorithm; though the classification algorithm can return different number of rules for three

metabolite concentrations, the normalization constants Na ensure an unbiased scoring over

different concentrations; (ii) the chosen top rules, e.g., over Top 10 rules (Na = 10 for all three

concentrations). We used this score to rank the parameters; the higher the score was for a

parameter, the higher was its ranking.

Refine distributions of top parameters. For each of metabolite concentration vectors

(Reference, Extreme1 and Extreme2) and a set of top parameters ranked over all concentra-

tions, e.g., Top 3 or Top 5 σA values, we performed the second parameter classification, i.e.,

tree training, to find refined parameter distributions that determine the sign of the analyzed

control coefficient. The inputs to the parameter classification algorithms were the population

of the analyzed control coefficient together with the corresponding top σA values. Thus, for the

three concentration vectors, we constructed parameter subspaces that were constrained only

by the obtained ranges of the top parameters.

Determine robust distributions of top parameters over alternative physiologies. The

refined distributions of top parameters that correspond to a well-determined control might

well mismatch among the three cases (Reference, Extreme1 and Extreme2). Therefore, some

parameter values can correspond to a well-determined control for one physiology and to an

ambiguous control for the other physiologies. To obtain the consistent distributions of the top

parameters over all concentrations in an unbiased way we performed the third tree training as

follows.

For each of the three alternative physiologies, we took as the input to parameter classifica-

tion the parameter sets whose ranges of top parameters were defined according to top 3 rules.

We used in parameter classification the parameter sets from the subspace of top rules as these

parameter sets are likely to have well-determined control at least for one of the alternative

physiologies. We then verified for each top parameter set if it corresponds to a well-deter-

mined control for the three alternative physiologies. If a parameter set corresponded to a well-

determined control for the three alternative physiologies (S5 Fig, red stars), we considered it

consistent; otherwise, it was considered inconsistent (S5 Fig, blue and yellow stars). We fed

this information as the second input to the classification algorithm and performed the

training.

The obtained consistent distributions of top parameters over the three cases were used in

Step III to perform a stratified sampling.

Reassignment procedure for improved tree training

In the cases when the space of parameter sets leading to a negative and the one leading to a

positive control over analyzed quantities are overlapping, the separation between parameter

classes is fuzzy. To enhance the separation between the classes, we propose here utilization of

the k-nearest neighbors (k-NN) algorithm in the parameter classification as follows [87].
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For each of the parameter vectors, we first assessed whether or not they were determining,

e.g., a negative control, and we assigned them to two distinct sets. The first set, SN, contained

parameter vectors that gave rise to a negative control, whereas the second set, SP, contained

the ones that gave rise to a non-negative control. We then ran the k-nearest neighbors (k-NN)

algorithm, and for each parameter vector from the set SN, we computed how many out of its

k-nearest neighbors belonged to the same set (SN). For each of these parameter vectors, if the

percentage of k-nearest neighbors that belonged to the set SN was higher than a pre-specified

reassignment threshold, r, we then retained that vector in the set SN. For instance, for r = 50%,

if more than 50% of k-nearest neighbors of the analyzed parameter set belonged to the set SN,

that parameter set remained in the set SN. Otherwise, we re-assigned that parameter vector to

the set SP. With the proposed reassignment procedure, we emphasized the regions of the

parameter space that have a higher proportion of parameter vectors belonging to the set SN.

The reassignment procedure introduced two new parameters: the reassignment threshold,

r, and the number of nearest neighbors, k. The values of r were chosen on the basis of the ini-

tial, unbiased, sampling that was performed in Step III. Specifically, from the initial sampling

we could assess the average percentage of SN parameter vectors in the set of all vectors. We

then set r to be a larger than the average percentage so that the parameter classification algo-

rithm could identify the regions in the parameter space with the above than average propor-

tion of SN vectors. Assuming that the parameter space was sampled uniformly, we use the

parameter k to choose the larger or smaller part of the parameter space around the analyzed

parameter vector for a possible reassignment. Very large values of k are not recommended as

the reassignment procedure would consider the overall parameter space and no samples

would be retained in the set SN as r is chosen to be larger than the average percent of SN vec-

tors in the overall set of parameter vectors.

Bayesian inference and parameter classification

Bayesian inference relies on use of Bayes theorem to compute the conditional distribution of a

parameter vector θ given observed data x:

p yjxð Þ ¼
pðxjyÞpðyÞ

pðxÞ

where p(θ|x) is the posterior distribution of the parameters θ, p(θ) is the prior distribution of

parameters, p(x|θ) is the likelihood, and p(x) is the evidence. In computing the posterior distribu-

tion p(θ|x), the evidence can be ignored as it represents a normalizing constant. It is often com-

putationally prohibitive to explicitly evaluate the likelihood function and Approximate Bayesian

Computation (ABC) methods are used for approximating this function by simulations [88].

For this type of studies, the ABC rejection algorithm [89] can be used as follows. First, the

prior distribution of kinetic parameters is generated using the ORACLE framework or any

other method that uses Monte Carlo sampling of uncertain parameters for constructing popu-

lations of kinetic models [3–5, 8, 9, 11, 20–28]. The corresponding control coefficients are next

computed, and the parameter classification algorithm is then used to discard parameter vec-

tors from the prior that gave rise to ambiguous control over analyzed quantities. As a result,

the retained samples are distributed according to the approximate posterior distribution of

kinetic parameters that give rise to well-determined control over analyzed quantities.

Computational requirements

The simulations in this study were performed in MATLAB using an Apple MacPro Worksta-

tion with 2.7 GHz 12-Core Intel Xeon E5 processor and 64 GB of RAM memory. The required
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time to generate a set 200’000 kinetic models was ~12.5h, whereas one run of the parameter

classification algorithm required several minutes.

Supporting information

S1 Table. Parameter classification rules together with the corresponding feasibility indices.

The rules were obtained from: (i) the parameter classification with the whole set of 258 param-

eters (sheet “Preliminary training”); (ii) the parameter classification with the preselected 81

parameters (sheet “Training with Fisher preselection”); and (iii) the parameter classification

with the top 3 ranked parameters (sheet “Second training (top 3 params)”); (iv) the first

parameter classification for the robust ranges of parameters ensuring a negative control for the

reference (sheet “Robust Reference”), extreme 1 (sheet “Robust Extreme 1”), and extreme 2

(sheet “Robust Extreme 2”) metabolite concentrations; (v) the second parameter classification

with top 3 parameters for the robust ranges of parameters ensuring a negative control for the

reference (sheet “Robust Reference Top 3”), extreme 1 (sheet “Robust Extreme 1 Top 3”), and

extreme 2 (sheet “Robust Extreme 2 Top 3”) metabolite concentrations; (vi) the parameter

classification with reassignment for the reference metabolite concentration ensuring a negative

control with the reassignment threshold r = 50% (sheet “Reassign–Ref -50%”), and r = 30%

(sheet “Reassign–Ref -30%”), and ensuring a positive control with r = 60% (sheet “Pos Reas-

sign—Ref—60%”).

(XLSX)

S2 Table. Reference metabolite flux vector together with the metabolite Reference,

Extreme1, and Extreme2 concentration vectors.

(XLSX)

S1 Text. List of abbreviations for model’s enzymes and chemical species.

(DOCX)

S2 Text. Stoichiometry of used models. List of reactions and the corresponding mass bal-

ances.

(HTM)

S3 Text. List of reactions together with the used kinetic mechanisms (together with S4

Text).

(HTM)

S4 Text. Rate expressions for used kinetic mechanisms together with the expressions for

the corresponding metabolite elasticities.

(DOCX)

S1 Fig. Preselection of the parameters based on Fisher’s linear discriminant score. The

rules from a tree training with all parameters (blue crosses), and the rules from a tree training

with a reduced set of parameters (red diamonds) coincide in the majority of instances.

(PDF)

S2 Fig. Evolution of PI (blue) together with that of the number of enclosed parameter vec-

tors (orange) for a progressive increase of the lower bound, σA, of the top 9 parameters,

while their upper bound was fixed at 1. For a value of the lower bound σA = σA�, PI was calcu-

lated over the range (σA�,1) of the parameter σA. For example, for σA = 0, the whole range, i.e.,

σA 2 (0,1), of a parameter was considered, and the corresponding PI was calculated. For σA =

1, PI was calculated for a fixed value σA. = 1.

(EPS)
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S3 Fig. Top ranked parameters affecting control of hexokinase (HXK) over xylose uptake

(XTR) over three concentrations. Evolution of the ranking score for the top 10 parameters as

a function of the considered number of rules.

(EPS)

S4 Fig. Metabolic pathways of the VTT C-10880 S. cerevisiae strain. The network includes

102 reactions and 96 metabolite concentrations distributed over cytosol, mitochondria, and

extracellular environment. VTT C-10880 strain can consume xylose through the integrated

xylose reductase/ xylitol dehydrogenase pathway.

(EPS)

S5 Fig. Parameter vectors that correspond to a well-determined control for the three

metabolite concentration vectors (Reference, Extreme1 and Extreme2). Parameter sets cor-

responding to a well-determined control for the three metabolite concentrations (red stars),

for two out of three (yellow stars) and for one out of three (blue stars) metabolite concentra-

tions. The gray stars denote the parameter vectors not belonging to a top rule for any of the

three concentrations.

(EPS)

Acknowledgments

We would like to thank Joana Pinto Vieira for her help with editing this manuscript.

Author Contributions

Conceptualization: Ljubisa Miskovic, Vassily Hatzimanikatis.

Data curation: Jonas Béal, Michael Moret.
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Software: Jonas Béal, Michael Moret.

Supervision: Ljubisa Miskovic, Vassily Hatzimanikatis.

Validation: Jonas Béal, Michael Moret.

Visualization: Ljubisa Miskovic, Jonas Béal, Michael Moret.
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