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ABSTRACT We report the genome sequence of an H6N5 influenza A virus isolated
from a northern pintail sampled in Alaska in 2017. All segment sequences shared
�99% nucleotide identity with those of a wild bird strain from South Korea. This
finding supports viral dispersal between East Asia and North America by wild birds.

There is a growing body of evidence that wild migratory aquatic birds disperse
influenza A viruses (IAVs; family Orthomyxoviridae, genus Alphainfluenzavirus) be-

tween East Asia and North America via the Bering Strait (1–5). Here, we report the
genome sequence of A/northern pintail/Alaska/UGAI17-4733/2017(H6N5), here pintail/
Alaska/UGAI-4733, which provides additional support for this premise.

As part of annual IAV research and surveillance, combined cloacal and oropharyn-
geal samples from hunter-harvested ducks were collected at Izembek National Wildlife
Refuge (55.3°N, 162.8°W), Alaska in September and October of 2017. Samples were
screened via real-time reverse transcriptase PCR (rRT-PCR) for IAV, and viruses were
isolated from eggs using previously described methods (6, 7). From a northern pintail
(Anas acuta) sampled on 20 September 2017, the rRT-PCR screen resulted in a threshold
cycle (CT) value of 24.46, and an H6N5 virus was isolated. RNA was extracted using a
Qiagen viral RNA minikit and amplified by multiplex RT-PCR using published primers
and methods (8). Following library preparation (Nextera XT DNA library preparation kit;
Illumina, Inc.), next-generation sequencing (NGS) of paired-end reads was performed
using a V3 600-cycle kit on a MiSeq instrument (Illumina, Inc.). From this library, 626,806
reads were generated. The genome was assembled using Geneious 11.0.4 (Biomatters,
Inc.) by mapping paired reads to reference sequences from GenBank (9). The best-
fitting reference sequence for each segment is reported in Table 1. NGS covered 100%
of all coding regions of the genome (Table 1). Results from a nucleotide BLAST analysis
conducted on 29 April 2020 for all gene segment sequences of pintail/Alaska/UGAI-
4733 indicated that this isolate shared high genomic similarity with A/Aix galericulata/
South Korea/K17-1638-5/2017(H6N5), here mandarin duck/South Korea/K17-1638-5. To
determine the extent of genomic similarity, we used Geneious 11.04 to construct
nucleotide and protein sequence alignments using the two genomes. The coding
regions of gene segment sequences for northern pintail/Alaska/UGAI-4733 and man-
darin duck/South Korea/K17-1638-5 shared nucleotide identities of 99.4 to 100% and
predicted amino acid similarities of 99.2 to 100% (Table 1).

Virus strain mandarin duck/South Korea/K17-1638-5 was reported to have been
isolated from wild bird feces collected at a wetland in northwestern South Korea on 7
December 2017 (5). All eight gene segments of mandarin duck/South Korea/K17-1638-5
were previously reported to be of a North American lineage based on BLAST results and
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phylogenetic analysis (5). Isolate pintail/Alaska/UGAI-4733 was collected 78 days before
the South Korean sample. Given the timing of both sample collection efforts and typical
migratory bird movements within and between the East Asian-Australasian and Pacific
Americas flyways, it is possible that a viral ancestor to mandarin duck/South Korea/K17-
1638-5 was dispersed from Alaska to East Asia during the summer or autumn of 2017. There
is evidence that numerous species, including northern pintails, have intercontinental
migratory tendencies that may have facilitated such a dispersal event (10–12).

The genomic similarity of pintail/Alaska/UGAI-4733 and mandarin duck/South
Korea/K17-1638-5 is the second instance of nearly identical viruses identified at the
Izembek National Wildlife Refuge in Alaska and wetlands in western South Korea (1).
Furthermore, evidence suggests that viral dispersal across the Bering Strait is bidirec-
tional (2–5). Therefore, the detection of IAVs in wild birds in western South Korea that
represent potential economic or public health threats may serve as an early warning for
potential introduction into North America via Alaska and vice versa.

Data availability. The coding-complete genome sequence of strain A/northern
pintail/Alaska/UGAI17-4733/2017(H6N5) has been deposited in GenBank under the
accession numbers MT420712 to MT420719. The raw sequencing reads were deposited
in the NCBI Sequence Read Archive (SRA) under the accession number SRR11908080
and BioProject accession number PRJNA636765.
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