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Abstract

Pedestrians with low vision are at risk of injury when hazards, such as steps and posts, have

low visibility. This study aims at validating the software implementation of a computational

model that estimates hazard visibility. The model takes as input a photorealistic 3D render-

ing of an architectural space, and the acuity and contrast sensitivity of a low-vision observer,

and outputs estimates of the visibility of hazards in the space. Our experiments explored

whether the model could predict the likelihood of observers correctly identifying hazards. In

Experiment 1, we tested fourteen normally sighted subjects with blur goggles that simulated

moderate or severe acuity reduction. In Experiment 2, we tested ten low-vision subjects with

moderate to severe acuity reduction. Subjects viewed computer-generated images of a

walkway containing five possible targets ahead—big step-up, big step-down, small step-up,

small step-down, or a flat continuation. Each subject saw these stimuli with variations of

lighting and viewpoint in 250 trials and indicated which of the five targets was present. The

model generated a score on each trial that estimated the visibility of the target. If the model

is valid, the scores should be predictive of how accurately the subjects identified the targets.

We used logistic regression to examine the correlation between the scores and the partici-

pants’ responses. For twelve of the fourteen normally sighted subjects with artificial acuity

reduction and all ten low-vision subjects, there was a significant relationship between the

scores and the participant’s probability of correct identification. These experiments provide

evidence for the validity of a computational model that predicts the visibility of architectural

hazards. It lays the foundation for future validation of this hazard evaluation tool, which may

be useful for architects to assess the visibility of hazards in their designs, thereby enhancing

the accessibility of spaces for people with low vision.

Introduction

The accessibility of architecture determines how easily and safely its users can travel through

its space and use its functional features. Visual accessibility determines whether vision can be
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used effectively and safely for mobility in an architectural space [1]. Designing visually accessi-

ble spaces for people with low vision is an objective with great significance. In the US, there

were approximately 5.7 million people with uncorrectable low vision in 2017, and the number

is expected to grow to 9.6 million by 2050 [2]. Worldwide, the number of people with moder-

ate to severe visual impairment that fit the definition of low vision is estimated to be 217 mil-

lion in 2015, and the number is predicted to reach 588 million by the year 2050 [3].

Increasing the visual accessibility of spaces for people with low vision is important for help-

ing them maintain mobility and independence, hence improving their quality of life. To

achieve this goal, it would be helpful to provide architects with tools to evaluate the visual

accessibility of a space in the early stage of design, before it is brought to construction. The cur-

rent report comes from an interdisciplinary project named Designing Visually Accessible

Spaces (DeVAS). A major goal of the project is to develop a software tool for architects to

assess hazard visibility in their designs.

The hazards in architecture are obstacles that could impede traveling through a plausible

path. Obstacles can pose safety issues, such as tripping and falling, or bumping into things.

Features like steps, stairs, benches and posts could be considered as hazards if not visible to

pedestrians. The software tool developed by the DeVAS project estimates and visualizes hazard

visibility for specified levels of reduced visual acuity (VA) and contrast sensitivity (CS). The

visibility can be predicted by the available luminance contrast at the points in an image that

correspond to actual depth and orientation changes of surfaces in the scene [4].

This software differs in two fundamental ways from existing practice in architectural

design. First, the software employs principles of luminance-based design rather than illumina-
tion-based design. Typically, architecture uses illumination-based design in which lighting

standards are stipulated in terms of overall light flux falling on surfaces measured in lux. Illu-

mination-based design ensures that there is sufficient lighting. But visibility of a hazard

depends on variations in luminance across the scene: more specifically, on the viewing location

of the observer, the angular size of the hazard, its contrast with the background, and also the

vision status of the observer. We refer to design that takes these factors into account as Lumi-

nance-based design. Our approach is novel in employing luminance-based design. Second,

our approach explicitly takes reduced vision (low vision) into account in evaluating the visibil-

ity of architectural hazards. It does so by including information about the acuity and contrast

sensitivity of observers. No existing software used by architects or lighting designers includes

explicit reference to the vision status of people with low vision. The goal of this paper is to

describe empirical studies aimed at validating this novel software approach to architectural

design. Our experiments compared the accuracy of human observers with reduced acuity and

contrast sensitivity in recognizing step hazards ahead with the predictions of the software.

The software is described by Thompson et al. [5] and available at https://github.com/visual-

accessibility/DeVAS-filter. In brief, the software takes the following inputs: a 3D computer-

aided design (CAD) model and light sources of an architectural space, the vision parameters of

a sample human observer (VA and CS) and the observer’s viewpoint in the space. The work-

flow of the software is illustrated in Fig 1.

The first step is to render a 3D simulation of the space from the desired viewpoint (Fig 1A).

Because the visibility of a hazard from the user’s viewpoint depends on its visual angular size

and luminance contrast, we need to use a photometrically accurate method to render a per-

spective image from the 3D model. We used the Radiance rendering software for this purpose

[6]. The rendered high dynamic range image contains accurate luminance values of the

designed space under the specified light sources.

Essential information includes the observer’s vision status and viewpoint. In principle,

inclusive design aims at providing accommodation for the widest possible range of vision
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conditions. In practice, a designer may wish to specify values of VA and CS and viewing dis-

tance to test a certain hazard’s visibility. For example, is a step visible at 10 feet for a person

with VA of 20/400 or better? The next step in the computational flow is to represent the

reduced VA and CS of a potential low-vision observer. Chung & Legge [7] have shown that for

many people with low vision, the contrast sensitivity function (CSF) has the same shape as the

CSF for normal vision but shifted leftward on the log spatial-frequency axis and downward on

the log contrast-sensitivity axis.

With VA and CS specified, a CSF is generated, which gives contrast threshold as a function

of spatial frequency. The software uses the CSF to threshold the image with a non-linear filter

so that only the visual information above the perceptual threshold of the sample low-vision

pedestrian will be kept [8, 9]. An example of a filtered image to simulate acuity VA of 1.55 log-

MAR and CS of 0.6 Pelli-Robson is presented in Fig 1B.

Fig 1. Workflow of the DeVAS software. A: the original image of a step rendered by Radiance software. B: image filtered to simulate Severe low vision

(VA 1.55 logMAR, CS 0.6 Pelli-Robson). C: luminance boundaries extracted from the filtered image. D: Pixels representing Geometric edges inferred

from 3D data map of the space. E: Estimation of hazard visibility, based on a match between the luminance contours in C and the geometrical edges in

D. Color coding represents the closeness of the match, ranging from red (poor match) to green (good match). F: A manually defined Region of Interest

(ROI), G: The conjunction of E and F which specifies the hazard region of primary focus, which is used to generate the final Hazard Visibility Score

(HVS).

https://doi.org/10.1371/journal.pone.0260267.g001
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The next step in the software flow is to extract luminance boundaries from the filtered

image, using Canny edge detection [10]. These boundaries mark pixel locations in the image

with high intensity change, and which represent edges likely visible to the low-vision pedes-

trian (panel C).

The software uses the 3D CAD representation of the architecture to locate the geometrical

edges of each object in the image in terms of pixel coordinates (Fig 1D). Visibility of the geo-

metrical edges is estimated by the adjacency (match) between a geometrical edge and a lumi-

nance feature. For each pixel on the geometrical edges, we calculate how close it is (in number

of pixels) to its nearest neighbor on the luminance boundaries. We use the separation as an

indicator of visibility. The pixel separation is transformed to a 0–1 score (See formula in S1

Appendix), where a higher score means smaller separation and higher visibility, and lower

score means larger separation and a lower visibility. In Fig 1E, a red-green color code is used

where red means low visibility (more dangerous) and green means high visibility (safer).

The software user can define a Region of Interest (ROI) so that the software can assess the

visibility of target features within the ROI, instead of everything in the image (Fig 1F). The

average score across all pixels on the geometrical edges in the ROI is the feature’s Hazard Visi-

bility Score (HVS) (Fig 1G).

The HVS measure of visibility is based on matching low-level luminance cues in an image

to geometrical features. However, there are two major reasons why this score might not corre-

spond to perceptual judgments made by low-vision observers. First, the method represents

low vision only by including measures of clinical VA and CS in the filter. Variability in low-

vision performance is likely to depend on additional factors including characteristics of visual-

field loss and diagnosis-specific factors. Second, human observers are likely to use other infor-

mation in addition to contrast features of stimuli in making judgments about hazard identifi-

cation. Top-down information, such as prior expectations and contextual cues are likely to

play a role.

We conducted two experiments to determine if our Hazard Visibility Score (HVS) has pre-

dictive power on judgments made by human observers. In Experiment 1, normally sighted

subjects with artificially reduced acuity were tested with Radiance-generated images on a cali-

brated computer display. They were asked to distinguish between large and small stepping haz-

ards under conditions of varying lighting and viewpoint. For each test image and subject, we

used the DeVAS software to generate an HVS. We assessed the validity of the HVS by testing

whether the performance accuracy of our subjects was significantly related to the HVS. To link

the continuous predictor (HVS) with binary responses (correct or incorrect identification), we

used logistic regression for the analysis.

Previous studies with normally sighted subjects wearing artificial acuity reduction have

shown similar patterns of dependence on environmental variables as studies with low-vision

subjects with comparable acuity [1, 11, 12]. For this reason, we conducted our first experiment

with simulated visual impairment to determine whether our task requirements and stimuli

were sufficiently challenging for a range of reduced acuities and contrast sensitivities, and to

ensure a sufficient spread in HVS and performance scores to avoid floor and ceiling effects.

When the first experiment demonstrated the viability of the protocol, we conducted Experi-

ment 2 with ten low-vision subjects using the same stimulus set.

In summary, the HVS model predicts the visibility of architectural features based on their

contrast and spatial-frequency content, taking the contrast sensitivity and acuity of the

observer into account. The experiments described in this paper test the idea that visibility,

computed in this way, plays a role in the recognition of architectural hazards. Our experimen-

tal results support this view.
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Methods

Subjects

The experiment followed a protocol approved by the University of Minnesota IRB. Each sub-

ject signed an IRB-approved consent form.

In Experiment 1, there were 22 normally sighted adults (10 males and 12 females) recruited

from the University of Minnesota at Twin Cities campus. The mean age of the subjects was

21.3 years, with a standard deviation of 1.29 years. One subject dropped out in the middle of

the experiment, so their data were discarded.

The remaining 21 subjects were assigned to three conditions: Normal (no blur), Moderate

blur, and Severe blur. Each condition contained 7 subjects. We used the Lighthouse Distance

Visual Acuity chart to measure the subject’s acuity (VA) and the Pelli-Robson chart (1-meter

viewing distance) to measure contrast sensitivity (CS).

The no-blur group did the experiment with their corrected to normal vision. Their correct

identification rates were used to ensure that the stimuli were reliably visible to normally

sighted viewers. We used diffusive films to create two levels of artificial acuity reduction,

termed Moderate and Severe. For the Moderate group, we used 2 layers of Rosco Roscolux 132

sheet gel to reduce the mean VA to 1.2 logMAR (SD 0.085) and mean CS to 0.68 (SD 0.1). For

the Severe group, we used 1 layer of Rosco Roscolux 140 sheet gel and the mean VA was 1.62

logMAR (SD = 0.028), mean CS 0.6 (SD 0.019). For the Severe group, the Pelli-Robson chart

was inappropriate to measure their contrast sensitivity because the chart’s angular print size at

the 1-meter viewing distance is too small for the reduced acuity. We used a formula derived

from past data to infer their contrast sensitivity from acuity [13]. The formula is:

CS ¼ 1:72 � 0:69 � VA;R2 ¼ 0:51:

In Experiment 2, the subjects were 10 adults (4 females, 6 males) with diverse forms of low

vision. Subject age, gender, VA, CS, and diagnosis are shown in Table 1. We tested one addi-

tional pilot low-vision subject to evaluate the experimental protocol. Their data was not ana-

lyzed. For Subjects 8 and 9, whose VA was worse than 1.5 logMAR, we used the formula

mentioned above to estimate CS.

Our primary consideration in recruiting low-vision subjects was to secure a range of VA

and CS in the Moderate to Severe range, without regard to diagnostic categories. Prior to

recruiting, we verified that VA and CS parameters in this range would yield a widely distrib-

uted spread of HVS for our set of test images. Subjects with milder low vision would likely

Table 1. Low-vision subject information.

Subj No. Age Gender Acuity Contrast Sensitivity Diagnosis

LV1 66 F 0.8 1.65 macular hole

LV2 40 F 1.28 0.6 Aniridia

LV3 31 M 1.14 0.3 retinitis pigmentosa

LV4 54 M 1.16 1.05 Aniridia

LV5 21 F 1.5 0.3 aniridia, glaucoma, nystagmus

LV6 58 M 1.36 0.8 congenital cataract

LV7 38 F 1.44 0.2 retinitis pigmentosa

LV8 60 F 1.54 0.65 familial vitreo-retinopathy, cataract

LV9 56 M 1.66 0.57 optic nerve atrophy

LV10 45 F 1.02 1.55 glaucoma, congenital cataract, degenerative myopia

https://doi.org/10.1371/journal.pone.0260267.t001
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have had corresponding HVS scores near ceiling, weakening our validation test. Similarly, sub-

jects with more severe low vision would likely have shown floor effects.

Stimuli

The stimuli in both experiments were computer-generated images showing a 30 feet long

walkway with one of the five possible targets: big step-up, small step-up, big step-down, small

step-down, and flat. Big steps are seven-inch high and small steps are one-inch high. The tar-

gets are the same width as the walkway, which is four feet. We used steps as our targets because

they are a common and potentially dangerous type of hazard for people with low vision. We

matched the reflectance of ground materials so that the luminance on each part of the image

would be in accordance with the luminance of corresponding places in the original classroom.

Lighting and viewpoint each had five variations. Fig 2 shows examples of the five targets, five

lighting arrangements, and five viewpoints. These stimulus images are combined with two arti-

ficial blur levels (Moderate 1.2 logMAR and Severe 1.6 logMAR) to generate HVS values for

experimental trials. Fig 3 shows in each blur condition, how many trials fall in each bin of

width 0.1 spanning the HVS range from zero to one.

Radiance software was used to render the test images from accurate 3D representations of a

space. The images show an architectural space based on a campus classroom.

Fig 2. Geometry, lighting, and viewpoint variation of stimuli. The top row used the lighting setting “spotlight 1” and viewpoint setting “center” to

demonstrate the five target types: flat, big step-up big step-down, small step-up, and small step-down. The middle row used big step-down and center

viewpoint to show the five lighting variations: overhead, far panel, near panel, spotlight 1, and spotlight 2. The bottom row used big step-down and

spotlight 1 to show the five viewpoints: center, pivot left, pivot right, rotate down, and rotate up.

https://doi.org/10.1371/journal.pone.0260267.g002
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Fig 3. Distribution of trials in ten HVS bins, each covering 0.1 width in a zero to one range. The upper panel shows

the trial distribution for Moderate blur (1.2 logMAR) and the lower panel shows the distribution for Severe blur (1.6

logMAR).

https://doi.org/10.1371/journal.pone.0260267.g003
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Apparatus

We used an NEC E243WMi-BK 16:9, 24” widescreen monitor. The stimuli were presented

with Matlab PsychToolbox [14]. The actual room and corresponding Radiance rendering have

a larger dynamic range than the monitor. However, previous work [15] has shown that cali-

brating the screen to match the ratio of the luminance across real boundaries provides screen

displays matching the luminance contrast in the real classroom. The rendered images were

created with a virtual viewpoint ten feet from the target steps. The 7-inch step height viewed

from 10 ft subtended approximately 3.3º and the one-inch step height subtended approxi-

mately 0.45º. The step width subtended 23º. To match the visual angles, the participant sat at

32 inches away from the screen. We measured the eye-to-screen distance once before each

experiment started.

Procedure

For each subject, we measured acuity and contrast sensitivity with their normal correction,

and for the normally sighted subjects, with the blur goggles they were assigned to wear. The

resulting estimates of reduced VA and CS were used as inputs to the software to generate HVS

values for each image and each subject.

In pilot testing, we discovered that subjects with low vision had more difficulty than sighted

subjects to understand the context of our stimuli. To ensure the subjects understood the ren-

dered room layout, we made a small tactile model out of Legos for the low-vision subjects to

touch to help them understand the spatial layout of the simulated testing space. We also

showed and explained sample images to them and provided them with practice trials. We

made sure they were familiar with the five targets, and the variations in lighting and viewpoint.

Each trial consisted of the presentation of a stimulus image followed by the subject’s

response. For subjects with artificially reduced acuity, the presentation time was one second. A

pilot experiment with a low-vision subject, whose data was not used in analysis, indicated that

low-vision subjects would sometimes require more time to scan the image and make a deci-

sion. Therefore, with the low vision subjects, the presentation time was two seconds. Subjects

made two responses on each trial. First, they indicated which of the five targets was present

(five-alternative forced choice). They then gave a confidence rating on a one-to-five scale, with

one meaning pure guessing, and five meaning highly confident. Results from the confidence

ratings will not be reported in this article. The experimenter registered answers through the

keyboard. The subject started the next trial at their own pace by clicking the mouse.

There were 250 (5 targets� 5 lighting � 5 viewing angle � 2 repetitions) trials in total. Each

subject viewed and responded to all 250 images. The stimuli were presented in a randomized

order. Responses were not timed. The whole procedure took from one to two hours. Each par-

ticipant completed all the trials within one session.

Data analysis

The hazard visibility score (HVS) was calculated for each image and each subject, taking the

subject’s VA and CS as parameters in the filter component of the DeVAS software workflow.

The HVS score ranges from zero (no visibility) to one (maximum visibility) and was computed

with the formula given in S1 Appendix. We used the HVS values of stimulus images as the

independent variable and the subject’s correct or incorrect response for each trial as the depen-

dent variable. To assess the association between recognition accuracy and HVS, we fitted a

logistic regression with aggregated data from all subjects in a group, as well as for each subject

individually. We used logistic regression because it assesses the relationship between a contin-

uous predictor (HVS score) and a binary outcome (correct or incorrect response). This was a
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convenient method for our design in which there were many trials with different HVS values

across subjects and conditions, each scored with a binary outcome (correct or incorrect identi-

fication). The model can be described by the following equation:

Ln
P

1 � P

� �

¼ A � Xþ B ð1Þ

Where X refers to the HVS score and P represents probability of a correct response.

For purposes of plotting in Figs 4, 6–8, we rearrange the equation to plot P vs. X:

P ¼
expA�XþB

expA�XþB þ 1
ð2Þ

The fitted regression model contains two parameters, a slope (A) and an intercept (B). The

slope, A, is an indicator of the relationship between the predictor and the odds (P/(1-P)) of the

event being predicted. If the slope is significantly larger than zero (p value less than .05), there is

a statistically significant positive relationship between proportion correct and the HVS value.

In logistic regression models, the predictive power of HVS can be assessed by both the mag-

nitude of slope and the goodness-of-fit metric. The greater is the slope, the stronger is the cor-

relation between identification accuracy and the HVS score. The goodness-of-fit is measured

by comparing the deviance of an intercept-only null model and the fitted model with HVS

added as predictor. Deviance measures the difference between each dependent variable obser-

vation and the predicted value of the model. The difference between the null deviance and the

residual deviance represents how much predictive power the independent variable adds to the

model. To make cross-subject comparisons, we use the reduced deviance ratio to quantify

goodness-of-fit, which is the ratio of the difference between null and residual deviance divided

by the null deviance. The higher the ratio, the better the fitted model predicts the data, hence

stronger the HVS’ predictive power.

An ANOVA test is also run against each fitted logistic regression model and an intercept-

only null model to see if adding HVS as a predictor significantly improves the ability to esti-

mate subjects’ identification accuracy.

We used the glmer function in lme4 (version 1.1–23) package of R (version 3.6.0) for accu-

mulated data to account for random effects and used glm function for individual subject data

[16, 17]. The ANOVA test was conducted by calling anova.glm function, and the test type was

Chi-square.

Results

Experiment 1—Performance of normally sighted subjects with artificial

acuity reduction

Three groups of normally sighted subjects were tested, one group without blur and the other

two with goggles that artificially reduced acuity. The average performance accuracy of the nor-

mally sighted group with no blur on all trials was 98.23%, close to 100%, confirming that the

step hazards were recognizable for people with normal vision.

We accumulated data across subjects in the two blur groups separately. There were 1750 (7

subjects � 250 trials) datapoints for each blur condition. Both groups had slopes significantly

higher than zero, showing that there is a statistically significant positive correlation between

HVS and percent correct. For the Moderate blur group, the slope was 3.02, meaning that for a

unit increase in HVS, the logarithm of the odds of making correct response over incorrect

response increases 3.02 times. For the Severe blur group, the slope was 1.54 (p< .001). Fig 4
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Fig 4. Logistic regression model of aggregated data from subjects viewing with artificial blur. Top: Moderate Blur

(seven subjects), mean acuity 1.2 logMAR. Bottom: Severe Blur (seven subjects), mean acuity 1.6 logMAR. The red line

shows the logistic regression function, transformed as shown in Eq 2. the gray area represents 95% confidence

intervals.

https://doi.org/10.1371/journal.pone.0260267.g004
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shows the estimated successful identification probability curve plotted from the fitted logistic

regression models. A Chow test showed that the two models are significantly different (F
(2,3496) = 125.97, p< .001).

In order to investigate the difference between the slope values of the Moderate and Severe

blur groups, we looked at the number of correct and incorrect trials in each 0.1 interval of

HVS from zero to one. The result is presented as the histogram in Fig 5. Percent correct pla-

teaued near 50% for the Severe group, remaining at this relatively low level for HVS values

Fig 5. Histograms presenting correct and incorrect trials in each 0.1-wide bin of the HVS accumulated across

seven subjects in each blur group. The upper panel shows the distribution for moderate blur group trials, and the

lower panel shows the distribution of severe blur group trials.

https://doi.org/10.1371/journal.pone.0260267.g005
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above 0.5. Apparently, factors not captured by the HVS score held down performance in these

trials.

We also fitted logistic-regression models for each subject in the two blur groups individu-

ally, shown in Fig 6. 12 out of 14 subjects had slopes significantly higher than zero, meaning

Fig 6. Logistic regression models of 14 subjects with artificial acuity reduction by blur. Top: Moderate Blur Group.

Bottom: Severe Blur Group.

https://doi.org/10.1371/journal.pone.0260267.g006
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their odds of making correct identification increased with HVS. The slopes are presented in

Table 2.

There are two outliers in the Severe Blur group (S2 and S5), one having non-significant

slope, the other a negative slope. From their confusion matrices, we found these two subjects

mistook most big-step-up trials for either small-step-up or big-step-down. Since the big-step-

up trials had high HVS, mistakes on these trials lowered their performance on the high HVS

end, hence affecting the slopes.

Table 2 includes the slopes as well as Null and Residual Deviance and the reduced deviance

ratio of all 14 logistic regression models in both blur groups. Although the reduced deviance

ratio was generally lower than 30%, the ANOVA tests showed that for most subjects, HVS sig-

nificantly improved prediction compared with the null model (indicated by asterisks in

Table 2).

Experiment 2—Performance of low-vision subjects

The logistic model for the aggregated data of ten low-vision subjects is shown in Fig 7. The

model is based on 2500 trials, 250 trials for each of the ten subjects. It had a slope of 3.45 (p<

.001).

Individually fitted logistic models also had slopes significantly larger than zero for all ten

subjects, as shown in Fig 8.

Table 3 lists the Null Deviance and Residual Deviance for each individual model, along

with the reduced deviance ratio. All individual models fitted for low-vision subjects were sig-

nificantly better than the null model.

For the low-vision subjects in Experiment 2, we also found that the predictive power of

HVS values was weaker for subjects with poorer acuity and contrast sensitivity. There was a

negative correlation between the regression slope values and the logMAR acuities (slope equals

-6.25, R2 = 0.35) and a positive correlation with Pelli-Robson contrast sensitivities (slope equals

4.12, R2 = 0.56), both indicating that the HVS score was a better predictor for more moderate

Table 2. Individual regression models for subjects in moderate and severe blur groups.

Subject ID Blur Group Slope Slope Confidence Interval Null Deviance Residual Deviance Reduced deviance ratio

M1 Moderate 3.17��� [2.13, 4.21] 313.43 267.8162 15%

M2 Moderate 2.93��� [1.87, 3.98] 298.3458 259.9361 13%

M3 Moderate 2.78��� [1.91, 3.65] 341.3715 295.8234 13%

M4 Moderate 3.49��� [2.44, 4.54] 319.1733 263.9916 17%

M5 Moderate 5.25��� [3.85, 6.66] 310.3458 214.9572 31%

M6 Moderate 2.02��� [1.19, 2.85] 345.2765 320.4507 7%

M7 Moderate 2.57��� [1.45, 3.68] 284.4157 259.8404 9%

S1 Severe 2.51��� [1.44, 3.58] 310.34 287.49 7%

S2 Severe -1.6�� [-2.74, -0.45] 265.9621 257.8065 3%

S3 Severe 1.29�� [0.38, 2.20] 332.0321 324.0198 2%

S4 Severe 2.79��� [1.78, 3.810] 340.146 307.3867 10%

S5 Severe 0.69��� [-0.27, 1.66] 290.6297 288.6757 1%

S6 Severe 2.74��� [1.65, 3.84] 325.541 299.2504 8%

S7 Severe 2.36��� [1.33, 3.38] 333.9225 312.1075 7%

��: P-Value < .005.

���: P-value < .001.

https://doi.org/10.1371/journal.pone.0260267.t002
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(less severe) vision loss. Fig 9 shows the scatterplots of logistic regression slope values plotted

against acuity and contrast sensitivity. Regression lines are also presented.

Discussion

Does HVS predict human performance with reduced acuity?

As discussed in the Introduction, there were two issues challenging the validity of the Hazard

Visibility Score (HVS) as a predictor of human performance in identifying architectural haz-

ards First, whether using only VA and CS could effectively capture an observer’s ability in per-

ceiving architectural hazards. Second, whether estimating visibility of 3D geometrical

boundaries of hazards could effectively predict an observer’s ability to identify the hazard. We

found that the HVS estimation of architectural hazard visibility is associated with human per-

formance in identifying hazards in viewers with low vision as well as normally sighted observ-

ers with artificially reduced acuity. There was a consistent positive correlation between the

HVS and correct identification rate, indicated by the regression slopes. The regression model’s

slope varied from individual to individual, yet all low-vision subjects and 12 out of 14 normally

sighted subjects with artificially reduced acuity had slopes significantly larger than zero.

These findings provide a first step in validating the approach of assessing architectural fea-

ture visibility using the computational model implemented in the DeVAS software and

described by Thompson and colleagues [5].

However, there is still substantial residual deviance in the data, meaning that the HVS did

not successfully predict subjects’ identification in many trials. This indicates that HVS alone

does not fully account for human performance on identifying architectural features.

Fig 7. Logistic regression model of aggregated data from low-vision subjects. The red line shows the regression curve

and the gray area outlines the upper and lower bounds of the 95% confidence interval of the slope and intercept.

https://doi.org/10.1371/journal.pone.0260267.g007
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We can identify some factors that might affect an observer’s perception of architectural fea-

tures not accounted for by the HVS. Patterns of field loss associated with different diagnostic

categories such as central loss from macular degeneration or peripheral loss from glaucoma

might affect performance by influencing the portion of the scene viewed. A related issue is the

difference in strategies adopted by our subjects. For example, whether a person makes eye

movements to explore visual space outside their restricted visual field impacts their perfor-

mance in detecting obstacles in the environment [18, 19].

Fig 8. Logistic regression models of 10 low-vision subjects.

https://doi.org/10.1371/journal.pone.0260267.g008

Table 3. Individual regression models of low-vision subjects.

Subject ID Slope Slope Confidence Interval Null Deviance Residual Deviance Reduced deviance ratio

LV1 6.45�� [1.91, 10.99] 70.81353 52.82475 25%

LV2 1.57�� [0.56, 2.57] 265.9621 255.7521 4%

LV3 3.23��� [2.29, 4.16] 337.3001 276.5907 18%

LV4 5.60��� [4.00, 7.19] 265.9621 178.1817 33%

LV5 5.56��� [3.87, 7.24] 338.7891 267.4427 21%

LV6 3.79��� [2.68, 4.90] 326.7091 266.4454 18%

LV7 2.27��� [1.15, 3.39] 346.5096 327.496 5%

LV8 3.04��� [2.05, 4.02] 344.266 302.3751 12%

LV9 2.53��� [1.44, 3.62] 324.338 302.1003 7%

LV10 11.03��� [5.25, 16.81] 124.2173 72.18844 42%

��: P-Value < .005.

���: P-value < .001.

https://doi.org/10.1371/journal.pone.0260267.t003
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Visual impairment severity and HVS predictive power

Our data from both experiments indicate that the HVS score had greater predictive power for

moderate vision loss compared with more severe vision loss. These results may indicate that

the HVS is more useful for a range of moderate vision impairment lying between normal

vision and the most severe forms of vision loss approaching total blindness.

In Experiment 1 with normally sighted subjects, the group with Severe blur made many

errors, even for stimuli with high HVS scores, predicted to be highly visible. Most of the sti-

muli with high HVS values were images of the large step up. Examination of the confusion

Fig 9. A scatterplot of logistic regression slope values of individual subjects and their visual acuities (upper panel)

and contrast sensitivities (lower panel). Linear regression trend lines are also plotted.

https://doi.org/10.1371/journal.pone.0260267.g009
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matrix for trials with above-0.8 HVS values(shown in S2 Appendix) indicated that these

images were often confused with the small step up or the large step down. It is possible that the

relevant geometric boundaries were visible but the subjects were not able to interpret the 3D

meaning of these features.

HVS predictive power contingent on ROI

It is important to be aware that the HVS is dependent on how the user defines the Region of

Interest (ROI). The HVS is an average of visibility estimates along all 3D geometrical contours

within the ROI, so its value will depend on the geometry within the selected ROI.

An example drawn from the current experiment is shown in Fig 10. In this lighting condi-

tion, the contrast is high only on the left and right edges of the step, while the horizontal edge

between has very low contrast. In this case, defining the ROI as only the left and right corners,

or only the horizontal edge between the corners, or the whole step yields different values of

HVS.

We tested whether changing the ROI definition influences the predictive power of the

HVS. We fitted logistic regression models with identification responses as dependent variable

and the HVS generated with the central edge ROI as the independent variable. The central

edge ROI is demonstrated in Fig 10, the third panel from left. S3 Appendix contains the model

statistics and visualization. With the ROI changed from the complete region to the central

edge, the slope magnitude and reduced deviance ratio increased for 5 out of the 10 subjects.

The stronger association between the HVS score for the central-edge-only ROI may imply

that these subjects relied on this cue rather than the corner features. If so, their attention to

this cue may have been due to a deliberate strategy or might have been related to visual-field

restrictions.

Currently, the DeVAS software provides two types of information about the visibility of

hazards. One type is an imagery visualization as demonstrated in Fig 1G. In the ROI, the more

hazardous, or less visible parts of the geometry is colored in red, while the less hazardous, or

more visible parts are colored in green. The second type is the numeric HVS representing the

overall visibility of the geometrical boundaries within the ROI. An architect might look at the

color-coded visualization to see the visibility of the local features within a broadly defined ROI

and use the numerical HVS value as a summary statistic.

Fig 10. ROI’s influence on visibility estimation. A small downward step is shown in original resolution with three different definitions of ROI. From

left to right, the first panel visualizes the visibility of the step with VA equivalent to 1.15 logMAR and CS 0.85 Pelli-Robson. Within this step, the left and

right corners (green part) have high visibility, whereas the central horizontal edge (red part) has low visibility. The ROI can be defined as the side

corners (second panel), or the central horizontal edge (third panel), or the whole step (fourth panel). The HVS derived from the corners ROI is 0.889,

central ROI 0.051, while the ROI based on the entire step had HVS of 0.106. The definition of ROI will often lead to a significant change in HVS.

https://doi.org/10.1371/journal.pone.0260267.g010
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Limitations

We comment on two limitations of our study. First, the current project only looked at correlat-

ing HVS and the identification of a small set of well-defined hazards in an architectural space.

However, pedestrians with low vision in real life often have to process a much more compli-

cated space. The pedestrians may not know how many hazards they need to attend to, what

types they are, and their possible locations. Existence of multiple hazards, distribution of atten-

tion, the location of the hazard in the visual field, and saliency of the hazards, may all influence

their identification. Second, the low-vision subjects in this study were in a limited range of acu-

ities (0.8 to 1.6 logMAR) and diagnostic categories. Future work will be necessary to determine

the validity of the HVS across a wider spectrum of low vision.

Conclusion

We have provided initial evidence for the validity of a computational model that estimates visi-

bility of hazards in architectural spaces. Further work will be required to examine the general

applicability of this computational model. We showed that the performance of human observ-

ers with artificially reduced acuity and a group of observers with low vision in identifying step

hazards was related to an algorithmically generated numeric estimate of visibility called the

Hazard Visibility Score (HVS). The HVS was based on a model taking into account a view-

point-dependent photometrically accurate 3D rendering of a hazard in the visual field and an

observer’s visual acuity and contrast sensitivity. The method may be applied in architectural

design to assess visibility of hazards, thereby enhancing the accessibility of spaces for people

with low vision. While the ultimate validation of the DeVAS software will require it to be

applied to a more diverse sample of architectural designs and a wider range of low-vision

users, the current study was intended as a first step in validating the HVS metric as a measure

of visibility for people with low vision.
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