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ABSTRACT Bacteria can exchange and acquire new genetic material from other organisms directly and via the environment. This
process, known as bacterial recombination, has a strong impact on the evolution of bacteria, for example, leading to the spread of
antibiotic resistance across clades and species, and to the avoidance of clonal interference. Recombination hinders phylogenetic and
transmission inference because it creates patterns of substitutions (homoplasies) inconsistent with the hypothesis of a single
evolutionary tree. Bacterial recombination is typically modeled as statistically akin to gene conversion in eukaryotes, i.e., using the
coalescent with gene conversion (CGC). However, this model can be very computationally demanding as it needs to account for the
correlations of evolutionary histories of even distant loci. So, with the increasing popularity of whole genome sequencing, the need has
emerged for a faster approach to model and simulate bacterial genome evolution. We present a new model that approximates the
coalescent with gene conversion: the bacterial sequential Markov coalescent (BSMC). Our approach is based on a similar idea to the
sequential Markov coalescent (SMC)—an approximation of the coalescent with crossover recombination. However, bacterial recom-
bination poses hurdles to a sequential Markov approximation, as it leads to strong correlations and linkage disequilibrium across very
distant sites in the genome. Our BSMC overcomes these difficulties, and shows a considerable reduction in computational demand
compared to the exact CGC, and very similar patterns in simulated data. We implemented our BSMC model within new simulation
software FastSimBac. In addition to the decreased computational demand compared to previous bacterial genome evolution simula-
tors, FastSimBac provides more general options for evolutionary scenarios, allowing population structure with migration, speciation,
population size changes, and recombination hotspots. FastSimBac is available from https:/bitbucket.org/nicofmay/fastsimbac, and is
distributed as open source under the terms of the GNU General Public License. Lastly, we use the BSMC within an Approximate
Bayesian Computation (ABC) inference scheme, and suggest that parameters simulated under the exact CGC can correctly be re-
covered, further showcasing the accuracy of the BSMC. With this ABC we infer recombination rate, mutation rate, and recombination
tract length of Bacillus cereus from a whole genome alignment.
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ACTERIAL whole-genome sequencing has rapidly re-
placed multilocus sequence typing for population analy-
ses of bacterial pathogens thanks to its fast and cost-effective
provision of higher resolution genetic information (Didelot
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et al. 2012; Wilson 2012). Methods using genomic data to
infer epidemiological, phylogeographic, phylodynamic, and
evolutionary patterns are often hampered by recombination
(e.g., Schierup and Hein 2000; Posada and Crandall 2002),
and the bacterial setting is no exception (Hedge and Wilson
2014). Recombination causes different sites in the genome to
have different inheritance histories. For these reasons, in re-
cent years many methods have been proposed to measure,
identify, and account for bacterial recombination (e.g.,
Didelot and Falush 2007; Marttinen et al. 2008; Tang et al.
2009; Didelot et al. 2010; Marttinen et al. 2012; Croucher
et al. 2014; Didelot and Wilson 2015). Among these, simu-
lators of bacterial evolution (e.g., Didelot et al. 2009b;
Mostowy et al. 2014; Brown et al. 2015) have been used
for parameter inference and hypothesis testing (Fearnhead
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et al. 2005; Fraser et al. 2005; Wilson et al. 2009; Ansari and
Didelot 2014), and for benchmarking (e.g., Falush et al.
2006; Didelot and Falush 2007; Turner et al. 2007; Buckee
et al. 2008; Marttinen et al. 2012; Hedge and Wilson 2014).

Simulating bacterial evolution poses specific difficulties as
the process of bacterial recombination is very different to that
of other organisms. Eukaryotic recombination is predomi-
nantly modeled as a cross-over process, with recombination
events breaking a chromosome into two parts with different
ancestries (Figure 1). While it is possible to simulate eukary-
otic evolution with recombination forward in time (Peng and
Kimmel 2005; Carvajal-Rodriguez 2008; Hernandez 2008;
Arenas 2013), coalescent-based (Kingman 1982) backward
in time models (Hudson 1983; Griffiths and Marjoram 1997;
Wiuf and Hein 1999) are usually more computationally effi-
cient (e.g., Hudson 2002; Arenas and Posada 2007, 2010;
Ewing and Hermisson 2010; Excoffier and Foll 2011). Yet,
the coalescent with recombination itself may not be suffi-
ciently fast when large genomic segments are considered
(McVean and Cardin 2005). One of the reasons is that the
structure describing the evolutionary history of all positions
(the ancestral recombination graph, ARG) grows subexpo-
nentially with genome size and recombination rate (Wiuf
and Hein 1999). For this reason, a faster approximation
to the coalescent with recombination, the sequential Markov
coalescent [SMC, see McVean and Cardin (2005), Marjoram
and Wall (2006)] was proposed. Similar to the exact sequen-
tial form of the coalescent with recombination (Wiuf and
Hein 1999), the SMC starts by considering one evolutionary
tree at the left (i.e., 5') end of the sequence, and generates
new trees affected by recombination as it moves toward the
right (3) end. However, the SMC does not generate an ARG,
but rather a sequence of local trees. The SMC makes the
simplifying assumption that, if the local tree for the consid-
ered position is known, then all local trees to its left can be
ignored when considering trees to its right. In fact, crossover
recombination makes evolutionary histories less correlated
as physical distance increases. This model has been extended
to incorporate complex population history (Chen et al. 2009),
and to have improved accuracy (Wang et al. 2014) and com-
putational efficiency (Staab et al. 2015).

Bacterial recombination is different from eukaryotic re-
combination (Smith et al. 1993, 2000), and is generally mod-
eled like gene conversion: a bacterial recombination event
imports only a small fragment of DNA from a donor genome,
while most of the genome is inherited clonally (Figure 1).
This results in sites very distantly located in the genome
remaining very tightly linked genetically. In fact, a single
genealogy, known as the clonal frame (Milkman and Bridges
1990), represents the evolutionary history of all nonrecom-
bining sites, no matter how physically far they are from each
other. So, methods for eukaryotic recombination cannot be
applied to bacteria at genomic scales. While bacterial evolu-
tion can be simulated forward in time, backward in time
coalescent methods are usually more efficient, and are gen-
erally based on the coalescent with gene conversion [CGC,
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Figure 1 Graphical representation of eukaryotic and bacterial recombi-
nation models. Black circles represent sampled sequences, black lines are
ancestral lineages (dashed if they represent bacterial recombination line-
ages). Blue segments represent the genome sequence, and red segments
represent the portion of the genome that is ancestral to the particular
lineage. (A) Crossover event: the entire genome to the left of the cross-
over site is inherited from one parent; the entire genome to the right is
inherited from the other parent. (B) Gene conversion, or bacterial recom-

bination: most of the genome is inherited from a single parent lineage,
except a short segment.

r--

see Wiuf and Hein (2000), and Figure 2A]. Recently, efficient
methods implementing the CGC have been developed for
simulating bacterial evolution (Didelot et al. 2009b; Brown
et al. 2015). However, these approaches struggle to simulate
whole genomes at high recombination rates (e.g., requiring
up to hours for one bacterial genome alignment with
p>0.01, see Brown et al. 2015, and Results). Like the co-
alescent with crossover recombination, the CGC also gener-
ates large ARGs, and this contributes to the computational
demand.

Here, we present a new approximation to the CGC (Figure
2B), inspired by the SMC, to efficiently and accurately model
bacterial recombination. We model the clonal frame, and
simulate the coalescent and recombination processes from
one end of the genome to the other, conditioning on the
clonal frame throughout. However, we ignore recombination
events that occurred at distant, previously considered, posi-
tions. This approach differs from other approximations to the
CGC (e.g., Didelot et al. 2010; Ansari and Didelot 2014), as
we can simulate entire genomes while allowing recombining
lineages with overlapping ancestral material to coalesce with
one another, and allowing recombination events to split the
ancestral material of recombinant lineages. In fact, frequent
recombination events can break down ancestral material in-
tervals further and further, reducing them far below the
expected length of an individual recombination interval. Ig-
noring these complexities leads to biases when considering
elevated recombination rates (Didelot et al. 2010), and, by
accounting for them, we aim to produce a model more faith-
ful to the CGC. We call this model the bacterial sequential
Markov coalescent (BSMC), which we implement within
new simulation software called FastSimBac. FastSimBac is
faster than previous methods (between one to two orders



Figure 2 Graphical representation of the bacterial coalescent (CGC) and
BSMC models. Black circles represent sampled genomes, black lines are
ancestral lineages (continuous if they belong to the clonal frame, dashed
otherwise). Red segments represent, for each extant lineage, the portion
of the genome that is ancestral to any sampled descendent of that line-
age. Time is considered backward from bottom to top, and mergers of
lineages represent coalescent events. (A) Example of simulation under the
CGC; recombination and coalescent events are simulated backward in
time starting with one lineage per sample at the present. (B) Example of
BSMC simulation: first a clonal frame is simulated; then the process
moves left to right across the genome (which for simplicity is linear),
and left portions of the genome are gradually forgotten (represented in
green). The BSMC stops at each recombination start and end position;
recombination events are forgotten at their end, but the clonal frame is
never forgotten.

of magnitude for typical genome sizes and recombination
rates). Also, by building on top of popular simulators ms
(Hudson 2002) and MaCS (Chen et al. 2009), our software
can simulate general evolutionary scenarios, allowing migra-
tion, speciation, demographic changes, recombination hot-
spots, and between-species recombination. We show that
the BSMC can accurately approximate the exact CGC, and
can be used to infer recombination parameters using Approx-
imate Bayesian Computation (ABC). We demonstrate its util-
ity by inferring Bacillus cereus recombination and mutation
parameters from a whole genome alignment.

Materials and Methods
BSMC algorithm

We assume that a given set of parameters is specified a priori:
A is the mean length of a recombining segment, G is the total
genome length, and p is the recombination rate. A and G are
measured in base pairs, while p = 2N,r is the per-individual,
per-generation, and per-base pair gene conversion initiation
rate r scaled by twice the effective population size N.. Our
BSMC algorithm crosses the genome from left to right, and
discards most previous local trees, but always keeps track of,
and conditions on, the clonal frame. The current local ARG
A(xeyr) keeps track of all, and only the lineages with non-
empty ancestral material to the right of x.,. All lineages in
A(xeyr) are possible targets of new recombination events
and coalescent events. Recombination events and coalescent

events are not allowed on forgotten lineages [not in A(Xcur)].
To determine which lineage is in A(xqyr) and which is not, we
record and update for each lineage [ its ancestral material to
the right of xcyr : a;(Xcur). One aim of the algorithm is to gen-
erate the sequence of local trees along the genome. For a
given position X, the local (or marginal) tree T(xy) is
the genealogy describing the inheritance history of site xcy;.
T(xcur) can be obtained from A(x.yr) by removing all branches
that are not ancestral at x.,. A graphical example of the
algorithm is given in Supplemental Material, Figure S1 in
File S1. More specifically, the BSMC algorithm proceeds as
follows:

1. Initialization: xy = 0 (current position, maximum is 1),
and T (the clonal frame) is simulated under the coales-
cent without recombination. The initial local ARG A(xcy),
and local tree T(x), are set to T(0) = A(0) = T. The
ancestral material of every lineage [ in A(0) is set to
a;(0) = [Xeur, 1] = [0, 1], the whole genome. The list of re-
combination end points E (the right ends of recombination
segments) is initialized as empty: E = ().

2. Position of new event: The distance until the next poten-
tial recombination initiation (that occurs at position Xyew)
is drawn according to an exponential distribution
(%new — Xcur) ~ Exp[(pG/2)A(Xcur)], Where A(Xcyr) is the
sum of all branch lengths in A(xc), expressed in units
of 2N, generations. If xpew > Eg, Where Eq is the first
(and smallest) element of the list E of recombination
end points (if E is empty then Ey = %), then the recombi-
nation initiation at x,ew is cancelled, and the next consid-
ered position is set to Xyew = Eo; Eq is then removed from
E, and the next event becomes a recombination termina-
tion, so go to step 4. Otherwise, if xpew = 1 terminate the
algorithm, and if x,ew < 1 the next event is a new recom-
bination initiation at X,ew, SO g0 to step 3.

3. New recombination event: sample a lineage | randomly
from A(xqyr) proportionally to branch length. Then, sam-
ple a time t uniformly along the time spanned by [. The
new recombination occurs at time t on branch [, and a new
lineage I’ is created, with its most recent end joining [ at
time t. A new coalescent time and coalescing lineage is
sampled for I’ conditional on A(xy) [under the algorithm
of Wiuf and Hein (1999)]. The right end of the recombin-
ing interval Xe,q is sampled from the distribution
(Xend — Xnew) ~ Geom(A)/G, where Geom(A) is the geo-
metric distribution with mean A. If xeq <1, it is added
to E while keeping E sorted in increasing order. The new
local ARG is defined as A(Xnew) = A(Xcur) Ul’, and ances-
tral material of all lineages in A(xpew) is updated (ances-
tral material to the left of xpe, is deleted). Any lineage
with no ancestral material to the right of xpe, is removed
from A(Xpew). The new local tree T (xnew) is defined from
A(xnew) and is printed to file. The current position is
updated: Xeyr = Xpew- Return to step 2.

4. Terminate a recombination event: the new local ARG is
initialized as A(Xnew) = A(Xcur)- The ancestral material of
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all lineages in A(xpew) is updated (ancestral material to the
left of xpew is deleted). Any lineage with no ancestral ma-
terial to the right side of xpew is removed from A (Xpew). The
new local tree T(Xpew) is defined from A(xpew) and is
printed to file. The current position is updated:
Xcur = Xnew. Return to step 2.

A large part of the complexity of the algorithm is attribut-
able to the process of updating the ancestral material of
lineages after a new recombination event is added to the local
ARG. This step is described more in detail in File S1. Our
algorithm and model differ from the approximation of the
CGC used by Didelot et al. (2010) and Ansari and Didelot
(2014); in fact, we allow recombinant lineages to be affected
by further recombinations, and to coalesce with each other if
their ancestral materials overlap. To increase realism, we use
the first positions simulated by the algorithm (generally 10\
bases) as burn-in, that is, they are simulated but not consid-
ered part of the genome. While we simulate a linear genome,
bacterial genomes are typically circular, so we assume that an
arbitrary start position has been chosen. The version of
the algorithm above conveys the basics of the model of
within-population recombination; in our simulation software
FastSimBac we have included many additional event types
described in File S1: mutation, migration, speciation, demo-
graphic change, recombination hotspots, and between-
species recombination.

Performance testing

We simulated bacterial genome evolution under the coales-
cent with gene conversion using SimBac (Brown et al. 2015).
We always simulated 50 contemporaneous samples. We per-
formed simulations under four different recombination in-
tensities: p = 2N.r = 0.001,0.002,0.005,0.01, with p the
population-scaled per-generation per-base pair recombina-
tion initiation rate. We used four genome sizes: G = 1, 2, 5,
and 10 Mbp, and mean recombination tract length A = 500.
These values encompass a range of biologically relevant sce-
narios for bacteria (Vos and Didelot 2009; Didelot and
Maiden 2010). We simulated 10 replicates for each combi-
nation of parameters, and, for each replicate, the simulated
collection of local trees, and the clonal frame, were stored.
Sequence data were generated from local trees using SeqGen
(Rambaut and Grassly 1997) under an HKY85 model
(Hasegawa et al. 1985) with transition/transversion rate ra-
tio k = 3. Some of the parameter combinations were too
computationally demanding for SimBac: (p = 0.005, G =
10 Mbp), (p=0.01, G = 5 Mbp), (p=0.01, G = 10
Mbp). Every time we could run SimBac, we used its clonal
frame as a fixed input for our software FastSimBac. The
clonal frame is a major source of variation in sequence pat-
terns between simulations (Ansari and Didelot 2014), so fix-
ing the clonal frame, we reduce the variance in the difference
of summary statistics between the two methods. Both
the BSMC and the CGC assume that the clonal frame is gen-
erated by a standard coalescent process, so fixing it does not
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introduce biases, and gives better resolution to spot differ-
ences between models. For any scenario in which we could
not run SimBac, the clonal frame was generated within
FastSimBac. We used local trees from FastSimBac to generate
genome alignments with SeqGen as before.

ABC inference

We performed ABC with the local-linear regression approach
(Beaumont et al. 2002) as implemented in the R package
abc (Csilléry et al. 2012). We implemented and tested the
performance of an ABC scheme based on the BSMC, using
FastSimBac simulations to infer parameters from datasets
themselves simulated under the CGC with SimBac. We used
a uniform prior distribution over [0, 0.005] for the recombi-
nation rate p, and over [10,1000] for the mean length A of
recombining intervals. The same priors were used for both
simulating datasets and performing inference. The aim of the
ABC analyses was to infer p and A. For simplicity, the clonal
frame simulated in SimBac was assumed to be known, as was
the mutation rate § = 0.005. The clonal frame is an impor-
tant confounding factor in real data analysis, which can be
hard to estimate correctly (Hedge and Wilson 2014). How-
ever, including clonal frame inference in our ABC would
make it too computationally demanding; also, fixing the
clonal frame in this context allows us to focus on differences
between the BSMC and the CGC. We simulated 1 Mbp align-
ments with 20 samples. For each true data set from SimBac,
we simulated 10,000 datasets under the BSMC in FastSimBac.
Only 1% of the simulations in FastSimBac were retained
for parameter inference [the 1% with summary statistics
most closest to true data, see Beaumont et al. (2002)]. We
used two summary statistics: G4 (the proportion of incom-
patible sites) between neighboring SNPs, and G4 between
SNPs at least 20 kbp away. Specifically, for the first sum-
mary statistic we counted the number of SNPs inconsistent
with the first SNP occurring to their right; for the second
summary statistic, for each SNP we selected the first SNP
to its right at least 20 kbp away. We chose these summary
statistics because G4 [and linkage disequilibrium (LD)] at
short distances (h < A) is informative of the recombination
rate p (the expected number of recombination events initi-
ating or terminating within a short interval h is approxi-
mately proportional to 2hp). On the other hand, G4 at
long distances (h>> A) is informative of the product pA
(the expected number of recombination events affecting
any of two distant bases is approximately proportional to
2pA). The approximately linear relationship between G4
and number of recombinations might not hold for extreme
values of the parameter space, in which case this simple
two-summary statistics ABC could have problems inferring
p and A (see Figure 2 in File S1).

We also used the ABC-MCMC inference scheme (Marjoram
et al. 2003) on a real B. cereus genome alignment (Didelot
et al. 2010; Ansari and Didelot 2014). We used uniform prior
distributions on [0.0,0.25] for p, on [1,10000] for A, and
on [0.01,0.2] for 6 (the per-base pair per-individual, and
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per-generation mutation rate scaled by 2N.). p, A and 6 are also
the three parameters that we inferred. We simulated whole
genome alignments of 13 samples and 5,240,935 bp, as for
the real dataset. For this analysis we used more summary
statistics than in the ABC above (seven instead of two), so
to allow estimation of the mutation rate 6, to address poten-
tial limitations of the two previously considered summary
statistics (see Figure S2 in File S1), and to address the poten-
tial impact of biological complexities on individual summary
statistics. The seven summary statistics used are: number of
polymorphic sites (observed value 629,942); G4 for consec-
utive SNPs (observed value 0.167) and for SNPs at least
2 kbp away (observed value 0.297); mean LD (measured
as 12 = [(pas—paps)’/Pa(1 — pa)ps(1 — ps)] where p, is the
frequency of allele A in the first SNP, pg the frequency of B in
the second SNP, and pap the frequency of the AB haplotype)
for consecutive SNPs (observed value 0.396) and for SNPs at
least 2 kbp away (observed value 0.274); and mean number
of haplotypes (considering a certain number of SNPs at the
time) for pairs of consecutive SNPs (observed value 3.003)
and for groups of four SNPs made of two pairs of consecutive
SNPs, the two pairs being at a distance of at least 2 kbp. The
number of SNPs, G4 and r? were also used as summary sta-
tistics by Ansari and Didelot (2014). We can simulate entire
genomes (instead of SNP pairs as Ansari and Didelot
(2014)) and so include summary statistics for groups of
>2 SNPs. Due to the considerable computational de-
mand, we fixed the clonal frame to that estimated and
used by Didelot et al. (2010) and Ansari and Didelot
(2014). However, recombination can cause errors in the
estimate of the clonal frame, in particular of branch
lengths (Hedge and Wilson 2014). In fact, with increasing
recombination, and, in the absence of population struc-
ture, all genetic distances between samples are expected
to converge to a common value. The consequent branch
length errors can potentially bias inference, so we attempt
to correct branch length errors within our ABC approach
(see File S1). Lastly, to improve the realism of our model,
we account for invariable sites. In fact, ~1 out of every
6 bp (after removing sites with limited coverage) in the
alignment are polymorphic, and a large proportion of the
genome is expected to be coding; so, in principle, one
would expect many homoplasies to occur simply due to
multiple substitutions at the same site, and not necessarily
requiring recombination events. Using back of the envelop
calculations (see File S1) we estimated that around half
(48.44%) of the genome is invariant and that the transition-
transversion ratio is 5.21. We used these estimates as fixed
values within an HKY (Hasegawa et al. 1985) substitution
model with invariant sites, instead of the basic JC model
(Jukes and Cantor 1969) implemented in our basic infer-
ence and in Ansari and Didelot (2014). This model, together
with the local trees simulated by FastSimBac, was used in
SeqGen to simulate the alignment from which summary
statistics were extracted at each step of the ABC-MCMC.
Each run consisted of 10,000 ABC-MCMC steps (of which
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Figure 3 Comparison of computational demand between the bacterial
sequential Markov coalescent (BSMC) and the coalescent with gene con-
version (CGC). The BSMC implemented in FastSimBac is faster than the
CGC implemented in SimBac. On the vertical axis is the time required to
generate local trees per replicate (in seconds on a logarithmic scale). On
the horizontal axis is the genome size (in base pair on a logarithmic scale).
Red lines refer to FastSimBac, blue lines to SimBac. Each point is the
mean over 10 replicates, and bars represent SEs of the mean. SimBac
was not run for highest recombination rates and genome sizes due to
time limitations.

1000 were used as burn-in), and required between 2 weeks
to 1 month with one processor.

Data availability

FastSimBac is distributed as open source under the terms of
the GNU General Public License, is available from https://
bitbucket.org/nicofmay/fastsimbac, and is distributed as
open source under the terms of the GNU General Public
License.

Results and Discussion
Computational efficiency of BSMC

FastSimBac substantially reduces computational demand for
simulating bacterial genome evolution. Compared to SimBac
(the most efficient software currently available), FastSimBac
improves speed by ~1 order of magnitude for low recombi-
nation rate (p = 0.001) and genome size (10° bp), and up to
two orders of magnitude for elevated recombination rate
(p = 0.01) and genome size (107 bp) (Figure 3). Further,
FastSimBac allows simulation of scenarios with both high
recombination rate and genome size, which are currently
out of reach of other methods due to excessive requirements
for time and RAM. The performance of FastSimBac relative to
the CGC improves as we increase either genome size or re-
combination rate (Figure 3). The running time required ap-
pears linear with genome size for FastSimBac, while not for
SimBac. Another benefit of FastSimBac is that, by avoiding
the generation of a global ARG, it has small RAM usage,
allowing to run multiple simulations in parallel. The compu-
tational demand of FastSimBac also appears approximately
linear in the number of samples (Figure S3 in File S1).
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Figure 4 Comparison of LD and site incompatibility between the BSMC and the CGC. The BSMC generates patterns of LD (measured as r?) and
pairwise genetic incompatibility between sites (G4) very similar to the CGC. On the horizontal axis is the base pair distance between SNPs at which LD
and G4 are measured. r? is calculated as [(pAB—pApB)Z/pAU —pa)ps(1 — ps)], and G4 (the four-gamete test) is one if a SNP pair is incompatible and
zero otherwise. For each distance d, and for any SNP x, LD and G4 are calculated between x and the first SNP at least d base pair to the right of x. Red
lines refer to FastSimBac, blue lines to SimBac, and different point and line styles refer to different recombination rates (see legend). Genome length is
1 Mbp. Each point is the mean over 20 replicates, and bars are SEM. (A) Genome-wide mean LD. (B) Genome-wide mean G4.

Accuracy of the BSMC

Next, we compared the simulated patterns of genetic variation
and local tree features between the exact CGC simulated
under SimBac, and the BSMC simulated with FastSimBac.
LD (measured as r?), as expected, decreases considerably
with increasing recombination rate (Figure 4), while the op-
posite holds for pairwise genetic incompatibility between
sites (the four-gamete test, G4). There is substantial variation
across different replicates in mean LD, probably because each
replicate has a distinct clonal frame, and the clonal frame
influences site patterns across the whole genome. LD and
G4 at 1 kbp scales are already very close to those at longer
distances, suggesting that a distance of 2A is sufficient to
reach nearly as much LD as any arbitrary distance. Most im-
portantly, values simulated under the BSMC mimic closely
those simulated under the CGC, suggesting that, even at high
recombination rates and short distances, the BSMC is a very
accurate approximation (Figure 4). Similar results are also
observed at different genome sizes (Figure S4 in File S1).
As expected, the number of haplotypes in nonoverlapping
windows of 10 SNPs increases with recombination rate (Fig-
ure 5A), and, again, the BSMC very closely mimics the CGC.
The genomic variation in number of haplotypes (Figure S5A
in File S1) is very slightly underestimated, probably because
long-range correlations in local trees (after conditioning on
the clonal frame) are ignored in the BSMC, while present in
the CGC. The mean pairwise genetic distances between sam-
ples are unaffected by recombination and by the model used
for simulations (Figure 5B), but recombination does affect
their variance (Figure S5B in File S1) because it tends to
break down the relatedness of samples. Again, both patterns
in the CGC are very closely approximated by the BSMC. Mean
local tree height (Figure 5C) and mean local tree size (total
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sum of the branch lengths, Figure 5D), are highly variable
depending on the simulated clonal frame, and are not
strongly affected by the simulation parameters, nor by our
BSMC approximation.

BSMC-based ABC inference

We investigated the accuracy and applicability of the BSMC
approximation by performing ABC inference. First, we recon-
structed parameters simulated under the exact CGC. We use
two summary statistics based on G4, the pairwise genetic
incompatibility between sites (see Materials and Methods).
Although we simulated datasets under the exact CGC, and
performed ABC simulations under a different model (the
BSMCQC), inference was accurate. The 95% posterior confi-
dence intervals for the population-scaled recombination rate
p, and the mean length of recombining intervals A contain the
simulated values in both our replicates (Figure 6 and Figure
S6 in File S1). This suggests that the BSMC can be used
for accurately inferring bacterial evolutionary parameters.
However, the elevated computational demand of this ABC
approach keeps us from performing a more thorough simu-
lation study. Also, here we assume that the exact clonal frame
is known, and focus on differences between the BSMC and
the CGC; this is not usually true for real datasets, where
clonal frame imprecision could likely lead to higher inference
error.

As an additional example of the applicability of the BSMC
and of FastSimBac, we used ABC-MCMC (Marjoram et al.
2003) to infer p, A, and the scaled mutation rate 6 for the
B. cereus bacterial group. Bacteria of the B. cereus group
mostly live in the soil, feeding on dead organic matter, but
they can occasionally infect humans and cause a range of
diseases, from food poisoning to deadly anthrax (Arnesen
et al. 2008). Disagreement has been found between B. cereus
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species designation and MLST clade structure and population
history, probably due to the contribution of plasmids and ge-
netic recombination to the bacterial phenotype (Priest et al.
2004; Sorokin et al. 2006; Didelot et al. 2009a; Zwick et al.
2012). Furthermore, analyses of MLST data have shown dis-
cordant results regarding the prevalence of recombination
relative to mutation in B. cereus. Estimates range from
p/6 ~ 0.05 (Hanage et al. 2006), to p/0 ~ 0.2 (Didelot
et al. 2009a), to p/6 ~ 0.3 (Didelot and Falush 2007), up
to p/6 =~ 2 (Pérez-Losada et al. 2006), leading to a state of
uncertainty regarding the contribution of recombination to B.
cereus evolution. Improving our understanding of recombina-
tion in B. cereus would help us recognize the effect of homol-
ogous recombination on epidemiological inference and
species delimitation (Didelot and Maiden 2010), and predict
the acquisition and spread of infectivity and resistance factors
(Perron et al. 2012). Genome-wide data from multiple strains
provide a greater opportunity to study recombination. Here,
we consider the genome alignment described in Didelot
et al. (2010) and Ansari and Didelot (2014) comprising

13 genomes from the B. cereus group. Didelot et al. (2010)
performed MCMC inference on this dataset using an approx-
imate coalescent model with bacterial recombination (the
ClonalOrigin model) that did not allow recombinant lineages
to be affected by further recombination, nor recombinant
lineages to coalesce with one another. They inferred a mean
recombination tract length of A = 171 bp with interquartile
range [168,175], and p/6 = 0.21 with interquartile range
[0.20,0.23]. Ansari and Didelot (2014) used a model similar
to ClonalOrigin within an ABC-MCMC approach, and accounted
for the propensity for lineages to recombine more with closely
related lineages than with distantly related ones. They inferred
p =0.077 with confidence interval CI, = [0.036,0.127],
A =152 bp with CI, =[74,279], and 6 =0.0528 with
CIy = [0.0437,0.0640]. The ClonalOrigin model employed by
these methods approximates the coalescent with gene conver-
sion, but less closely than the BSMC. In fact, the ClonalOrigin
model leads to overestimation of p under recombination
and mutation rates relevant to this scenario (Didelot et al
2010). Our BSMC-based ABC-MCMC approach instead allows
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recombination events to split the ancestral material of
recombinant lineages. Furthermore, in contrast to both
these previous analyses, we account for differences in tran-
sition and transversion rates, for invariant sites, and
for biases in branch length estimation (see Materials and
Methods and File S1).

With our BSMC-based approach, we infer higher mean
recombination tract length A (median 592 bp and 95% con-
fidence interval [119,3406], Figure 7) than previous esti-
mates [171 and 152 bp from Didelot et al. (2010) and
Ansari and Didelot (2014) respectively]; Our estimate is
closer to values inferred from genome-wide likelihood-based
analyses in Clostridium difficile (Didelot and Wilson 2015).
We also inferred a considerably lower contribution of recom-
bination relative to mutation (p/6, median 0.0065 and 95 %
confidence interval [0.001,0.038], Figure 7) than previous
genome-wide studies [0.21 and ~ 1.46 from Didelot et al.
(2010) and Ansari and Didelot (2014), respectively]. This
suggests that recombination contributes much less to B.
cereus evolution than previously thought, and that these bac-
teria are considerably clonal, although, due to variation in
recombination rates between clades, our results do not nec-
essarily apply to all species in the B. cereus group (Sorokin
et al. 2006). These results were confirmed by an additional
independent run of the analysis (Figure S7 in File S1), and
can be explained by the fact that we account for invariant
sites, for transition/transversion bias, and for multiple sub-
stitutions at the same position (using a finite sites model). In
fact, invariant sites and a high transition to transversion rate
ratio usually cause more homoplasies than expected under a
homogeneous substitution rate. This happens because an un-
even distribution of substitutions along the genome (attribut-
able to invariant sites) increases the probability that two
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substitutions hit the same base, potentially causing homo-
plasies. A transition/transversion bias increases the prob-
ability that bases hit by multiple substitutions become
homoplasies. These homoplasies, if unaccounted for in the
model, can be interpreted as the effect of short recombinant
fragments, downwardly biasing estimates of A, and upwardly
biasing estimates of p/6. Our approach naturally accounts for
homoplasies due to multiple substitutions at the same site by
modeling sequence evolution along local trees with a contin-
uous-time DNA substitution model including invariant sites
and transition/transversion bias. Supporting our interpreta-
tion, when we ran our method without accounting for invari-
ant sites we estimated lower A and higher p/6 (Figure S8 in
File S1). Another potential factor is that our BSMC allows
interactions between recombination events, breaking
recombinant segments into smaller pieces as expected under
the CGC; this process, if unaccounted for, could lead to a
downward bias in the estimation of A.

We can measure the total impact of recombination on
genome evolution as p*A /6, for which we infer a posterior
median of 3.7 (95 % confidence interval [2.9,5.9]); this is
considerably smaller than previous estimates [~ 35.9 and
~ 221.7 for Didelot et al. (2010) and Ansari and Didelot
(2014) respectively]. Our p*A /6 confidence interval is smaller
than for other parameters because p and A are strongly in-
versely correlated in our posterior (Figure S9 in File S1). This
makes p*A easier to estimate than the two parameters sepa-
rately. This problem of identifiability of A and p has been pre-
viously observed in bacteria (Ansari and Didelot 2014), and is
also seen in eukaryotes (Padhukasahasram et al. 2004, 2006),
although analysis of bacterial data are simpler due to the lack
of crossover recombination. We found no correlation between
other pairs of parameters (Figure S9, A-C, in File S1).
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While our ABC-MCMC seems to capture well the complexity
of real data for five out of seven summary statistics, for two of
them (G4 at large distances and r? at short distances) there are
discrepancies (Figure S9, D-J, Figure S7, E-K, in File S1). This
suggests the existence of further neglected biological complex-
ities, for example larger rate of recombination between closely
related lineages (see Ansari and Didelot 2014), variable re-
combination rate between B. cereus clades (Sorokin et al
2006), nonhomologous recombination (Didelot and Maiden
2010), population structure (such as due to niche adaptation
Sorokin et al. 2006), recombination with other bacterial
groups, variable selective pressure and mutation rate, and
alignment errors. Error in clonal frame estimation, despite
our efforts to correct branch lengths (see File S1), could also
play a role in these discrepancies and reduce accuracy.

In conclusion, the BSMC offers not only a very computa-
tionally convenient approximation to the CGC, but also an

accurate one. Our implementation of the BSMC model in the
simulation software FastSimBac allows faster simulations of
bacterial genome evolution (and therefore parameter infer-
ence with ABC), under a broader range of parameter values.
FastSimBac allows specification of the clonal frame upon
which simulations can be conditioned, which may grant
simulations a closer fit to particular datasets when the clonal
frame is readily estimable. By virtue of building on top of the
popular simulators ms (Hudson 2002) and MaCS (Chen et al.
2009), our software includes options for many evolutionary
scenarios that have been included in previous eukaryotic co-
alescent simulators (Hudson 2002; Chen et al. 2009), but
which have remained unavailable for simulating bacterial
genomes, such as population structure and migration, speci-
ation, changes in population size, and recombination hot-
spots. Applications of our model and software are not
restricted to simulations, but also include inference of
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recombination rates and other parameters of bacterial evolu-
tion. Our analysis of recombination in the B. cereus group
showcases the applicability of our method for inference from
genome-wide alignments. However, our ABC method is very
computationally demanding, and so it would be challenging
to apply it to scenarios with particularly high recombination
rates, or large sample sizes. In the future, we intend to use the
BSMC within a likelihood framework for accurate and efficient
inference of the clonal frame and recombination parameters
simultaneously. We believe that the BSMC and FastSimBac
will prove very useful for both benchmarking and for statistical
inference based on bacterial genome sequence data.
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