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Brain disorders, including stroke, Alzheimer’s disease, depression, and chronic pain,

are difficult to effectively treat. These major brain disorders have high incidence and

mortality rates in the general population, and seriously affect not only the patient’s quality

of life, but also increases the burden of social medical care. Aerobic physical exercise

is considered an effective adjuvant therapy for preventing and treating major brain

disorders. Although the underlying regulatory mechanisms are still unknown, systemic

processes may be involved. Here, this review aimed to reveal that aerobic physical

exercise improved depression and several brain functions, including cognitive functions,

and provided chronic pain relief. We concluded that aerobic physical exercise helps

to maintain the regulatory mechanisms of brain homeostasis through anti-inflammatory

mechanisms and enhanced synaptic plasticity and inhibition of hippocampal atrophy

and neuronal apoptosis. In addition, we also discussed the cross-system mechanisms

of aerobic exercise in regulating imbalances in brain function, such as the “bone-brain

axis.” Furthermore, our findings provide a scientific basis for the clinical application of

aerobic physical exercise in the fight against brain disorders.

Keywords: aerobic physical exercise, cognition, depression, chronic pain, neuroinflammation, synaptic plasticity,

hippocampal atrophy, bone-brain axis

INTRODUCTION

Physical exercise (PE) is a non-medical intervention that has been strongly validated by systematic
reviews, statistical analyses, clinical examinations, and appropriate guidelines (1–3). Appropriate
PE contributes to numerous physiological and psychological benefits, as well as a reduced tendency
to develop chronic diseases, such as cardiovascular, cerebrovascular, and metabolic diseases (4, 5).
PE can be divided into aerobic and resistance PE. The former includes running or cycling (6),
which is better for cardiopulmonary health and reduces hippocampus decline (7–9). The latter
improves bones and muscles by resisting external resistance through increased muscle strength
(10). Therefore, in some chronic diseases, such as chronic heart failure (11), multiple sclerosis (12),
and depression in older adults (13), PE may be a first-line treatment option.
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The aerobic PE emphasized in this paper can be classified
according to maximal oxygen uptake (VO2max) as low- (<45%
VO2max), moderate- (45–64% VO2max), and high-intensity (70–
85% VO2max) PE (14). The American College of Sports Medicine
stated that moderate-intensity aerobic PE performed five or
more days per week with complementary resistance exercises
performed 2 or 3 days per week is beneficial to human health (15,
16). In addition, aerobic PE has two training methods: voluntary
PE and forced PE. The former is a long-term self-development
and self-sustainment therapy (17). The experimenters created
voluntary animal models in an environment equipped with a
running wheel (18), maze, or climbing gear (17). The latter
refers to the voluntary use of mechanical assistance to achieve
and maintain an ideal state of motion (19). Treadmills (20) and
forced wheel-running (21) are often used in animal experiments
to simulate this mode of movement. Forced PE can precisely
control exercise intensity, and may be a better method to study
the effects caused by different PE intensities, although cannot
avoid individual differences among mice (22). A voluntary PE
environment encourages mice to engage in low-intensity PE,
such as free running; however, researchers are unable to control
the amount of exercise performed (22). Moreover, forced PE
seemed to produce more bromodeoxyuridine+ cells, although
it increased anxiety-like behaviors in the animals (23). For some
patients who are unable to perform voluntary PE, researchers first
chose mechanically-assisted forced PE (19, 24–26).

Increasing evidence in recent years has focused on the notion
that PE has positive effects on cognitive impairment, depression,
and chronic pain. The first chapter of this paper confirms this fact
using examples of some common neurodegenerative diseases that
are associated with cognitive impairment, such as Alzheimer’s
disease (AD) (27) and Parkinson’s Disease (PD) (28). In the
case of AD, we have presented several studies that provide
preclinical/clinical evidence (29, 30) supporting the recovery
effect of aerobic PE on cognitive impairment. Next, we focused
on depression. Depression is a common mood disorder that
affects ∼300 million people worldwide and was likely worsened
in recent years because of the coronavirus disease 2019 pandemic,
which exacerbated chronic stress related to work and school (31–
33). Currently, the approach to managing depression is singular,
and antidepressant drugs are typically used; however, this kind
of drug treatment is ineffective for some patients who have a
poor response and are likely to experience pharmacological side
effects (34). The beneficial effects of aerobic PE on depression
are clear (2, 35). Finally, we summarized the intervention effects
of aerobic PE on chronic pain. Chronic pain is a serious threat
to the health of the elderly, and has serious adverse effects on
their physical, psychological, and social functions and increases
the incidence of other complications in this population (36).
There is an abundance of evidence that aerobic PE is a viable
treatment option for chronic pain (37, 38), not only to improve
the pain symptoms, but also to alleviate comorbidities such as
sleep disturbances and poor memory (39, 40).

Chronic brain diseases may potentially share underlying
pathophysiological mechanisms. In the second part of this paper,
we discuss neuroinflammation (41–43), synaptic plasticity (43,
44), hippocampal volume, and neuronal apoptosis, which are

associated with the pathological occurrence and development
of common brain diseases, and clarify their relationships with
aerobic PE. A genome-wide association study showed a high
degree of genetic overlap between several mental disorders and
pointed out that different mental disorders are not separate
diseases but different overlapping phenotypes of the same clinical
spectrum (35). Therefore, the use of the appropriate exercise
types and intensities to intervene in a variety of brain diseases
provides certain theory basis.

The brain has always been regarded as the “commander”
of various organs, whereas bones have always been regarded
as the “protector” and “supporter” of the human body. There
seems to be no relationship, although recent studies have shown
bilateral functional dependence between the two (45, 46). It is
well-established that the brain influences bone regeneration and
homeostasis through “efferent nerves” (47–49), and evidence is
increasing that bones interfere with brain homeostasis through
“afferent nerves” (50, 51). Bones are the main operators of
exercise, and the beneficial effects of aerobic PE on bones have
been proven (52, 53). Therefore, in the third part of this paper,
we discuss several bone-derived proteins that may change brain
function, and link them to Piezo1, a popular mechanical ion
channel. Based on the above theories, this paper proposes a
hypothesis that aerobic PE interferes with brain diseases through
the bone-brain axis.

AEROBIC PE IMPROVES VARIOUS
FUNCTIONAL MODALITIES

Aerobic PE Improves Cognitive Function
It is well-known that cognitive function declines with age,
and the positive effects of aerobic PE on this decline have
been well-demonstrated in rodents (54). In animal models of
neurodegenerative diseases, including AD (55) and PD (56), PE
has been repeatedly shown to up-regulate adult hippocampal
neurogenesis and promote cognitive improvement in the aging
brain (57). Among humans, the powerful benefits of aerobic PE
are reflected decisively and vividly in the elderly (58). Compared
with the sedentary elderly population, older adults who engage in
PE have shown significant differences in bone mineral density,
muscle content, and especially cognitive function (59). For
instance, magnetic resonance imaging showed increased gray
and white matter volume in the anterior cingulate cortex after
6 months of aerobic PE (60min, 3 days per week) (60). In
addition, aerobic PE is also beneficial in preventing AD. Older
adults who were sedentary had a 53% higher prevalence than
older adults who were more active (hazard ratio = 0.477, 95%
confidence interval: 0.273–0.832) (61). The large, single-blinded,
multi-center study showed that 16 weeks of aerobic PE increased
oxygen volume (a marker of cardiorespiratory fitness) by 13%,
leading to improvements in cognitive and neuropsychiatric
symptoms (62). Similarly, aerobic PE reduces the progression of
PD. Studies have shown that 6 months of aerobic PE leads to
increased functional connectivity of the anterior putamen with
the sensorimotor cortex relative to the posterior putamen and
enhanced cognitive performance (63).
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From the examples above, aerobic PE requires long-term
adherence to show an advantage in terms of improving
cognitive function. However, there is evidence that aerobic PE
interventions do not improve symptoms in all age groups, such
as the 60–80-year-old population (64–66). These contradictory
results can be explained by the varying optimal types and
intensities of PE among different age groups (67). Therefore,
aerobic PE provides a low-cost and widely available intervention
for improving cognition in the elderly, especially patients
with AD.

Aerobic PE Can Fight Depression
Depression is a common mental disorder that threatens the
physical and mental health of people worldwide and is a major
cause of rising suicide rates in the 21st century (68). Doctors
mainly diagnose the symptoms of some patients according to
the Diagnostic and Statistical Manual of Mental Disorders (69)
and International Classification of Diseases (70). However, there
is little evidence on the mechanism of aerobic PE in regulating
depression. Previous studies have shown that stress increases
levels of kynurenic acid in the plasma and brains of mice (71)
and leads to inhibited serotonin synthesis; mice could reduce
the inevitable sense of helplessness caused by stress by reducing
plasma kynurenic acid through 4 weeks of wheel running (71).
Compared with the trained mice, mice without wheel running
showed a stronger sense of helplessness in the tail suspension,
escape, sugar water preference, and forced swimming tests (72).
Notably, a similar phenomenon has been observed in human
studies. Trivedi et al., based on clinical studies, suggested that
12 weeks of high-intensity exercise (70–85% maximum heart
rate) was beneficial in reducing depression levels according to the
Hamilton Depression Scale (P < 0.001) (73, 74).

Current research proves that aerobic PE increases the
proportion of gray matter volume in the brain, improves
the spatial structure of white matter, and leads to greater
functional connectivity in the brain regions associated with
major depression (75); its therapeutic effect was similar to that
of antidepressants (76). The World Health Organization and
National Institute for Health and Care Excellence guidelines
recommend that for patients with mild to moderate depression,
moderate aerobic PE should be performed in addition to
standard drug treatment.

Aerobic PE in the Treatment of Chronic
Pain
Recent statistics show that chronic pain affects 1.5 billion
people worldwide, and that these numbers are steadily rising
(77). Chronic pain is often accompanied by spontaneously
progressive symptoms, including depression, anxiety, sleep
disorders, intellectual disability, and anorexia, resulting in
decreased quality of life for patients (78, 79). The 2021
International Association for the Study of Pain meta-analysis
of 460 patients used a quality effects model. The Physiotherapy
Evidence Database (PEDro) scale showed that the combination
of pain neuroscience education and 12 weeks exercise had
greater short-term improvements in chronic musculoskeletal

pain severity, disability, kinesiophobia, and pain catastrophizing
compared with those of exercise alone (80).

The core mechanism of aerobic PE in chronic pain is to
inhibit local and systemic inflammation and prevent central
sensitization (81–83). On the one hand, prolonged sitting leads
to an imbalance in the proportion of cytokines in local and
systemic circulation, resulting in a hyperinflammatory state that
contributes to the onset and maintenance of chronic pain (84).
Aerobic PE can reduce systemic inflammation and presence of
proinflammatory cytokines and up regulate anti-inflammatory
cytokines, allowing the neuroimmune signals in the central
nervous system to be normalized. Chronic pain can be reduced,
or hyperalgesia can be prevented and reversed (85, 86). On the
other hand, in healthy people, aerobic PE releases endogenous
opioids and acts as a pain reliever, an effect called “exercise-
induced analgesia” (86, 87). Unfortunately, this mechanism does
not apply to all patients with chronic diseases, as exercise-induced
analgesia may be insensitive or even missing in some chronic
pain diseases, such as fibromyalgia and chronic fatigue syndrome
(88, 89). Furthermore, chronic pain is caused by genetics (90),
stress, or sedentary (91) imbalances in central neurotransmitters
such as serotonin, dopamine, and norepinephrine, whereas PE
triggers a stress response in the neuroendocrine system, thereby
changing the balance of these neurotransmitters (92).

AEROBIC PE MAINTAINS BRAIN
HOMEOSTASIS THROUGH REGULATORY
MECHANISMS

Some studies have shown that exercise can reduce symptoms
in people with brain damage (93–95). Unfortunately, while
the benefits of exercise on brain and cognitive function
are well-known, the mechanisms behind it not always been
clear. Various chronic brain diseases have the same potential
mechanisms. Here, we summarized several mechanisms of
aerobic PE in alleviating brain diseases, including anti-
inflammatory mechanisms, synaptic plasticity, hippocampal
volume, and the apoptosis pathway of hippocampal neurons.

Effect of Aerobic PE on Brain Inflammation
Through Anti-inflammatory Mechanisms
Microglia is the monitor and regulator of neuroinflammation
(96). When the body endures a pathological injury, the microglia
can be activated by pro-inflammatory factors (97) to mediate
downstream signaling pathways that trigger inflammatory
reactions and aggravate inflammation (98), or inhibited by
anti-inflammatory factors that restore the body to homeostasis
(99–101). Exercise can regulate microglial activity and inhibit
neuroinflammation by increasing anti-inflammatory factors
(102, 103). There are numerous examples that support this idea,
such as animal studies that tested interleukin-6 (IL-6) (103, 104),
interleukin-10 (IL-10) (105, 106), and CD200-CD200R (107, 108)
levels before and after exercise; clinical trial data suggest the same
thing (109, 110).

In addition to the anti-inflammatory factors mentioned above,
Prof. Tony Wyss-Coray and his team found that the blood of
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mice produced the protein clusterin after one month of running
on the wheel, which inhibited brain inflammation and promoted
a large increase in the number of neurons and other cells, thereby
improving cognitive impairment (111).

Effects of Aerobic PE on Synaptic
Plasticity Through Neurotrophic Factors
Synaptic plasticity refers to the activity-dependent change in
neuronal connection strength (112). Long-term potentiation is
a persistent, activity-dependent increase in synaptic strength that
occurs in response to repeated synaptic stimuli and is considered
a common cellular manifestation of learning and memory. Some
studies have confirmed that rats and mice undergoing running
programs showed increased long-term potentiation at synapses
in the hippocampus (68, 113), however, this has rarely been
reported in clinical trials.

Aerobic exercise enhances synaptic plasticity in a variety of
ways (114–116). For example, increased neurotrophic factors
such as brain-derived neurotrophic factor (BDNF) and insulin-
like growth factor 1 (IGF-1) induced by exercise training
play an important role in promoting synaptic plasticity.
BDNF can induce neurogenesis in the dentate gyrus of the
hippocampus (117) and increase synaptic plasticity through
calcium and calmodulin dependent kinase-mitogen-activated
protein kinase activation mediated by tropomyosin receptor
kinase B and N-methyl-D-aspartate receptors, followed by cAMP
response element-binding protein activation (117). However,
when tropomyosin receptor kinase B of BDNF was blocked
during exercise, cognitive performance was impaired, and
synaptic proteins in the hippocampus were reduced (118). In
sedentary rats, upregulation of BDNF had a positive effect on the
hippocampus (118). Therefore, BDNF plays an important role in
synaptic plasticity (119). Similarly, intra hippocampal injection
of IGF-1 functional blockers in mice demonstrated that IGF-
1 signaling plays an important role in the effect of exercise on
hippocampal dependent learning and plasticity (120).

Aerobic PE Intervenes in Brain Diseases by
Preventing Hippocampal Atrophy
Hippocampal volume is a vital indicator of brain health that
decreases with aging and neurological diseases, such as severe
depression (121) and schizophrenia (122). The mechanisms
involve a variety of molecular or cellular structures (123). Animal
and clinical studies have consistently demonstrated that PE can
effectively alleviate hippocampal atrophy (124–126). Moreover,
a detailed study showed that in people with cognitive and
mental health disorders (including younger and older people),
proper aerobic PE for more than 6 months had a positive
effect on hippocampal volume even in elderly people who are
vulnerable to hippocampal atrophy (124). Participants returned
to baseline levels after 6 weeks of inactivity, indicating that long-
term aerobic PE is important for maintaining exercise-induced
changes in hippocampal volume (127). In addition, although
BDNF expression induced by aerobic PE is positively correlated
with changes in hippocampal volume, there is no convincing
evidence of the relationship between them (128, 129).

Aerobic PE Intervenes in Brain Diseases by
Inhibiting Hippocampal Neuronal
Apoptosis
Aerobic PE has two effects on hippocampal neuronal apoptosis.
First, moderate exercise slows down hippocampal neuron
injury caused by stress and inhibits neuronal apoptosis. Some
studies have shown that the exocrine body derived from
circulating endothelial progenitor cells can protect endothelial
cells from hypoxia, and that moderate aerobic PE can enhance
its function (130). C57BL/6 mice received moderate treadmill
exercise (10 m/min) for 4 weeks following middle cerebral
artery occlusion stroke. Compared with the control group, the
apoptosis rate of trained mice decreased by 40% (131). In
a D-galactose-induced aging rat model, swimming reportedly
reduced Fas- and mitochondrial-dependent apoptotic pathways,
significantly inhibited inflammatory signal activity, and also
enhanced hippocampal survival pathways. Therefore, swimming
can reduce the brain apoptosis and inflammatory signal activity
induced by aging (132).

Excessive exercise can lead to cell damage and pathological
apoptosis in multiple tissues and organs of the body. Besides
skeletal muscle and cardiomyocytes, excessive exercise-induced
injury and apoptosis were also found in hepatocytes, renal
tubular cells, and lymphocytes in non-exercise systems (133).
Currently, the research on nerve cell injury and apoptosis
caused by excessive exercise is still in its infancy, mainly in
the hippocampus. It can be observed that excessive exercise,
like hunger, trauma, and other stressors, is a type of stress for
the human body. Although moderate exercise causes benign
stress that is beneficial to the human body, excessive exercise
can lead to excessive stress, which causes the arrangement
of hippocampal neurons to become loose and disordered
with reduced communication and nuclear pyknosis, resulting
in multi-system damage (134, 135) that can even lead to
overtraining syndrome (136).

THE MOLECULAR MECHANISM OF
AEROBIC PE REGULATING THE BRAIN
THROUGH THE BONE-BRAIN AXIS

Bone and skeletal muscle are the two major organs mainly
affected by exercise in the body; bones are regarded as scaffolds
that support and protect various organs in the body (137).
Muscles transmit and receive the mechanical force caused
by exercise and are therefore also considered an endocrine
organ (138). Piezo1 in the Piezo family is a mechanically
activated ion channel (139) that acts as a mechanical sensor
in osteoblasts and osteocytes. It is beneficial to the formation
of bone trabeculae in the process of endochondral ossification
and reportedly increased the bone thickness of mice (140,
141) and mediated the Piezo1/Yes-associated protein1 (YAP1)-
collagen pathway to indirectly regulate the bone resorption
activity of osteoclasts, thus affecting bone metabolism (141).
Moreover, mechanical unloading can inhibit the expression of
piezo and slow down osteoblast and bone formation. A previous
study found that Piezo1 promoted the expression of Wnt1 in
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osteocytes by activating YAP1 and transcriptional coactivator
with PDZ-binding motif (TAZ) (142). Piezo1 activates the
Wnt1 signal pathway in osteocytes and leads to increased
bone formation and decreased bone resorption (142). Recently,
Sasaki et al. found that Piezo1, a mechanically-sensitive ion
channel, mediated the phosphorylation of protein kinase B
in osteocytes and down-regulated the expression of sclerosing
proteins (143). Because sclerostin leads to bone mass loss, Piezo1
in osteocytes inhibits the expression of sclerosis proteins and
promotes osteoblast formation by activating the protein kinase
B signal pathway. Bone tissue regulates brain function mainly
through osteoblast secretion of a variety of proteins (Table 1),
including osteocalcin (OCN), lipid delivery protein-2 (LCN2),
and osteopontin (OPN); cells such as bone-derived mesenchymal
stem cells, hematopoietic stem cells, and microglia-like cells are
also provided (144).

OCN
OCN, also known as bone γ-carboxyl glutamate protein, is
uniquely secreted by osteoblasts (145). It plays an important
role in the regulation of bone calcium metabolism and is a new
biochemical marker in the study of bone metabolism, which has
important value in the diagnosis of osteoporosis syndrome (146)
and other diseases such as abnormal calcium metabolism (144,
147). In the peripheral nervous system, OCN binds to G protein-
coupled receptor family C group 6 (Gprc6a), and regulates
hormone levels, including insulin and testosterone, to promote
skeletal muscle adaptation to PE. In the brain, OCN binds to
G protein-coupled receptor 158 (Gpr158) and can cross the
blood-brain barrier (BBB) to regulate transcription factors in the
ventral tegmental area (VTA), dorsal raphe nucleus, middle raphe
nucleus, and hippocampal CA3 neurons, thereby increasing the
release of serotonin, dopamine, and norepinephrine, inhibiting
the release of γ-aminobutyric acid (148, 149), and reducing
depression and anxiety-like behaviors. Gpr158 was the first OCN
receptor found in the brain. It is present in the somatosensory,
motor, and auditory areas of the cortex, as well as in the piriform
cortex, hippocampus, post splenic area, and ventral tegmental
area. Significant decreases in OCN levels in elderly mice with
cognitive impairment and patients with depression have been
reported (150), although injection of exogenous OCN can reverse
these defects (148).

LCN2
LCN2 is another hormone known as a neutrophil gelatinase-
associated lipid carrier protein, which is a secretory glycoprotein

(151). LCN2 was previously considered to be a lipid-derived
factor (152), however the expression profile showed that the
expression of LCN2 in bone was 10 times higher than that in
adipose or other tissues; therefore, it is also a bone-derived factor
(50). Similar to OCN, LCN2 acts directly on β cells to promote
their proliferation as well as insulin secretion (153). Recently,
researchers at Columbia University Medical Center found that
LCN2 proteins secreted by osteocytes not only induce insulin
secretion, but also cross the BBB and activate the anorexigenic
(appetite-suppressing) pathway by binding to melanocortin 4
receptors in the hypothalamus, thereby controlling body weight,
fat content, and insulin sensitivity (50). LCN2 also enhances
neuronal motor and inflammatory responses by activating Janus
kinase 2-activator of transcription-3 crosstalk (154) and nuclear
factor kappa B pathways (155) to up-regulate the expression
of chemokine (C-X-C motif) ligand 10 (156). LCN2 levels
in brain tissue and astrocyte cultures of rats with ischemic
stroke and astrocytes treated with standardized hypoxia were
reportedly significantly increased, while BBB permeability,
neurological impairment, cerebral infarction, and neutrophil
infiltration were decreased in LCN2-deficient rats (157, 158).
Further studies found that LCN2 promotes neuroinflammation
by activating neutrophil infiltration, microglia, and astrocytes
and inducing proinflammatory cytokines and chemokines (159–
161). These results suggest that LCN2, neuropathology, and PE
are inextricably linked.

OPN
OPN is a secretory stromal cell protein found in bones (162).
It was subsequently proven to be expressed in epithelial lining,
skeletal muscle, and breast and brain tissue (163, 164). OPN plays
an important role in tissue remodeling, immunomodulation,
and biomineralization by binding to diverse receptors, such
as integrins and CD44 (165–167). In bone tissue, OPN can
anchor osteoclasts to the bone mineral matrix to promote bone
resorption (167–169); therefore, patients with high serum OPN
concentrations have low bone mineral densities, whereas patients
with low serum OPN concentrations have high bone mineral
densities (170). In the brain, OPN forms different fragments
after protease cleavage. These fragments can bind to different
receptors (CD44 and integrin) to activate P42/44 mitogen-
activated protein kinase and phosphoinositide 3 kinase pathways
that have a neuroprotective function (171). OPN can also activate
c-Jun N-terminal kinase and extracellular regulated protein
kinase pathways to cause neuroinflammation by up-regulating
proinflammatory gene expression (172, 173). In addition, OPN

TABLE 1 | Bone-derived proteins involved in brain disorders.

Proteins Function

OCN Regulates insulin secretion and testosterone production; promotes muscle adaptation to exercise; increases the release of serotonin, dopamine, and

norepinephrine; and inhibits the release of γ-aminobutyric acid, thereby reducing depression and anxiety-like behaviors.

LCN2 Increases neuroinflammation, decreases amyloid-β plaque clearance, and decreases dehydrogenase activity and survival rate of wild-type astrocytes.

OPN Reduces amyloid-β plaque and malnourished neurites; increases angiogenesis and differentiation into functional dopaminergic neurons; and decreases

microglial activation and loss of tyrosine hydroxylase positive neurons.

OCN, osteocalcin; LCN2, lipid delivery protein-2; OPN, osteopontin.
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can act as a pro-inflammatory cytokine to recruit inflammatory
cells to the lesion site and cause nervous system disease (174,
175). Therefore, OPN is an important factor in regulating bone
mass and triggering neuroinflammation, and it is particularly
crucial to explore the secretion mechanisms of OPN regulated by
aerobic PE.

CONCLUSION

Human and animal studies have shown that aerobic PE
has significant effects on many aspects of brain function,
including preventing and improving cognitive function,
depression, and chronic pain. In this paper (Figure 1), we
discussed four regulatory mechanisms of aerobic PE in
the intervention of neurological diseases, including anti-
inflammatory pathways related to microglia, promotion
of hippocampal synaptic plasticity through a variety of
neurotrophic factors, and prevention of hippocampal
atrophy and neuronal apoptosis. Furthermore, we have
introduced a novel mechanism of bone-brain axis
regulation (Figure 2), although its research is still in
its infancy.

An appropriate amount of aerobic PE activates beneficial
mechanisms in the body. Effective aerobic PE causes tissues to
release IL-1α to activate ion channel Piezo1 (176) and promotes
osteoblast formation through integrin β1 and integrin-focal
adhesion kinase pathways (177). As previously mentioned, bone
tissue regulates inflammation mainly by secreting a variety of
factors related to neuroinflammation, including OCN (147) and
OPN (170), and promotes subdivided secretion of cytokines,
such as bone-derived mesenchymal stem, hematopoietic stem,
and microglia-like cells (178). Therefore, regulatory factors from
bone can pass through the BBB and regulate transcription factors
in neurons in various regions of the brain, thereby increasing
the release of related hormones and reducing the occurrence of
neuroinflammation. We can conclude that aerobic PE activates
Piezo1 through skeletal muscle pressure, promotes osteoblasts to
secrete bone-derived proteins, and interferes with related nerve
inflammation through the bone-brain axis. However, exercise
intensity, time, and frequency are critical to the effects of exercise;
painful exercise can aggravate nerve inflammation. Furthermore,
acute high-intensity exercise with higher than normal duration or
without physical adaptation level induces oxidative stress (179)
and muscle injury (180).

FIGURE 1 | Summary of the review. (1) We listed animal and clinical experiments on the intervention of aerobic PE in brain dysfunction, and concluded that aerobic

PE can improve cognition, fight depression, and relieve chronic pain. (2) Aerobic PE interferes with brain disorder through four common mechanisms:

anti-inflammatory mechanisms, synaptic plasticity, hippocampal atrophy, and hippocampal neuronal apoptosis. (3) We propose the hypothesis that aerobic PE

interferes with brain disease through the bone-brain axis.

Frontiers in Neurology | www.frontiersin.org 6 May 2022 | Volume 13 | Article 862078

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Jia et al. Aerobic PE Influences Brain Dysfunction

FIGURE 2 | Mechanisms of aerobic PE intervening in brain dysfunction through bone-brain axis. (1) Piezo1 is activated by aerobic PE, which promotes osteoblast

growth and secretion of bone- derived proteins. (2) Bone-derived proteins are transported in blood and can cross the blood-brain barrier. (3) Bone-derived proteins

bind to specific receptors on neurons to function.

In conclusion, it is necessary to establish different exercise
intensities, times, frequencies, and even exercise methods for
different backgrounds on an individual basis. Although the study
carried a large workload, it can have a profound impact as a
non-medical intervention.
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