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Animal farming has intensified significantly in recent decades, with the emergence
of concentrated animal feeding operations (CAFOs) in industrialized nations. The
congregation of susceptible animals in CAFOs can lead to heavy environmental
contamination with pathogens, promoting the emergence of hyper-transmissible, and
virulent pathogens. As a result, CAFOs have been associated with emergence of
highly pathogenic avian influenza viruses, hepatitis E virus, Escherichia coli O157:H7,
Streptococcus suis, livestock-associated methicillin-resistant Staphylococcus aureus,
and Cryptosporidium parvum in farm animals. This has led to increased transmission of
zoonotic pathogens in humans and changes in disease patterns in general communities.
They are exemplified by the common occurrence of outbreaks of illnesses through direct
and indirect contact with farm animals, and wide occurrence of similar serotypes or
subtypes in both humans and farm animals in industrialized nations. Therefore, control
measures should be developed to slow down the dispersal of zoonotic pathogens
associated with CAFOs and prevent the emergence of new pathogens of epidemic and
pandemic potential.

Keywords: concentrated animal feeding operation (CAFO), zoonosis, emerging infection, public health,
epidemiology

INTRODUCTION OF CONCENTRATED ANIMAL FEEDING
OPERATIONS

Humans have kept farm livestock and poultry ever since the domestication of various animals
starting approximately 10,000 years ago (Diamond, 2002). For much of recorded history, humans
have farmed these animals in traditional ways, keeping just enough animals for personal or
family consumption (Salaheen et al., 2015). In these traditional systems, while humans are
exposed to zoonotic pathogens because of possible introduction of pathogens from wildlife and
intimate contact with animals (Pohjola et al., 2016; da Silva et al., 2018; Nicholson et al., 2020),
the impact of such zoonotic transmission is limited by the small numbers of these animals
(Espinosa et al., 2020).
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To meet the growing demand for meat and other animal
proteins after the end of the Second World War, animal farming
in the Noth America and Europe transitioned from small-scale
farming to concentrated animal feeding operations (CAFOs)
(Graham et al., 2008). In general, they are animal facilities
with over 700 mature dairy cattle, 1000 cow-calf pairs, 10000
sheep, 2500 adult swine, and 30000 laying hen or broilers1. This
has led to not only changes in food animal production but
also environmental and public health concerns about CAFOs
(Kirkhorn, 2002). Initial public health concerns of CAFOs were
on water quality issues, respiratory diseases among farmers and
their neighbors, the spread of antimicrobial resistance, and global
warming (Kirkhorn, 2002; Radon et al., 2007; Koneswaran and
Nierenberg, 2008). As a result, various governmental regulations
have been established in industrialized nations on CAFOs
(Rosov et al., 2020).

Recent evidence suggests CAFOs may be contributing to
significant changes in patterns of infectious diseases, with
increased transmission of zoonotic pathogens (Moyer, 2016;
Klumb et al., 2020). It has been suggested that the congregation
of large numbers of susceptible animals in confined spaces
and reduced genetic diversity of animals could promote the
transmission of established pathogens in CAFOs (Jones et al.,
2013). This can be mediated through the amplification and
mutation of the pathogens, leading to their spread and the
emergence of new variants with better adaptation to mammals
and increased transmissibility and virulence (Espinosa et al.,
2020). Data from one recent study suggest that since 1940,
agricultural drivers were associated with >50% of zoonotic
diseases in humans (Rohr et al., 2019).

Concentrated animal feeding operations have multiple ways
to increase the transmission of zoonotic pathogens in humans
(Figure 1). Farm animals may be infected with human pathogens
such as Salmonella, Campylobacter, and Cryptosporidium, thus
became reservoir or amplifier hosts and transmit them to humans
through direct contact or contamination of food (meat, milk,
eggs, and fresh produce, etc.) and drinking source water. They
can also become the host allowing pathogens of wildlife origins
such as avian influenza viruses to evolve with better adaptations
to humans (Jones et al., 2013). The wide use of antibiotics in
farm animals can also select for resistant pathogens such as
livestock-associated methicillin-resistant Staphylococcus aureus
(LA-MRSA) that have become a public health problem in
European countries and some other areas (Sieber et al., 2018).

In this report, we have conducted a review of recent
data on the association between the increased occurrence of
representative zoonotic pathogens and CAFOs. These viral,
bacterial, and parasitic pathogens are readily transmitted between
animals and humans, although the present review focuses mostly
on human infections acquired from animals. Several major
zoonotic pathogens of public health importance in industrialized
nations and with evidence on the effect of animal farming
on increased pathogen transmission in humans are discussed
(Jones et al., 2013). No efforts are made to summarize data
extensively on environmental contamination of these pathogens

1https://www.epa.gov/sites/default/files/2015-08/documents/sector_table.pdf

by CAFOs due to the diverse transmission routes of these
pathogens (Table 1).

CONCENTRATED ANIMAL FEEDING
OPERATIONS AND TRANSMISSION OF
MAJOR VIRAL PATHOGENS

Concentrated animal feeding operations have been associated
with the transmission of several emerging zoonotic pathogens
(Table 1). Such an association is probably best illustrated by the
emergence of the pandemic influenza viruses. For example, duck
farming provides the opportunity of spillover transmission of
influenza A viruses from wild aquatic birds to chickens and pigs.
This likely increases the occurrence of reassorted viruses with
better infectivity to humans (Nunez and Ross, 2019). In addition,
large pig and poultry farms have long been known as amplifiers
of zoonotic influenza viruses (Henritzi et al., 2020). H1N1, H1N2,
H3N2, and A(H1N1)pdm09 viruses are common in pigs in most
countries around the world (Chauhan and Gordon, 2020), and
several other avian influenza viruses such as H5N1 and H7N9
have emerged as important human pathogens in recent years
(Philippon et al., 2020). It has been estimated that when CAFO
workers comprise 15–45% of the community, the overall human
influenza cases increase by 42–86% (Saenz et al., 2006).

Because of the prevalence of influenza A viruses in pigs
and poultry, CAFO farmers are at significantly increased risk
of influenza virus infection due to frequent contact with
infected animals (Quan et al., 2019). Zoonotic transmission
of influenza viruses has been commonly reported in swine
farmers in Asian and European countries, mostly due to
H1N1, especially A(H1N1)pdm09 (Chauhan and Gordon, 2020).
In a recent longitudinal study conducted in China, swine
workers at CAFOs had higher seroconversion to swine H1N1
and H3N2 than unexposed and non-CAFO swine workers
(Borkenhagen et al., 2020). Another study showed increased
seroprevalence of antibodies to H5N1, H7N9, and other subtypes
in poultry workers, with some workers having seroconversion
after employment on farms (Quan et al., 2019). The spillover
of influenza viruses from CAFOs to the general community
has been responsible for several recent influenza pandemics
(Hollenbeck, 2016; Chauhan and Gordon, 2020), mostly caused
by reassorted viruses (Dadonaite et al., 2019).

A particular concern is the reassortment of influenza A
viruses in CAFOs. It is known that the colocation of swine and
poultry farms, which is common in some areas and promotes
the interspecies transmission of virus from birds to swine, can
lead to the emergence of new influenza viruses (Nunez and
Ross, 2019; Chauhan and Gordon, 2020). Pigs are known as a
mixing vessel for influenza virus reassortment and evolution, as
they can be infected by swine, avian and human influenza A
viruses (Chauhan and Gordon, 2020). Avian-derived viruses may
become adapted in pigs, facilitating the emergence of double-
and triple-reassortant genotypes of pandemic potential (Chauhan
and Gordon, 2020). For example, molecular surveillance of
swine influenza viruses on pig farms has revealed intensive
reassortment of viruses with A(H1N1)pdm09 virus, producing
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FIGURE 1 | Transmission of major zoonotic pathogens through concentrated animal feeding operations (CAFOs).

TABLE 1 | Major zoonotic pathogens associated with concentrated animal feeding operations (CAFOs) in industrialized nations.

Pathogen Major CAFO type
involved

Major risk factor for
human infection

Epidemic potential References

Influenza virus (H1N1,
H5N1, and H7N9)

Swine, poultry Animal contact Outbreaks and pandemics Nunez and Ross, 2019

Hepatitis E virus Swine Animal contact,
foodborne, waterborne

Outbreaks Geng and Wang, 2016

Streptococcus suis Swine Animal contact Sporadic Dutkiewicz et al., 2017

Livestock-associated
methicillin-resistant
Staphylococcus aureus

Swine Animal contact Sporadic Sieber et al., 2018

Salmonella and
Campylobacter

Cattle, poultry Foodborne, animal
contact

Outbreaks Pogreba-Brown et al.,
2018

Escherichia coli O157:H7 Cattle Foodborne, animal
contact

Outbreaks Karmali, 2018

Cryptosporidium parvum Dairy cattle Animal contact,
foodborne, waterborne

Outbreaks Zahedi and Ryan, 2020
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a repertoire of over 30 distinct genotypes of unknown virulence
and tissue tropism (Henritzi et al., 2020). Poultry farms also
play an important role in the evolution of highly pathogenic
avian influenza viruses, leading to the introduction of influenza
viruses of wild waterfowl into humans (Nunez and Ross, 2019;
Liu et al., 2021).

Another viral pathogen on the rise in industrialized nations
due to CAFOs is the hepatitis E virus (HEV). Although HEV
infection used to be mainly endemic in low and middle-
income countries, its prevalence has been steadily increasing
in industrialized countries in recent years. This is largely
due to zoonotic transmission of HEV from pigs in these
countries (Christou and Kosmidou, 2013). Pigs are natural
reservoirs of HEV and mostly show no clinical signs of infection
(Sooryanarain and Meng, 2020). Seroprevalence of HEV is
generally higher than 40% in pigs in most industrialized nations
and China (Sooryanarain and Meng, 2020; Chen et al., 2021).

Human HEV infections in industrialized nations are
exclusively caused by zoonotic genotypes 3 and 4 that circulate
in pigs and wild mammals, while those in low and middle-
income countries are caused by genotypes 1 and 2 through poor
hygiene and contaminated water (Pallerla et al., 2020; Table 2).
Therefore, HEV infections in industrialized nations are often
attributed to occupational exposures to pigs and consumption
of under-cooked pork and other animal products (De Schryver
et al., 2015; Teixeira et al., 2017). Waterborne transmission of
HEV is a potential concern, as contamination of raw source
water from swine CAFOs occurs often (Gentry-Shields et al.,
2015; La Rosa et al., 2017).

In China, as pig farming intensifies, the molecular
epidemiology of hepatitis E has evolved from high endemicity
of genotype 1 associated with waterborne transmission toward
low endemicity of genotype 4 in association with foodborne
transmission due to undercooked pork or seafood products such
as shellfish (Geng and Wang, 2016; Sridhar et al., 2017). A recent
survey of pigs in seven provinces in China has shown a high
seroprevalence of 67.1% with no apparent geographic and age
differences (Zhou et al., 2019). In another meta-analysis of data
from pigs, the seroprevalence was 48.0% and the prevalence
of viral RNA was 14.4% (Chen et al., 2021). In humans, IgG
against HEV was detected in 26.2% of general population
and 48.4% of occupational workers with exposures to pigs

(Shu et al., 2019). This is similar to results of a meta-analysis of
HEV studies in China, which showed seroprevalence of 27.3 and
47.4% in the general population and occupational population,
respectively (Yue et al., 2019). Unlike the detection of genotype
1 in historic isolates, most recent human and swine isolates from
China belonged to genotype 4 (Li et al., 2019; Shu et al., 2019;
Zhou et al., 2019). However, genotype 3, which is common in
industrialized nations, has been identified recently in several
species of animals and raw pork livers in China, suggesting its
likely emergence in humans in the near future (Go et al., 2019;
Rui et al., 2020).

CONCENTRATED ANIMAL FEEDING
OPERATIONS AND TRANSMISSION OF
MAJOR BACTERIAL PATHOGENS

Concentrated animal feeding operations have possibly played
an important role in the emergence of foodborne and animal-
contact associated bacterial pathogens in industrialized nations
(Table 1). Dairy cattle are well-known reservoirs of Escherichia
coli O157:H7, non-typhoidal Salmonella, and Campylobacter
(NASPHV, 2011; Levallois et al., 2014; Palomares Velosa et al.,
2020). Large poultry farms with poor rearing hygiene are further
known to have high prevalence of Salmonella and Campylobacter
(Koutsoumanis et al., 2019; Seman et al., 2020). As a result,
occupational and agricultural exposures have been identified
as key risk factors for human infections with these pathogens
in industrialized nations (Levallois et al., 2014; Conrad et al.,
2017; Su et al., 2017; Pogreba-Brown et al., 2018; Klumb et al.,
2020). Outbreaks of salmonellosis, campylobacteriosis, and E. coli
O157:H7 infections have been reported in association with direct
contact of animals (calves, lambs, goat kids, and live poultry,
etc.) on or from CAFOs in industrialized nations (Conrad et al.,
2017; Marus et al., 2019; Table 1). These pathogens are the
most common causes of foodborne outbreaks of illnesses in the
United States (Tack et al., 2020).

It has been suggested that CAFOs have played a crucial role
in the emergence of the highly pathogenic E. coli O157:H7
in the 1980s in industrialized nations (Karmali, 2018). The
hemolytic uremic syndrome (HUS) induced by O157:H7 has
the highest incidence in Europe, North America, Argentina,

TABLE 2 | Differences in the transmission of hepatitis E virus genotypes in humans around the world*.

Characteristics Genotype of hepatitis E virus

1 2 3 4

Distribution Africa and Asia Mexico, West Africa Industrialized nations Asia

Major host Human Human Pig, wild boar, deer, and rabbit Pig, wild boar, and ruminants

Zoonotic transmission No No Yes Yes

Transmission route Waterborne Waterborne Foodborne Foodborne

Susceptible population Young adults Young adults Older adults,immuno-compromised persons Young adults

Chronic infection No No Yes No

Occurrence of outbreaks Common Localized Occasional Occasional

*Adapted from https://www.cdc.gov/hepatitis/hev/hevfaq.htm#section2.
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Australia, New Zealand, and Japan, where cattle farming is most
intensive (Franz et al., 2019). Phylogenetic timing of whole
genome sequence data indicates that the initial emergence of the
highly pathogenic O157:H7 from non-pathogenic E. coli serotype
O55:H7 might have occurred in Netherlands over 130 years ago
(Dallman et al., 2015). The diversification of O157:H7, however,
occurred much later, with the dissemination of various clades
around the world mostly during the last 30–50 years, due to the
movement of Holstein-Friesian dairy cattle in association with
the emergence of CAFOs (Dallman et al., 2015; Franz et al., 2019).
The incidence of human cases of E. coli O157:H7 correlates with
cattle density and cattle to human ratios (Saeedi et al., 2017). As
a result, farm visiting is a key risk factor for human infection
with O157:H7 in some areas (Money et al., 2010), and the highest
incidence of HUS, the most severe clinical manifestation caused
by O157:H7, has been reported in North America, Europe, and
Japan (Saeedi et al., 2017; Franz et al., 2019). It could be argued
that this could be due to the better surveillance of the disease in
industrialized nation. Nevertheless, the incidence of HUS is very
low in China, where surveillance program for infectious diseases
is vagarous since the SARS outbreak in 2003 (Chen et al., 2014).

Other emerging bacterial pathogens in humans in association
with CAFOs include Streptococcus suis and Staphylococcus aureus
(Filippitzi et al., 2017). S. suis is a commensal bacterium of
tonsils and nasal cavities in young pigs, but can cause meningitis
and sepsis in humans. Human cases of S. suis infection have
been on the rise in several countries, especially those in Asia
(Huong et al., 2019; Susilawathi et al., 2019; Gajdacs et al.,
2020; Jiang et al., 2020; Kerdsin et al., 2020). Most of the
cases have had occupational exposures to pigs, usually through
contamination of minor cuts or abrasions on skin or by pig bite
(Dutkiewicz et al., 2017). Among the numerous serotypes in pigs,
serotype 2, especially its Sequence Type 1 (ST1), is the most
common serotype for human infections (Dutkiewicz et al., 2017;
Susilawathi et al., 2019; Agoston et al., 2020). It was responsible
for two outbreaks in China (Dong et al., 2021). Humans in
China are also infected with serotype 2, ST7 (Wang et al., 2019;
Jiang et al., 2020).

A recent phylogenomic analysis on 1,634 S. suis isolates
from 14 countries over 36 years has identified a novel human-
associated clade (HAC) divergent from the diseased-pig clade
(DPC) and healthy-pig clade (HPC). HAC appeared to have
originated from Europe through the export of European swine
breeds between 1960s and 1970s (Dong et al., 2021). Within HAC,
ST7 is the China-specific virulent variant in lineages I and III
while ST1 belongs to lineage II and is the most common sequence
type in HAC. ST1 isolates from humans in China are closely
related to those from Vietnam (Dong et al., 2021).

Livestock-associated methicillin-resistant S. aureus (LA-
MRSA) clonal complex 398 (CC398 or ST398) is another
emerging zoonotic pathogen in industrialized nations, especially
those in Europe (Larsen et al., 2017). A high colonization rate
(21.6%) of MRSA was seen in swine farm workers from a survey
conducted in Italy. Almost all human MRSA isolates had the
same sequence type obtained from pigs on the farm (Pirolo et al.,
2019). Import of pathogens from other European countries had a
major impact on the emergence of LA-MRSA CC398 in Italy, but

local trading of pigs among farms also played an important role in
the dissemination of the pathogen (Pirolo et al., 2020). There has
been a recent increase in the transmission of the pathogen in farm
animals; a study in Switzerland had shown a dramatic increase in
LA-MRSA prevalence in pigs, from 2% in 2009 to 44% in 2017.
In Germany, the prevalence of LA-MRSA CC398 in humans is
much higher in regions with intensive animal farming (Kock
et al., 2014). Whole-genome analysis showed sequence similarity
between isolates from farmers and their pigs (Kittl et al., 2020).

Denmark, Netherlands, and Slovenia have experienced a
significant increase in human infections with LA-MRSA CC398
in recent years (Kinross et al., 2017; Sieber et al., 2018; Dermota
et al., 2020). Results of meta-analysis indicate that livestock
workers, particularly swine farmers, are at significantly higher
risk for LA-MRSA infection (Chen and Wu, 2020). Many of the
cases, however, had no direct contact with livestock but tended to
live in rural areas, suggesting the likely occurrence of secondary
transmission of the pathogen in the community (Larsen et al.,
2017; Sieber et al., 2019). In agreement with this, LA-MRSA
CC398 appears to be spreading to other domesticated animals
such as veal calves, horses and farmed minks in Europe (Aires-
de-Sousa, 2017; Albert et al., 2019; Hansen et al., 2020; Lienen
et al., 2021). It has been demonstrated that LA-MRSA CC398 may
spread among animals, humans, and the environment on dairy
farms (Lienen et al., 2021).

The geographic range of LA-MRSA ST398 is expanding. It
has been reported in pigs and humans in recent years in Korean
and Japan (Lee et al., 2021; Nakaminami et al., 2021; Sasaki
et al., 2021). LA-MRSA ST398 isolates were recovered from
milk samples from two farms in China in one study. They had
genomes closely related to the human isolates in the country (Cui
et al., 2020). However, sequence type 9 is the most common LA-
MRSA in humans and pigs in China and other Asian countries,
probably because ST398 has not been dispersed widely yet
(Yu et al., 2021).

CONCENTRATED ANIMAL FEEDING
OPERATIONS AND TRANSMISSION OF
ZOONOTIC PARASITE
CRYPTOSPORIDIUM PARVUM

Like in viral and bacterial pathogens, farming activities also
have extensive impact on the transmission of parasites. A recent
study has suggested that animal farming and trading have
influenced the evolution and transmission of Toxoplasma gondii
significantly (Shwab et al., 2018). Similarly, the housing of large
numbers of chickens on modern poultry farms facilitates the
transmission of Eimeria spp., making the prevention and control
of coccidiosis a heavy burden to farmers (Fatoba and Adeleke,
2018). The improved housing and waste disposal in CAFOs have
in general reduced the transmission of soil transmitted helminths
such as Ascaris suum, Strongyloides ransomi, and Trichuris suis in
pigs (Symeonidou et al., 2020). The best example for the impact of
CAFOs on the transmission of zoonotic parasites and their public
health importance, however, is Cryptosporidium parvum.
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Cryptosporidium parvum is particularly common on dairy
farms, with virtually all farms examined in industrialized nations
being positive for C. parvum (Diaz et al., 2018; Razakandrainibe
et al., 2018; Lombardelli et al., 2019; Santoro et al., 2019). On these
farms, C. parvum infection in neonatal calves starts soon after
birth, peaks in calves of 1–2 weeks of age, with almost all calves
acquiring infection before weaning around 8 weeks (Thomson
et al., 2019). C. parvum, however, is rarely seen in weaned calves
and older animals, which are mostly infected with C. bovis,
C. ryanae, and C. andersoni (Santin, 2020). The latter species are
less pathogenic and largely non-infective to humans. With a few
exceptions, C. parvum infections in dairy calves in industrialized
nations are mostly caused by the IIa subtypes (Feng et al., 2018).

Cryptosporidium parvum is less frequently seen in calves raised
in less intensive production systems. In Sweden, where dairy
farming is much less intensive than other European countries,
C. parvum is rarely seen in healthy pre-weaned calves, although
it is the dominant species in calves that died of diarrhea (Silverlas
and Blanco-Penedo, 2013; Silverlas et al., 2013). In beef cattle,
which are usually managed using the traditional cow-calf grazing
system, several molecular epidemiological studies have identified
C. bovis and C. ryanae as the dominant species in industrialized
nations (Rieux et al., 2013; Bjorkman et al., 2015). Thus, in less
intensively managed production systems, C. parvum is either
absent or only seen in calves with diarrhea (Kabir et al., 2020).

Because of the low intensive nature of animal farming,
native calves in low- and middle-income countries are rarely
infected with C. parvum. Results of studies in African, Asian,
and South American countries have shown a dominance of
C. bovis and C. ryanae in native calves with C. parvum largely
absent (Ayinmode et al., 2010; Maikai et al., 2011; Nguyen et al.,
2012; Abu Samra et al., 2013). This is also mostly the case with
other bovine animals such as yaks and water buffaloes (Martins
et al., 2018; Ren et al., 2019; Wu et al., 2020). C. ryanae is
especially common in water buffaloes (de Aquino et al., 2020;
Russell et al., 2020).

The high prevalence of C. parvum in dairy cattle in
industrialized nations has led to spillover infections in other
farm animals, probably through sharing pastures and drinking
contaminated water. This is supported by the occurrence of
C. parvum in lambs and goat kids in European countries. While
C. xiaoi and C. ubiquitum are the dominant species in lambs in
Asian and African countries, C. parvum is the dominant species
in lambs in many European countries (Guo et al., 2021). The same
IIa subtypes circulating in calves there also circulate in lambs
(Guo et al., 2021). In northeastern Spain, however, lambs are
mostly infected with IId subtypes (Quilez et al., 2008). A similar
distribution in Cryptosporidium species is also seen in goats;
C. parvum IIa subtypes are common in goat kids in Europe
(Guo et al., 2021). Outside Europe, only some Middle East and
Northern African countries, Australia and possibly New Zealand
are known to have moderate occurrence of C. parvum in lambs
and goat kids (Hijjawi et al., 2016; Al-Habsi et al., 2017; Baroudi
et al., 2018; Majeed et al., 2018; Sahraoui et al., 2019).

The high prevalence of C. parvum in ruminants appear to have
significant impacts on cryptosporidiosis epidemiology in some
industrialized nations where CAFOs are a common presence. For

example, contact with farm animals, especially calves and lambs,
is a major risk factor for cryptosporidiosis occurrence in humans
in the United States, Europe, and New Zealand (Nic Lochlainn
et al., 2019; Costa et al., 2020; Garcia et al., 2020; Loeck et al., 2020;
Table 1). In a recent analysis of surveillance data collected during
2012–2016 in Minnesota, United States, 60% of C. parvum cases
had reported animal exposures in their incubation period (Klumb
et al., 2020). Outbreaks of cryptosporidiosis due to contact
with infected animals frequently occur in veterinary students
in some industrialized nations (Kinross et al., 2015; Benschop
et al., 2017; Thomas-Lopez et al., 2020). Other outbreaks of
zoonotic C. parvum infections have occurred in caretakers of
sick calves, farm visitors, children attending agricultural camps,
and emergency responders rescuing calves in traffic accidents and
burning barns (Conrad et al., 2017).

The high prevalence of C. parvum in CAFOs could have
affected the infection patterns of Cryptosporidium spp. in
humans. In low- and middle-income countries,C. hominis, which
is an anthroponotic species, is the dominant Cryptosporidium
species in humans (Yang et al., 2021; Figure 2A). This is
also the case in some industrialized countries such as the
United States, Japan, and Australia (Xiao, 2010). In European
countries and New Zealand, however, C. parvum is responsible
for over 50% of human Cryptosporidium infections (Costa et al.,
2020; Garcia et al., 2020; Lebbad et al., 2021). Even in the
United States and Australia where C. hominis dominates over
C. parvum country-wide, C. parvum is the dominant species
in humans in rural areas (Braima et al., 2019; Loeck et al.,
2020). In these countries, C. parvum is responsible for numerous
waterborne, foodborne, and animal contact-associated outbreaks
of cryptosporidiosis in the general community (Insulander et al.,
2013; Chalmers et al., 2019). Of particular concern is the
common occurrence of waterborne outbreaks of C. parvum-
associated cryptosporidiosis (Zahedi and Ryan, 2020), as this
species is the dominant Cryptosporidium species in drinking
source water in most industrialized nations (Swaffer et al.,
2018; Ligda et al., 2020; Mphephu et al., 2021). Identical
distribution of Cryptosporidium species has been found between
farms animals and downstream surface water, supporting the
contribution of CAFOs to environmental contamination of
oocysts (Zahedi et al., 2020).

Genetic characterization of C. parvum in humans supports the
role of CAFOs in the epidemiology of cryptosporidiosis. While
C. parvum infections in low- and middle-income countries are
mostly caused by the anthroponotic IIc subtype family (Yang
et al., 2021), C. parvum infections in humans in industrialized
nations are largely caused by the IIa subtype family, the zoonotic
C. parvum commonly found in calves and lambs in areas
practicing CAFOs (Xiao, 2010; Figure 2B). In Europe and
New Zealand, the distribution of C. parvum IIa subtypes has
been virtually identical between humans and calves. The peak
occurrence of human C. parvum infections by these subtypes
coincides with the spring calving and lambing (Garcia et al.,
2020; O’Leary et al., 2020). Similarly, human infections with IId
subtypes are only found in countries where these subtypes occur
in calves, lambs, and goat kids, such as Europe, the Middle East,
China, and New Zealand (Figure 2B). The genetic similarities
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FIGURE 2 | Distribution of major Cryptosporidium species (A) and Cryptosporidium parvum subtypes (B) in humans around the world. Original data are presented in
Supplementary Tables 1, 2 and a recent review (Yang et al., 2021).

observed between the human and bovine isolates suggest that
dairy calves are significant amplifiers of zoonotic C. parvum
subtypes (Al Mawly et al., 2015).

A major public health consequence of the common occurrence
of C. parvum in farm animals is the frequent association
of this species with outbreaks of human cryptosporidiosis in
industrialized nations. In the United Kingdom, over half of the
cryptosporidiosis outbreaks are caused by C. parvum (Chalmers
et al., 2019). Outbreaks by C. parvum are also common in other
industrialized nations such as other European countries, the
United States, and Australia (Caccio and Chalmers, 2016; Xiao
and Feng, 2017; Zahedi and Ryan, 2020). Most of the outbreaks
were animal contact-associated or foodborne, while those caused
by C. hominis were associated with recreational water (Chalmers
et al., 2019). One C. parvum subtype, IIaA15G2R1, is particularly
virulent, having been the dominant C. parvum subtypes for

outbreaks in Europe and United States (Xiao and Feng, 2017;
Chalmers et al., 2019). It is also the dominant C. parvum subtype
in dairy calves in most industrialized nations (Xiao, 2010). As a
result, outbreaks of cryptosporidiosis by this subtype and other
subtypes are common in veterinary students in these countries
(Thomas-Lopez et al., 2020).

PUBLIC HEALTH PERSPECTIVES AND
CONCLUSION

Data accumulated thus far suggest that CAFOs have significant
impacts on the transmission of some viral, bacterial, and parasitic
pathogens in some areas, especially C. parvum and HEV. They
provide an ecological niche that promotes the emergence of
virulent and hyper-transmissible pathogens via the congregation
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of susceptible animals in confined spaces, reduced genetic
diversity of the host, and increased animal movement across
farms and other commercial operations (such as the import of
high-performance breeds and constant transfer of male dairy
calves to veal and beef farms) (Saenz et al., 2006; Jones et al., 2013;
Hollenbeck, 2016). Some modern living practices select zoonotic
pathogens with better adaptation to the human-animal interface
and specific transmission routes, such as highly pathogenic
influenza virus, HEV, E. coliO157:H7 serotype, S. suis, LA-MRSA,
and C. parvum (Engering et al., 2013; Espinosa et al., 2020).
They include wide use of antibiotics, treating drinking source
water with chlorine, increased consumption of unpasteurized
milk and juices, undercooked meat and raw fresh produce, and
occupational and educational exposures to farm animals. These
environmental and culture factors promote spillover infections
in the general communities and epidemic disease outbreaks
(Figure 1). While these impacts are mostly seen in industrialized
nations where animal production is most intensive, they start
to influence pathogen transmission in countries where CAFOs
are in early implementation. This is exemplified by the increased
transmission of zoonotic genotypes 3 and 4 of HEV and the
emergence of S. suis infections in humans in China.

As the practice of CAFOs has only a short history, we
are probably yet to see its full public health impacts. Studies
conducted thus far indicate that countries having the highest
O157:H7 incidence in humans also have high prevalence of
C. parvum IIa subtypes in dairy calves, such as North America,
Europe, Japan, Australia, and New Zealand (Xiao, 2010; Franz
et al., 2019). Both pathogens are responsible for significant
numbers of foodborne and animal contact-associated outbreaks
in these areas (Conrad et al., 2017; Karmali, 2018; Zahedi and
Ryan, 2020). While the public health impacts of CAFOs on
the transmission of C. parvum is more obvious in European
countries and New Zealand, such effects appear to be focal
in other industrialized nations, with C. parvum IIa subtypes
inducing significant disease burdens in humans mostly in rural
areas (Xiao, 2010; Loeck et al., 2020). Similarly, S. suis and LA-
MRSA CC398 are increasing in distribution and public health
significance. Therefore, control measures should be implemented
to prevent the emergence of zoonotic pathogens as major public
health problems in these areas.

Public health measures should also be implemented to
prevent the emergence of new zoonotic pathogens in CAFOs. In
addition to the known pathogens discussed above, surveillance
should be installed to monitor the transmission of other
potential zoonotic pathogens that have broad host range,

undergo through frequent recombination for better adaptation
to humans, or can easily acquire drug resistance genes through
mobile genetic elements. The association between the prevalence
of some antibiotic resistance genes in foodborne bacteria
and drug usage in farm animals is well established (Luiken
et al., 2019). Therefore, other LA-MRSA clonal complexes and
resistant bacteria derived from farm animals could become
future public health problems. Of more immediate concern is
the possible spillover of SARS-CoV-2 from humans to farm
animals, as the virus has been shown to be infective to
several species of farm and companion animals (Shi et al.,
2020), and has known to cause epidemics in farmed minks
and wild white-tailed deer (Chandler et al., 2021; Lu et al.,
2021). If it manages to infect farm animals, the large number
of animals in CAFOs will likely complicate current control
efforts against COVID-19. Therefore, molecular surveillance of
SARS-CoV-2 and other zoonotic pathogens in CAFOs, such
as pathogen discovery using metagenomic data from animal
samples (Kawasaki et al., 2021), should be implemented for the
forecast and prevention of new zoonotic pathogens of public
health significance.
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