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Abstract: In this article, polylactic acid-based composites reinforced with 5% of polyethylene,
iron, and magnesium powders were prepared by extrusion and compressed under the pressure of
about 10 MPa and characterized. These composites were mechanically, thermally, and morphologically
evaluated. It was found, compared to the pure polylactic acid (PLA), an improvement in tensile
strength (both σ and YS0.2) was obtained for the composite with the iron powder addition, while the
magnesium powder slightly improved the ductility of the composite material (from 2.0 to 2.5%).
Degradation studies of these composites in the 0.9% saline solution over a period of 180 days revealed
changes in the pH of the solution from acidic to alkaline, in all samples. The most varied mass
loss was observed in the case of the PLA-5%Mg sample, where initially the sample mass increased
(first 30 days) then decreased, and after 120 days, the mass increased again. In the context of
degradation phenomenon of the tested materials, it turns out that the most stable is the PLA composite
with the Fe addition (PLA-5%Fe), with highest tensile strength and hardness.

Keywords: hydrolytic degradation; polylactide (PLA) composite; mechanical properties; crystallinity;
activation energy of thermal decomposition

1. Introduction

Biodegradable and lightweight thermoplastic polymers based on polylactide (PLA) or
poly(lactic acid) are becoming more and more popular over the last few years. This is due to
the fact that this group of polymers undergo a degradation process, as a result of which they are
break down into components that are transformed in the metabolic pathways, without harming the
surrounding environment [1,2]. An increase in temperature accelerates the degradation process and at
an elevated temperature of about 160–180 ◦C, polylactide decomposes by 95% in two hours [3].

Composite materials based on the biodegradable polymers (e.g., PLA matrix), due to their
unique features and the possibility of structure modification are becoming important materials in
the packaging industry, agriculture, horticulture, household, and medical appliances. In the case of
polymeric composite materials, the type of reinforcement is a very important issue, since it should not
only improve the mechanical properties, but also it should be characterized by biocompatibility and
controlled resorbability in a fluid environment.

PLA is a promising thermoplastic aliphatic polyester with relatively high mechanical strength
(flexural strength up to 140 MPa, Young’s modulus 5–10 GPa), with excellent optical properties,
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good processing ability (with low shrinkage not causing product deformation) and complete
biodegradation [4–8]. For this reason, these materials have found a number of applications, including the
biomedical engineering [9,10]. PLA has also disadvantages, it is a brittle material, and its total elongation
in the tensile is about 3%, Charpy impact fracture ~2.5 kJ/m2, and it undergo gradual crystallization
and enzymatic hydrolysis that limits its application [10]. One of the main requirements for PLA-based
composites is a controlled degradation rate, which allows to achieve time-dependent load transfer
during its operation and ductility improvement. It is well known that PLA has a biodegradable time
over the period of several months up to 2 years [11].

The relatively rapid decrease in the mechanical properties of PLA-based composites can be
explained by two phenomena: (1) the initially rapid hydration at the polymer-reinforcing phase
boundary breaking the bond between the matrix and reinforcement and the local stress concentration
that inhibits the transfer of applied stress from the polymer to the reinforcement; (2) PLA swelling,
which generates hydrostatic forces that can initiate cracks in the composite [12,13]. In addition,
an amorphous phase that is formed at the surface of the polymer, quickly disintegrates (decomposes)
and therefore easily absorbs water, causing faster polymer degradation [1]. The swelling process can be
inhibited by various methods, e.g., mechanical blocking by hard powder particles, fiber reinforcement,
plasma treatment and by increasing the adhesion of the fibers to the matrix by wetting their surface
with a suitable chemical [14].

Currently, various methods of PLA modification are used. Mixing PLA with additives is
usually a practical way to improve the properties and cost reduction of this polymer [10]. In the
case of powder particles used in medical applications, the most frequently added to the PLA basis
are: silver, magnesium, iron and steel, silicon, boron nitrile, hydroxyapatite and more both in the
micro and nano-scale [15–20]. These additives are commonly used for different medical purposes,
namely: antibacterial, degradation, magnetic or conductive properties, among others. Such parameters
of powders as morphology, volume fraction, reactivity, surface area, melting temperature, and oxygen
content have a strong impact on the overall metal-polymer composite properties. With regard to pure
PLA, Mg and Fe powder micro-particles improve its mechanical properties, in particular the strength
and the modulus [15,17].

It is well known that Mg is a very reactive metal and rapidly degrades in the body fluid
environment, accompanied by hydrogen evolution. Pure Fe can be also treated as a degradable
metal, causing no inflammation reactions, no local toxicity, and slowly corroding in the human body
environment. However, a degradation rate of pure Fe for resorbable bone implants is relatively
slow [17].

Metallic particles added to the PLA matrix change polymer morphology, mechanical, physicochemical,
and thermal properties after storage in solutions due to complex degradation processes [21–23]. In the
presence of water, ester groups are degraded, and as a result molecular weight is decreased and low
molecular weight soluble oligomers and monomers are released [24]. Iniguez F. et al. [23] tested the
influence of water-ethanol solutions on crystallization and hydrolytic degradation of PLA. The Mg
additive in the PLA-based composite can form an alkaline environment which further accelerates PLA
degradation. Moreover, the Mg provide also an additional diffusion pathway for water molecules to
further promote the PLA degradation [15,16].

Therefore, the mechanical properties, thermal stability, and degradability of PLA with the addition
of two metal powders: 5% Mg and 5% Fe (wt.%) incubated in a 0.9% saline solution at 37 ◦C up
to 180 days were studied and analyzed. In addition, the experiment was extended to PLA with
polyethylene PE (HD polyethylene, 5% by mass) and pure PLA, as reference samples, to bring insights
in the in-vitro degradation of the PLA composites, to shaping novel biodegradable materials for
medical applications. Using rapidly reacting magnesium or slowly dissolving iron, it may be possible
tailoring the degradation rate of metal-reinforced PLA-based composites.
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2. Materials and Methods

2.1. Samples Preparation

Three different compositions based on PLA were prepared with the addition of 5% Mg and
5% Fe in the form of powder particles with an average particle size about 45 µm (Johnson Matthey,
London, UK) and 5% (wt.%) of highdensity polyethylene (PE-HD) in the form of granules with an
average size of 3.5 mm (Borealis AG, Vienna, Austria), as a matrix reinforcement or blend. In order
to compare the properties of the obtained composites, the test results were compared with pure
polylactide (100% PLA, Nature Works, Minnetonka Blvd, MN, USA) obtained under the same process
conditions described later. Mixtures of all composites were prepared by introducing modifiers into the
PLA matrix using an EHP 25ELine laboratory extruder (Zamak Mercator, Skawina, Poland). The main
parameters of the extrusion process are: the temperature of charge zone was 50 ◦C, the temperature
of supply zone 170 ◦C, the temperature of compression zone 180 ◦C, the temperature of dispensing
zone 180 ◦C, the extruder head temperature 175 ◦C, the extrusion speed was 5% of the maximum
machine speed. After extrusion, the material strips, with approximately 100 mm long, 25 mm wide,
and 4 mm thick, were further compressed (under the pressure of about 10 MPa) using a hydraulic
press to get an equal thickness of 2.5 mm of flat samples, as shown in Figure 1.
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Figure 1. Prepared samples: (a) 100% PLA; (b) PLA-5% PE; (c) PLA-5% Mg; (d) PLA-5% Fe.

Then, the degradability study of obtained materials (pure PLA and PLA composites) was
conducted. Prepared composites were cut from the middle part into pieces with dimensions of
10 × 10 × 2.5 mm3 and three of them were incubated in the 0.9% saline solution with pH 6.37 ± 0.01.
Plastic containers with samples were placed in an incubator with internal temperature of 37 ± 0.5 ◦C
for a period of 180 days. After a certain period of time, weight loss of the specimens were tested as
well as the pH and electrical conductivity of the saline solution.

2.2. Weight Loss Test

The degradation process of the prepared specimens was followed by determining the weight
loss of the composite materials. Samples were washed with distilled water and gently air dried.
The percentage of weight loss was determined after drying the samples by comparing dry weight (wd)
with the initial weight (w0) according to Equation (1):

weight loss (%) =
w0 −wd

w0
× 100% (1)

A balance (Mettler Toledo, Columbus, OH, USA) with a sensitivity of 0.01 mg was used.
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2.3. Differential Scanning Calorimetry and Degree of Crystallinity

Differential Scanning Calorimetry (DSC) studies were carried out using a DSC Discovery apparatus
(TA Instruments, New Castle, DE, USA). Tested samples in amount of 5 mg were placed in aluminum
hermetic pans. The measurements were conducted in three cycles (heat–cool–heat), in a temperature
range from −30 to 300 ◦C with a heating and cooling rate 10 ◦C/min and 5 ◦C/min, respectively, in the
presence of purge nitrogen, with a flow rate of 10 mL/min. Note that results described in this work
were taken from the second heating curves (first heating and cooling were performed to reduce the
thermal history of the tested samples). Three samples of each material were tested. Obtained DSC
curves were used to analyze the glass transition temperature (Tg), crystallization temperature (Tc),
cold crystallization enthalpy (∆Hc), melting temperature (Tm), and fusion enthalpy (∆Hm). The degree
of crystallinity (Xc) for the samples was determined according to the following Equation (2):

Xc =
∆Hm − ∆Hc

∆H 100
m

× 100%, (2)

where ∆Hm
100 = 93.7 J/g is the fusion enthalpy of 100% crystalline PLA [25,26].

2.4. Thermogravimetry and Activation Energy

Thermogravimetry (TG) tests were carried out using a Q500 thermogravimetric analyzer
(TA Instruments, New Castle, DE, USA) in a temperature range from 30 ◦C to 500 ◦C at nitrogen
atmosphere with heating rates (k) of 5, 10, and 20 K/min. Special attention was paid to temperature at
the start of thermal decomposition (TDS) (taken as 5% of the weight loss of the sample) and the end of
thermal decomposition (TDE) (taken as 95% weight loss of the sample), and temperature at which the
rate of weight loss was the highest (Tmax).

The Kissinger method was used to determine the activation energy of thermal decomposition
of the tested materials. This method is based on the dependence of the temperature value Tmax

(corresponding to the maximum of the TG signal) on the heating rate (k) according the Equation (3):

ln
(

k
T2

max

)
= −

Ea

R
·

1
Tmax

(3)

As the heating rate increases, the temperature of the maximum intensity of the TG signal also
increases. The Kissinger method is based on presenting the obtained Tmax values in the configuration
ln(k/T2

max) ≈ 1/Tmax. The directional coefficient of the obtained straight line corresponds to the value
Ea/R (where Ea is the activation energy and R, is the gas constant equal to 8.31 J/mol·K).

2.5. Hardness, Tensile Tests and SEM Observations

Hardness measurements of the composite materials were performed using a Shore durometer
(Type D) according to ASTM D2240. Tensile tests were carried out with the MTS 858 Mini Bionix testing
machines (extensometer measuring base of 25 mm) with a constant cross-head displacement rate of
10 mm/min, at room temperature. Five samples of each material were analyzed. The dimensions of
samples for tensile testing are shown in Figure 2.
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The tensile specimens were cut by means of a water-jet cutting machine (Kimla, Streamcut 978,
Toronto, ON, Canada) toward longitudinal direction of the prepared composites. The thickness of the
samples was 2.5 ± 0.15 mm. After tensile testing, fracture surfaces of the samples were observed by
scanning electron microscope (SEM) S-3000N (Hitachi, Tokyo, Japan).

2.6. Physicochemical Properties of Contact Solution

During 180 days of the PLA samples incubation process at 37 ◦C the pH and electrical conductivity
of 0.9% NaCl solution, were also measured. Initially, these parameters were tested every 7 days for a
period of 30 days, then after 90, 120, 150 and 180 days, respectively. The pH and conductivity tests
were carried out by means of suitable electrodes in conjunction with the multifunctional Seven-Multi
ionic conductivity meter (Mettler Toledo; Greifensee, Switzerland). pH ratings were determined
using a Clarytrode 120 electrode (Mettler Toledo, Columbus, OH, USA). Conductivity measurements
were carried out using the InLab740 conductivity cell (Mettler Toledo, Columbus, OH, USA)) with an
integrated probe for measuring the temperature of the tested solution. All tests were performed at the
temperature of 21 ◦C.

3. Results and Discussion

Figure 3 presents an example of the tensile curves of each sample after extrusion and compression.
Table 1 summarize the results of tensile strength together with Shore’s D hardness results. The fractured
samples after tensile testing are shown in Figure 4.

Polymers 2020, 12, x FOR PEER REVIEW 5 of 15 

 

2.6. Physicochemical Properties of Contact Solution 

During 180 days of the PLA samples incubation process at 37 °C the pH and electrical 

conductivity of 0.9% NaCl solution, were also measured. Initially, these parameters were tested every 

7 days for a period of 30 days, then after 90, 120, 150 and 180 days, respectively. The pH and 

conductivity tests were carried out by means of suitable electrodes in conjunction with the 

multifunctional Seven-Multi ionic conductivity meter (Mettler Toledo; Greifensee, Switzerland). pH 

ratings were determined using a Clarytrode 120 electrode (Mettler Toledo, Columbus, OH, USA). 

Conductivity measurements were carried out using the InLab740 conductivity cell (Mettler Toledo, 

Columbus, OH, USA)) with an integrated probe for measuring the temperature of the tested solution. 

All tests were performed at the temperature of 21 °C. 

3. Results and Discussion 

Figure 3 presents an example of the tensile curves of each sample after extrusion and 

compression. Table 1 summarize the results of tensile strength together with Shore’s D hardness 

results. The fractured samples after tensile testing are shown in Figure 4. 

Usage the high-density polyethylene as a blend with PLA as well as magnesium and iron 

powders as composite additives in comparison with the pure PLA shows changes in the mechanical 

properties of the tested materials. Note that all composite samples have slightly better ductility in 

comparison with the reference 100% PLA sample. 

The highest Shore’s hardness, tensile strength (σ), yield strength YS0.2, and good total elongation 

at break (ε) were obtained for the PLA reinforced by iron (PLA-5%Fe), while the sample of PLA with 

magnesium (PLA-5%Mg) has the best ductility and comparable Young’s modulus (E) with the iron-

based composite. 

 

Figure 3. Typical curves of the tensile tested composite materials. 

Table 1. Summarized results of tensile tests and hardness of the tested composite samples. 

Sample σ [MPa] ε [%] YS0.2 [MPa] E [MPa] HS [°Sh] (CV) * 

100%PLA 50.1 ± 1.55 2.00 ± 0.29 49.2 ± 0.29 3466 ± 84.4 66.8 ± 0.55 (0.82) 

PLA-5%PE 42.7 ± 1.25 2.05 ± 0.10 40.8 ± 1.64 3389 ± 121.1 68.4 ± 1.40 (2.02) 

PLA-5%Mg 49.1 ± 0.35 2.55 ± 0.76 47.6 ± 1.04 3573 ± 51.8 70.1 ± 1.35 (1.92) 

PLA-5%Fe 52.8 ± 2.75 2.15 ± 0.46 50.6 ± 2.39 3528 ± 76.2 71.7 ± 2.20 (3.04) 

* CV—Coefficient of variation. 

The introduction of PE-HD to PLA matrix caused, compared to the reference sample (pure PLA), 

decrease the tensile strength and elastic modulus of this material, while it slightly increased the 

elongation and hardness. Similar results were reported by Djellali S. et al. [26], however for a low 
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Figure 3. Typical curves of the tensile tested composite materials.

Table 1. Summarized results of tensile tests and hardness of the tested composite samples.

Sample σ [MPa] ε [%] YS0.2 [MPa] E [MPa] HS [◦Sh] (CV) *

100%PLA 50.1 ± 1.55 2.00 ± 0.29 49.2 ± 0.29 3466 ± 84.4 66.8 ± 0.55 (0.82)
PLA-5%PE 42.7 ± 1.25 2.05 ± 0.10 40.8 ± 1.64 3389 ± 121.1 68.4 ± 1.40 (2.02)
PLA-5%Mg 49.1 ± 0.35 2.55 ± 0.76 47.6 ± 1.04 3573 ± 51.8 70.1 ± 1.35 (1.92)
PLA-5%Fe 52.8 ± 2.75 2.15 ± 0.46 50.6 ± 2.39 3528 ± 76.2 71.7 ± 2.20 (3.04)

* CV—Coefficient of variation.

Usage the high-density polyethylene as a blend with PLA as well as magnesium and iron powders
as composite additives in comparison with the pure PLA shows changes in the mechanical properties
of the tested materials. Note that all composite samples have slightly better ductility in comparison
with the reference 100% PLA sample.
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Figure 4. SEM images of the fracture surface of the broken composite samples obtained after tensile
tests: (a) PLA, (b) PLA-5%PE, (c) PLA-5%Mg, (d) PLA-5%Fe (mag. × 500), (e) and (f) PLA-5%Mg and
PLA-5%Fe powder particles, respectively (mag. ×1000).

The highest Shore’s hardness, tensile strength (σ), yield strength YS0.2, and good total elongation
at break (ε) were obtained for the PLA reinforced by iron (PLA-5%Fe), while the sample of PLA
with magnesium (PLA-5%Mg) has the best ductility and comparable Young’s modulus (E) with the
iron-based composite.

The introduction of PE-HD to PLA matrix caused, compared to the reference sample (pure PLA),
decrease the tensile strength and elastic modulus of this material, while it slightly increased the
elongation and hardness. Similar results were reported by Djellali S. et al. [26], however for
a low density polyethylene (PE-LD) added to the PLA. The reason for this may be the flexible
effect of the PE introduced to the PLA, resulting in a slight improvement in the plasticity [27].
However, the deterioration of the tensile strength of this material may be caused by a large difference
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in polarization between PLA and PE polymers, leading to their poor adhesion [28]. These suggestions
were confirmed by SEM observations of the fracture surface of the samples discussed later in this
article. Nevertheless, the microscopic observations of the all tested composite materials (not presented
here) did not reveal any significant differences at the surface between the individual phases applied,
and the obtained materials, especially PLA-5%PE, appeared to be macroscopically homogeneous.

It is worth noting that the Shore’a hardness of the composite materials is higher, compared to
the pure PLA, while only the addition of PE caused the reduction of Young’s modulus by ~2.0%.
The highest hardness was measured for the PLA-5%Fe sample, which increased in comparison to the
pure PLA by about 7.5%.

The mechanical properties of composite polymers are strongly affected among others by dispersion
of the reinforcing phase, matrix and reinforcing adhesion and filler aspect ratio. When the filler particles
strongly impede the stretching of the polymer chains, it causes the decrease in elongation of the
composites. On the other hand, it is assumed that improvement in tensile strength can be achieved after
increasing load transfer between matrix and filler by increasing specific surface area of the powders
and its homogeneity [26].

Figure 4 presents the fracture surface of all tested composite materials. Closer analysis of the
fracture surface shows that a similar, fibrous nature of the fracture mode can be found for the pure
PLA and PLA-5%Mg samples (see Figure 4a,c). Note, that the bonding between the PLA matrix
and the reinforcement of the metallic powder particles seems to be strong and no areas of their clear
detachment were visible. Nevertheless, singular pores were also observed.

The nature of both fractures can be described as fibrous and ductile. However, a different fracture
surface was observed for the PLA-5%PE and PLA-5%Fe composites. In the case of the PLA-5%PE
sample, clear facets, and typical detachment similar like for the brittle fracture of metallic materials
(Figure 4b) are visible. The fracture of the PLA-5%Fe sample (Figure 4d) is flat with clear traces of
delamination of individual layers, separated by the iron powder particles.

Spherical like Fe particles presented in Figure 4f, in comparison with more rectangular (flake-like)
in shape of the Mg powder particles (see Figure 4e) were confirmed by SEM observations on the surface
of both composite materials.

It is noteworthy that two metal powders with similar particle size mixed together with PLA
polymer revealed a different nature of the destruction process during the static tensile testing. The tensile
strength and Young modulus increase (see Table 1) can be related to the morphology, distribution and
the degree of bonding of the metallic particles to the polymer matrix. The spherical Fe particles
probably are stronger adhered to the polymer in comparison to the Mg particles that act as stress
concentration points, thus facilitates PLA cracking and decreasing tensile properties of the PLA-5%Mg
material. It is assumed that this state of affairs may also be affected by the thermal conductivity
coefficient of both metals, which are different, and for a pure iron it is about 80 W/m·K, whereas for
a magnesium it is two times higher and the values is 156 W/m·K. This parameter may significantly
affects the thermal properties of both compositions, and thus the homogeneity of both materials after
mixing with the screw feeder prior to extrusion, and consequently the mechanical properties of the
obtained samples. This aspect, especially the total elongation increase in the PLA-Mg material, will be
studied in detail in our future research work.

Changes in mass of the tested samples immersed in the 0.9% saline solution, as a function of
storage time, are shown in Figure 5. From these data it follows out that in the case of the pure PLA
sample, the mass of the material initially increases up to 30 days, probably due to the rapid hydration
of this polymer. After this time, a constant decrease in the mass of this sample is observed, which is in
accordance with the literature data [29,30]. Similar results of the mass changes were measured for the
sample with the PE addition, which indicates that this blend does not affect the PLA mass changing
during storage it in the 0.9% saline solution.
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Figure 5. Degradation tests of the samples in the 0.9% saline solution.

A significantly different data of the weight loss over the testing time were measured for the
PLA-5%Mg sample. In the initial period, up to 30 days, the mass of this material increases and then
from 30 to 120 days decreases, and from 120 to 180 days increased again. Note that after 120 days of
an immersion of this material, an elution of magnesium from the PLA matrix was observed, and the
composite material itself changed color from initial dark grey to the color of milk, similar to the
pure PLA sample (see Figure 6a,b). SEM-EDS observations in Figure 6c,d of the PLA-5%Mg after
120 days and drying revealed cracks of the PLA matrix and Mg particles attached with sodium chloride.
With further extension of the degradation time in the 0.9% saline solution, the mass of this sample
began to increase again, as a result of the penetration of the liquid by the capillary forces into the
remaining pores after washing of the magnesium out. Note that PLA itself undergoes volumetric
hydrolytic degradation, which constantly facilitates contact of the saline solution with the inner body
of the material and can cause further elution of magnesium powder particles from the composite.
This degradation caused some cracks (Figure 6c) similar to these reported by [31].
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Figure 6. Elution of magnesium from the PLA-5%Mg composite (a) as-received, (b) after 120 days
of testing, (c) SEM image of the PLA-5%Mg sample after 120 days of immersion (mag. ×1000),
(d) SEM-EDS analysis of the Mg particles presented in Figure 6c (mag. ×1000).
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In the case of the PLA-5%Fe composition, it is found that the degradability of this material has a
sinusoidal course. In general, up to 90 days, the mass of this composite constantly increases. After these
days up to 120 days the mass of the sample decreases, probably due to the effect of elution of the iron
particles from the PLA matrix, to increase the mass again up to 180 days. This observation correlates
well with the conductivity of 0.9% saline solution, in which this sample was incubated (as presented in
Figure 7), where the values increased significantly from 16.05 ± 0.45 mS/cm after 120 days of testing
time, to the value of 17.40 ± 0.10 mS/cm after 180 days of testing.
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Relative mass changes (in %) of the tested samples were also calculated from the initial mass of
the specimen and after 180 days of immersion samples in the contact solution. It was found that the
highest relative mass loss calculated for the PLA-5%PE material (15.1%) and the lowest in the case
of PLA-5%Fe (6.6%). This indicates that iron addition to the PLA matrix may be a good solution for
improving PLA stability.

Thermal properties of tested pure PLA polymer and PLA composites before incubation and after
incubation in 0.9% saline solution for 180 days are presented in Table 2. Analysis of obtained DSC spectra
allowed for the determination of: the glass transition temperature (Tg), crystallization temperature
(Tc), and melting temperature (Tm), on the basis of which the crystallinity (Xc) was calculated, both for
first and second heating.

Table 2. Summarized results of DSC analysis: glass transition temperature (Tg), crystallization temperature
(Tc), melting temperature (Tm), and crystallinity (Xc) obtained from DSC curves for first (I) and second (II)
heating, and TG analysis: thermal decomposition temperatures for 5%mas. Material loss (T5%) and for
95%mas. material loss (T95%), and activation energy of thermal decomposition (Ea). Results are presented
for control samples (0) and for samples kept in 0.9% NaCl solution for 180 days (180).

Sample DSCheating Tg (◦C) Tc (◦C) Tm (◦C) Xc (%) T5% (◦C) T95% (◦C) Ea (kJ/mol)

PLA (0) I 57.4 116.6 148.8 13.35 306.5 353.7 73.3
PLA (0) II 50.4 119.6 146.4 0.46 - - -

PLA (180) I 71.1 98.1 151.8 30.15 286.1 347.8 131.4
PLA (180) II 43.0 107.7 143.9 1.48 - - -

PLA-PE (0) I 56.5 113.4 148.1 17.02 303.4 382.9 109.6
PLA-PE (0) II 55.8 117.0 148.2 7.5 - - -

PLA-PE (180) I 57.6 101.3 153.1 22.2 290.1 363.9 176.1
PLA-PE (180) II 45.7 100.4 146.7 9.13 - - -
PLA-Mg (0) I 58.9 113.7 148.3 7.06 269.3 300.9 80.5
PLA-Mg (0) II 46.3 106.4 142.7 3.8 - - -

PLA-Mg (180) I 70.5 91.0 147.7 20.64 240.5 279.2 139.8
PLA-Mg (180) II 16.4 83.1 143.7 1.52 - - -

PLA-Fe (0) I 57.2 112.9 146.9 12.37 285.7 309.9 88.1
PLA-Fe (0) II 48.7 116.4 146.4 0.24 - - -

PLA-Fe (180) I 53.3 97.6 151.7 20.07 272.8 310.3 171.4
PLA-Fe (180) II 37.9 104.5 139.0 2.91 - - -
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For all tested materials, changes in thermal properties were observed. Tg and Tc values of PLA and
composites materials after first heating (I) are not significantly affected by the addition of Fe, Mg and PE
probably because of their thermodynamic stability [17]. Note that the glass transition temperature for
all tested samples were higher during first heating (I) comparing to second heating (II), i.e., Tg = 57.4 ◦C
for PLA (I, 0) and Tg = 50.4 ◦C for PLA (II, 0), Tg = 71.1 ◦C for PLA (I, 180) and Tg = 43.0 ◦C for
PLA (II, 180). For the tested materials it was observed that the value of Tg was lower for samples
incubated in the saline solution for 180 days in comparison to the control, which means that storage
conditions affect the glass transition temperature. As the value of Tg depends on different factors,
such as molecular weight, intermolecular interaction, or chain flexibility [32], it can be concluded that
hydrolytic degradation of PLA leads to decrease of molecular weight, which finally decreases the
glass transition temperature. The highest differences were observed for the pure PLA and PLA-5%Mg
samples. In the case of pure PLA kept in the saline solution, the glass transition temperature was
71.1 ◦C and for control Tg = 57.4 ◦C, for PLA-5%Mg kept in 0.9% NaCl, the glass transition temperature
was 70.5 ◦C, for control Tg = 58.9 ◦C, respectively.

It is observed that, after 180 days of incubation of the specimens in the saline solution,
the crystallization temperature decreased, indicating that, in the presence of the metal, powders shift
the crystallization process to lower temperature. Observed decrease is probably due to hydrolysis of
the polymer after storage in water environment, as was also reported by Ndazi et al. [33]. For control
and after 180 days of incubation, it was appropriate: pure PLA Tc(I) = 116.6 ◦C and Tc(II) = 98.1 ◦C,
PLA-5%PE Tc(I) = 113.4 ◦C and Tc(II) = 101.3◦C, PLA-5%Mg Tc(I) = 113.7 ◦C and Tc(II) = 91.0 ◦C,
PLA-5%Fe Tc(I) = 105.8 ◦C, and Tc(II) = 97.6 ◦C. On the other hand, an increase of the melting point
temperatures of the crystalline phase was observed for all samples.

The melting temperatures were higher after incubation compared to control for all tested materials
after first heating and lower in case of second heating due to increase of the degree of polymer
crystallinity which occurs during the transformation of amorphous PLA into crystalline phases as
the polymer was undergoing hydrolysis in water [33]. However, the difference between above
temperatures were similar, i.e., for PLA Tm(I, 0) = 148.8 ◦C and Tm(I, 180) = 151.8 ◦C, for PLA-5%Fe
Tm(I, 0) = 146. 9 ◦C and Tm(I, 180) = 151.7 ◦C.

Note that the degree of crystallinity after 180 days of incubation for all tested materials (pure PLA
and PLA with the PE, Fe, and Mg additives) generally increase. Basing on enthalpy of cold crystallization
and enthalpy of melting temperature, crystallinity of control samples and crystallinity of materials
after incubation was calculated. As a result of the materials incubation, its crystallinity increases.
Observed changes are significant, i.e., from the initial 13.35% to 30.65% for PLA, from 17.02% to 22.2%
for PLA-5%PE, from 7.06% to 20.64% for PLA-5%Mg, and from 12.37% to 20.07% for PLA-5%Fe.
The increase of crystallinity is usually associated with the formation of more ordered or bigger crystals.
It was reported by other authors [34,35], PLA plasticizes and crystallizes in the presence of organic
solvents, which cause polymer matrix swelling, increasing the chain mobility and solvent induced
crystallization (SIC). Similar mechanism may occur in this work, where the water diffuse into material,
caused swelling, plasticization, and finally, crystallization [36]. According to Wu et al. [35] in the
first diffusion stage, the solvent molecules interact with random PLA coil chains, increasing the
motion of the PLA segments, resulting either dissolution of the polymer or nucleation, leading to the
rearrangement of PLA chains into crystal lattices.

Note that increase in the crystallinity results from the degradation mechanism of PLA. As it
is known, the amorphous phase, which forms in the outer layer of the polymer, is particularly
susceptible to water absorption and rapidly degrades. Hence, in the samples after certain degradation
period, an increase in the crystallinity is observed, as a result in a decrease in the amount of the
amorphous phase.

From TG curves, temperatures of thermal decomposition for 5% mass material loss (T5%) and
for 95% mass material loss (T95%) were identified. Additionally, tests were performed at three
different heating rates, namely: 5, 10, 20◦C/min, for calculation of an activation energy of thermal
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decomposition (Ea). Analysis of thermal decomposition shown that the temperature of thermal
decomposition for 5% mass material loss (T5%) and for 95% mass material loss (T95%) was lower
after 180 days of incubation for all tested materials except the PLA-5%PE sample. This indicates
decomposition of the PLA after mixing with powders resulted in rupture polymer chains, that cannot
be trapped by the metals particles, decreasing the thermal stability. It is expected, on the basis of the
literature data [26,28] that metal powder nanoparticles can effectively trapped free radicals and thus
increase the thermal stability of the composites. The decrease in T5% and T95% temperatures in the
samples after the degradation period indicates a mechanism of chain breakage and the formation of
shorter and lighter fractions, which are characterized by a lower temperature of onset and end of
decomposition [30,37,38].

The activation energies of the control materials were lower in comparison to the samples tested
after incubation in 0.9% saline solution. The highest differences were observed for following materials:
(a) pure PLA: 73.3 kJ/mol (control) and 131.4 kJ/mol (after incubation), (b) PLA-5%PE: 109.6 kJ/mol
(control) and 176.1 kJ/mol (after incubation), (c) PLA-5%Mg: 80.5 kJ/mol (control) and 139.8 kJ/mol (after
incubation), (d) PLA-5%Fe: 88.1 kJ/mol (control) and 171.4 kJ/mol (after incubation). After incubation,
observed activation energy increased, which means that more energy is required to initiate thermal
decomposition of the tested materials. This phenomena was observed due to the increase of crystallinity
of the tested materials after 180 days incubation process. In accordance with work of Taranie E. et al. [39]
the increase of the activation energy is associated with the decrease of the mobility of polymer matrix
and the lowering of the chemical reactivity of the corresponding chains.

The results of pH data of the 0.9% saline solution as a function of the testing time are shown in
Figure 8. In general, data presented in the graph revealed that the pH of the all samples increased,
passing from a slightly acidic to a neutral pH or, as the data show after 180 days of testing time,
clearly alkaline reaction.Polymers 2020, 12, x FOR PEER REVIEW 12 of 15 
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Initially, the saline solution having reaction with PLA material release the free hydrogen ions
in the process of electrolytic dissociation, and as a result of this reaction from the solution with the
sample, oxygen ions evolved which, when combined with hydrogen ions, formed the hydroxyl groups,
and the tested solutions changed the pH to alkaline. It is noteworthy to mention that the composite
with the magnesium addition (PLA-5%Mg), after 7 days of testing time, has neutral pH of 7.01 ± 0.02
and after 180 days the pH of the solution is the highest in comparison to the all tested samples, and it
is equal to 7.99 ± 0 01. This is due to the strong reactivity of this metal in the fluid environment.

As mentioned before, the correlation between the degradation process of the composite samples
in the saline solution (the mass loss) and the electrical conductivity of the solution can be found.
Each aqueous solution enriched in electric current carriers, namely ions, coming from the dissolved
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material, will have better electrical conductivity and therefore a higher value of Siemens parameter (S).
In this context, two materials show a definite tendency to dissolve in the saline solution, pure PLA and
PLA-5%Mg (Figure 7).

In the case of the composite with magnesium, there is about 8% increase in the electrical
conductivity of the electrolyte, from 15.74 ± 0.24 (after 30 days) to 16.98 ± 0.12 mS/cm (after 90 days),
so that after 180 days, the value of this parameter reached 19.42 ± 0.04 mS/cm.

Similar, not less interesting phenomenon can be observed in the case of pure PLA. The electrical
conductivity of the contact solution oscillates slightly at the range of 15.7 ÷ 16.0 mS/cm up to 120 days,
then suddenly increase after 150 and 180 days to the highest average value of 20.6 ± 0.05 mS/cm.
This phenomenon can be explain by an abrupt change in the degree of crystallinity of the surface
layer of the PLA, which as it is known the newly formed amorphous layer, has a distinct ability
to a moisture absorption [3,40]. Due to this, the structure of the layer undergoes faster hydrolytic
degradation, which leads to a decrease in the sample cross-section and, as a result, deteriorates its
mechanical properties.

4. Conclusions

This paper presents the results of testing the composite materials based on polylactide with the
addition of 5% PE, Mg and Fe (wt.%) obtained by an extrusion and subsequent pressing. The main
purpose of this work was to find out whether, by using a metallic powder as a composite reinforcement,
the mechanical properties of pure PLA could be improved and the degradation time can be control.
This effect is very desirable for such materials used in medicine as well as in other industry applications.

In the course of the study, it was found that, compared to the pure PLA, an improvement in tensile
strength (both σ and YS0.2) was obtained with the iron powder addition, while the magnesium powder
slightly improved the ductility of the composite material (from 2.0% to 2.5%), at the expense of a minor
reduction in the strength.

Studies on the degradation of these composites in the 0.9% saline solution over a period of 180 days
revealed changes in the pH of the solution from acidic to alkaline, in all tested samples, after 150 days
of conditioning at temperature 37 ◦C.

Similar mass changes were observed for the pure PLA and PLA-5%PE samples. The most varied
mass loss was observed in the case of the PLA-5%Mg, where initially the sample mass increased
(first 30 days) then decreased, and unexpectedly after 120 days the mass increased again and the sample
changed the color, as a result of washing out the magnesium from the PLA matrix. This also caused
the pH changes of the saline solution and an increase of the electrical conductivity. Similarly, a high
increase in the electrical conductivity of the saline solution was found after 150 days for the pure PLA.
In the context of degradation phenomenon of the tested materials, it turns out that after 180 days of
immersing in the 0.9% saline solution the most stable is the PLA-5%Fe, which has also the highest tensile
strength and hardness, whereas Mg addition caused the PLA composite has the highest reactivity and
therefore short time of decomposition.
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