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ABSTRACT We present the complete genome sequence of fluoranthene-consuming
Cycloclasticus sp. strain PY97N. This strain has one circular chromosome with a G�C
content of 42.06%. Moreover, two genomic islands were identified as putative conju-
gative elements. These genomic details are expected to inform our understanding of
the remarkable catabolic capacities of organisms of the Cycloclasticus lineage.

Strains of Cycloclasticus, either free-living or symbiotic, play a pivotal role in the
hydrocarbon removal process. Cycloclasticus sp. strain PY97N, isolated from Yellow

Sea sediment, is specialized with a novel catabolic characteristic to consume fluoran-
thene (1–5). Here, we investigated the genome of strain PY97N.

The general features of strain PY97N are summarized in Table 1. A glycerol stock of
strain PY97N was inoculated into ONR7a medium (6) supplemented with 0.2 g/liter
phenanthrene as a sole source of carbon at a proportion of 0.1% (vol/vol); the culture
was then kept under 150 rpm at 25°C until late-logarithmic phase for cell harvesting.
The genomic DNA was then extracted using the AxyPrep bacterial genomic DNA
miniprep kit (Axygen Scientific, USA). The whole-genomic DNA sequencing was per-
formed using a combination of the PacBio RS II and Illumina HiSeq 4000 platforms at
the Beijing Genomics Institute (Shenzhen, China). The PacBio library, with an average
insert size of 11 kb, generated 94,155 reads totaling 1,236,526,834 bp. This sequencing
provided 509-fold coverage of the genome, which enables the assembly of a high-
quality circular genome. SMRT Analysis v2.3.0 was then applied for assembly (7). Default
parameters were used for all software, unless otherwise specified. Moreover, the
Illumina library, with an average insert size of 500 bp, generated 3,806,998 paired-end
reads totaling 448,000,000 bp, and the next-generation sequencing (NGS) data were
utilized to correct the single base error in the assembly result by the GATK v1.6-13
(https://software.broadinstitute.org/gatk/) and SOAP (8, 9) tool packages.

Gene prediction was performed using Prodigal v.2.6.2 (10) with the single-genome
mode, while tRNA genes were predicted with tRNAscan-SE v.1.3.1, and rRNA genes
were predicted with rRNAmmer v.1.2 (11). The predicted open reading frames (ORFs)
were used as input for an RPS-BLAST search against the NCBI Conserved Domain
Database (CDD) and Cluster of Orthologous Groups (COG) database (12, 13). Moreover,
the genome of strain PY97N was also annotated using PGAP (14).

The complete genome consists of one chromosome with a total length of
2,430,152 bp and a G�C content of 42.06%. Of the 2,367 genes predicted, 2,322 were
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protein-coding sequences (CDSs) and 45 were RNAs. Of the entire 2,322 CDSs, 1,928
could be assigned to COGs.

Genome analysis of strain PY97N reveals the existence of 8 genes for aromatic
ring-hydroxylating dioxygenase alpha subunit and 13 genes of the beta subunit, 7 of
which present pairwise.

Two putative genomic islands encompassing at least 77,623 bp and 26,955 bp were
predicted by the IslandViewer4 software using both the IslandPath-DIMOB and SIGI-
HMM methods (15) (Fig. 1). They both had a relatively higher G�C content (48.80% and
42.64%, respectively) than the average G�C content of the genome. The two putative
islands contained 74 and 28 genes, respectively. Genes that are commonly found in
mobile genetic elements (MGEs), including transposase, integrase, and recombinase,
were identified both at the beginning and end of the two islands, suggesting that these
features can self-mobilize, possibly mediating horizontal gene transfer (HGT) in this
strain. For the larger island, at least 24 genes (32% of the total) related to heavy metal
utilization and resistance were annotated, including the regulatory system cusS-cusR,
and genes copA and copB, encoding copper resistance proteins. These genes indicate
a potential for tolerance for extreme copper stress (16, 17). We also found a complete
czc efflux system which produces cobalt-zinc-cadmium resistance proteins.

TABLE 1 General features of Cycloclasticus sp. PY97N and MIGS mandatory informationa

General feature Description

Classification
Domain Bacteria
Phylum Proteobacteria
Class Gammaproteobacteria
Order Thiotrichales
Family Piscirickettsiaceae
Genus Cycloclasticus
Species Cycloclasticus sp.

Gram stain Negative
Cell shape Rod
Motility Motile
Pigmentation Nonpigmented
Sporulation Nonsporulating
Growth temp (°C) 20
Carbon source Polycyclic aromatic hydrocarbons
Energy source Chemoorganotrophic
Terminal electron receptor Oxygen
Salinity (‰) 36
Oxygen Aerobic

MIGS data
Submitted to INSDCb GenBank accession no. CP023664
Investigation type Bacteria
Project name Cycloclasticus sp. strain PY97N genome

sequencing and assembly
Geographic location

Latitude, longitude 36.67°N, 121.99°E
Depth (m) 17.8
Country China (Yellow Sea)

Collection date (yr-mo-day) 2007-04-05
Environment

Biome Ocean
Feature Sediment
Material Sea sediment

Environmental package Sea sediment samples from Yellow Sea
Biotic relationship Free-living
Pathogenicity None
Sequencing methods PacBio RS II, Illumina HiSeq 4000
Assembly RS_HGAP Assembly3 in SMRT Analysis v2.3.0
Finishing strategy Complete

a MIGS, minimum information about a genome sequence.
b INSDC, International Nucleotide Sequence Database Collaboration.
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Data availability. The complete genome sequence of Cycloclasticus sp. PY97N is
available in GenBank under the accession number CP023664; both the PacBio reads and
the Illumina reads are available in the SRA under accession number PRJNA411517.
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