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ABSTRACT: Bottom-up proteomics relies on identification of peptides
from tandem mass spectra, usually via matching against sequence
databases. Confidence in a peptide−spectrum match can be characterized
by a score value given by the database search engines, and it depends on
the information content and the quality of the spectrum. The latter are
influenced by experimental parameters, of which the collision energy is the
most important one in the case of collision-induced dissociation. We
examined how the identification score of the Byonic and Andromeda
(MaxQuant) engines varies with collision energy for more than a thousand
individual peptides from a HeLa tryptic digest on a QTof instrument. We
thereby extended our earlier study on Mascot scores and corroborated its findings on the potential bimodal nature of this energy
dependence. Optimal energies as a function of m/z show comparable linear trends for the three engines. On the basis of peptide-
level results, we designed methods with one or two liquid chromatography−tandem mass spectrometry (LC-MS/MS) runs and
various collision energy settings and assessed their practical performance in peptide and protein identification from the HeLa
standard sample. A 10−40% gain in various measures, such as the number of identified proteins or sequence coverage, was obtained
over the factory default settings. Best performing methods differ for the three engines, suggesting that the experimental parameters
should be fine-tuned to the choice of the engine. We also recommend a simple approach and provide reference data to ease the
transfer of the optimized methods to other mass spectrometers relevant for proteomics. We demonstrate the utility of this approach
on an Orbitrap instrument. Data sets can be accessed via the MassIVE repository (MSV000086379).
KEYWORDS: mass spectrometry, bottom-up proteomics, peptide fragmentation, database search, identification score,
collision energy optimization, transferability

■ INTRODUCTION

Over the past few decades, mass spectrometry (MS) coupled to
(nano)-liquid chromatography (nano-LC) has become an
indispensable analytical tool in identification, quantitation, and
characterization of proteins.1−10 Themost establishedmethod is
the bottom-up approach, also called shotgun proteomics, where
proteins in a complex sample are first digested to peptides, and
the latter are then separated in one or more dimensions and
identified via tandem MS. Most frequently, peptide ions are
fragmented by collisions with inert gas molecules (collision-
induced dissociation, CID).11 The conventional data acquisition
strategy is the data-dependent analysis (DDA) involving mass
selection and MS/MS measurement of the most abundant
precursors present in a preceding MS scan. The resulting
fragment ion spectra of individual peptides are then searched
against a sequence database to identify the peptide sequence,
and proteins are inferred from the identified peptides. The
similarity between the experimental and theoretical spectra, and
thereby the confidence of the peptide−spectrum match (PSM),
is characterized by a score value.12,13 An increase in the
confidence of the PSMs is attained if the given experimental

MS/MS spectrum contains a large number of characteristic
peptide fragment ions (e.g., b/y sequence ions) and only a small
number of unidentifiable (noise) peaks. An overall high level of
confidence in the PSMs is key to identify a large number of
peptides and, ultimately, proteins.
Collision energy (CE) is one of the most important

parameters for tandem MS/MS measurements because it
determines relative ion abundance of the various fragments
and thereby the information content of the taken spectra.
Although manufacturers typically provide recommendations,
different kinds of spectra may be optimal for different purposes,
requiring different collision energy settings. Workflow-specific
optimization therefore promises significant performance gain.
Still, earlier literature studies did not directly target the most
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efficient shotgun proteomics identification. For example, several
papers determined CE values corresponding to a given survival
yield (e.g., 50%) for peptides,14−16 while others sought the
highest intensity for given parent−fragment transitions.17−23

Other studies addressed the most efficient sequence validation
of biosimilar drugs, e.g., monoclonal antibodies (mAbs), and it
was found that a combination of multiple CEs (or other
experimental parameters relevant for the fragmentation
method) may have a beneficial effect.24,25 Recently, our
laboratory thoroughly tested the energy dependence of
sequence validation procedures for mAbs26 and leveraged the
results to develop a simple workflow. Using two collision
energies 6−10 eV apart and an automated data processing, we
could obtain a sequence coverage ca. 25% higher than the
straightforward method with factory settings.
As a rare example of studies targeting identification

confidence, Hinneburg et al. carried out MS/MS fragmentation
of synthetic glycopeptides on a QTof instrument and
determined optimal energetics for the peptide part, as
characterized by the intensity coverage score.27 However, this
systematic investigation included only a few dozen peptides.
Another study, from Diedrich et al., examined the number of
identified peptides and proteins from the tryptic digest of
HEK293T lysate at three distinct CEs, as well as with a stepped
method combining the three, using a Q Exactive mass
spectrometer.28 However, only fairly small differences in the
number of identified peptides under the various conditions were
reported, and the full body of peptide-level results remained
undisclosed. Tholey and co-workers also investigated the effect
of varying collision energies on peptide identification as part of a
study focusing on phosphopeptide quantitation.29

To our knowledge, we were the first to systematically study
energy dependence of peptide identification confidence on large
sets of individual peptides.30 The MS/MS spectra of several
thousands of tryptic peptides from a digest of Escherichia coli and
HeLa cell lysate were recorded at 21 different CEs, spanning a
range of 40 eV, on a Bruker QTof instrument. The data were
analyzed with Mascot, one of the most frequently used search
engines.31 Mascot score vs energy curves revealed that only less
than half of the peptides have a single well-defined optimal CE
yieldingmaximum score (unimodal behavior).More than half of
the peptides, in contrast, showed either a broad plateau or two
different maxima (bimodal behavior). Optimum CE as a
function of m/z of the peptide was shown to follow separate,
significantly different linear trends for the unimodal and bimodal
cases. This observation may form the basis of the DDA
experiment design, including the potential use of multiple CEs
even for the identification of unmodified peptides.
In the present work, we extend and leverage our studies on CE

dependence to suggest optimal workflows for the practical
measurement of a complex sample in its entirety. First, we
broaden our previous investigation on Mascot to other search
engines.12,13 We chose Andromeda since it is the one integrated
into the widely used MaxQuant quantitative proteomics
platform.32,33 We also included Byonic, a widely used hybrid
method, which uses a small amount of de novo sequencing to
extract candidate peptides from the database34 and overcomes
the limitation of pure database searching programs, which
cannot deal efficiently with nonspecific cleavages or several
peptide modifications.
To transform these peptide-level results showing complicated

and diverse energy dependence into practical approaches, we
create and test workflows using combinations of multiple

collision energies, within the same run or in two separate runs.
We demonstrate the benefit of this approach for proteomics
measurements on a HeLa standard digest.

■ EXPERIMENTAL SECTION

Chemical Reagents

LC-MS-grade solvents and HeLa tryptic digest standard were
purchased from Sigma-Aldrich Kft. (Budapest, Hungary) and
Thermo Fisher Scientific (Waltham, MA), respectively.
MassPREP E. coli digestion standard was fromWaters (Milford,
MA).

Mass Spectrometry Analysis

Nano-LC-MS/MS studies of the HeLa tryptic digest standard
samples were performed using standard laboratory methods for
proteomics investigation (see details in Supporting Information
S1) with varying collision energy settings. Briefly, in each run, 50
ng of HeLa was subjected to nano-LC-MS/MS analysis using a
Dionex Ultimate 3000 RSLC nano-LC coupled to a Bruker
Maxis II ETD Q-TOF via a CaptiveSpray nanoBooster
ionization source. Peptides were separated on an Acquity M-
Class BEH130 C18 or an Acclaim PepMap RSCLC18 analytical
column using gradient elution, following trapping on an Acclaim
PepMap100 C18 trap column. Solvent A consisted of water +
0.1% formic acid, while Solvent B was acetonitrile + 0.1% formic
acid. Spectra were collected using a fixed cycle time of 2.5 s and
the following scan speeds: MS spectra at 3 Hz, CID on
precursors at 16 Hz for abundant ones (intensity >40 000) and
at 4 Hz for peaks of low abundance (7500 < intensity < 40 000).
These intensity threshold values provide good-quality MS/MS
spectra and are typically used in our laboratory in DDA
proteomics measurements for protein identification. An active
exclusion of 2 min after one spectrum was used, except if the
intensity of the precursor was elevated threefold. We evaluated
two separate QTof experimental data sets, as discussed in the
forthcoming sections.

Energy-Dependence Studies. As part of this work, we
analyzed the score−collision energy relationship for the Byonic
and Andromeda search engines on a previously recorded
collision-energy-dependent mass spectrometric data set, the
Mascot analysis of which had been published earlier.30 In this
data set, collision energies applied to fragment the peptides were
chosen to be the sum of an m/z-dependent preoptimized
collision energy (for the equation, see Supporting Information
S2) and a collision energy shift mapping the −20 to +20 eV
range in 2 eV steps in 21 separate runs. Hence, 21 different
collision energy values for each peptide were measured, centered
at a peptide-specific default value and with a lower limit of 5 eV.
All LC-MS/MS runs in this data set were recorded using an
elevated threshold of 400 000 cps for MS/MS measurements to
decrease the run-to-run variability of the set of actually analyzed
parent ions in the DDA measurements.30 Actually two specific
increased threshold values, namely, 100 000 and 400 000 cps,
were tested in repetitions of identical runs. These were selected
such that in a normal experiment ca. one-half and one-third of
the precursor ions selected for MS/MS had intensities above
these thresholds, respectively. Finally, we chose the latter for the
energy-dependence studies because it provided variability
statistics on the complex HeLa sample similar to those on the
simple enolase, ensuring that (almost) the same peptides are
measured at all energies. The increase in threshold could be
done at the expense of the notably reduced number of identified
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peptides from the complex sample, about one-third of that with
the default threshold.30

Performance Gain Study. The above energy-dependence
studies allow optimum energies to be determined for each
individual peptide, but obviously, we cannot directly apply these
in practice since the identity of the peptides is not known at the
time of themeasurement. For the practical purposes set to be the
goal of the present paper, we used these results to choose six
different m/z-dependent collision energy settings for actual LC-
MS/MS runs and carried out five repetitions of each (30 LC-
MS/MS runs overall). First, we measured a reference, which was
chosen to be the manufacturer’s recommendation for protein
identification (“factory setting”). Next, we wanted to get close to
the optimal collision energy with respect to the Mascot score for
unimodal peptides and employed settings corresponding to the
linear fit between the optimum collision energy and the m/z of
the peptide.30 We refer to this setting as “100%” throughout the
text. As a third and fourth setup, we uniformly increased the
collision energy to 135% of the value coming from this fit and
decreased it to 70% of the value coming from this fit. These
settings practically coincide with the linear fits to the lower and
higher energy optimum collision energies of the bimodal
behavior peptides. Finally, two stepped methods were tested.
In the first case, 50% of the time was used to acquire a spectrum
with the collision energy set to 100%; then, in the other half of
the time, the CE was reduced to 70% (step 100/70%). In the
second stepped method, the time was split into three equal
intervals, using 70, 100, and 135% collision energy (step 100/
70/135%). (For a more detailed explanation of the chosen
collision energy settings, see the Results and Discussion
section.)
Further Test Measurements Addressing Transferabil-

ity. Additional measurements to support transferability of our
results were carried out using the above experimental setup on E.
coli digest samples (300 ng per run) and on HeLa samples on a
Thermo Orbitrap Fusion instrument (see Supporting Informa-
tion S13 and S14).

Data Analysis

The rawQTof data were first recalibrated using Bruker Compass
DataAnalysis software 4.3 (Bruker Daltonik GmbH, Bremen,
Germany) for the internal calibrant. MS/MS spectra were
searched against the human SwissProt database using three
different search engines, namely, Mascot, Byonic, and
Andromeda. The common parameters were set as follows:
trypsin as the enzyme and maximum two missed cleavages
allowed.
Mascot Search.MS/MS peak list generation was performed

using ProteinScape software 3.1 (Bruker Daltonik GmbH,
Bremen, Germany). Database search was performed using the
Mascot search engine version v.2.5 (Matrix Science, London,
U.K.). The mass tolerance was determined according to the
recommended protocol35 and was set as 7 ppm for precursors
and 0.05 Da for fragment peaks. The list of relevant variable
modifications was obtained using error-tolerant search35 and
included methionine oxidation and glutamine and asparagine
deamidation, while cysteine carbamidomethylation was selected
as fixed modification. The resulting Mascot output files (.dat)
were subject to further analysis by Scaffold and Serac programs
(see below).
Byonic Search.We employed Byonic v3.5.0 for our analyses

(Protein Metrics, Cupertino, CA). Regarding mass tolerance
values and the list of variablemodifications, recommendations of

the Previewmodule were used. These included 7 and 15 ppm for
precursor and fragment mass tolerance, respectively, and the
following variable modifications: oxidation (M) as common and
pyro-glutamination (N-term Q and N-term E) and ammonia
loss (N-term C) and acetyl loss (protein N-term) as rare
modifications. Note that the hybrid characteristic of Byonic
allows handling of more variable modifications compared to
database searches. The mzIdentML output files were further
analyzed by the Scaffold program, whereas the Excel reports
were the input files for data aggregation carried out by Serac.

Andromeda Search. The raw files of the mass spectro-
metric experiments were searched by Andromeda as integrated
into MaxQuant version 1.6.7;32,36 the peak lists were created by
MaxQuant software itself. The default mass tolerances for
Bruker QTof instrument were used (0.006 Da and 40 ppm for
precursor and fragment tolerance), and the same modification
list was applied as for Mascot database search. The results of the
search were further analyzed by Scaffold and Serac programs.

Aggregation for Energy Dependence. For the study of
the energy dependence of peptide fragmentation, we used our
recently developed program called Serac.26 Analogous to our
previous work on Mascot data,30 we collected identification
scores as a function of collision energy from the energy-
dependent mass spectrometric data series for the Byonic and
Andromeda search engines and determined the optimal collision
energy. (More details can be found in Supporting Information
S3.) Briefly, we first extracted the data from Byonic Excel reports
and the allPeptides.txt output file of the MaxQuant program.
The score vs energy shift functions were then normalized by
dividing all values with the maximum score for the given peptide
ion. Byonic score values, Byonic log Prob values, and
Andromeda scores were all investigated. To ensure that we
draw conclusions on the basis of confident peptide identi-
fications, only peptides meeting certain minimum requirements
were taken into account. First, depending on the chosen
measure of identification confidence, we only considered a
peptide ion identified at a given collision energy

• if its Byonic score exceeded 200, or
• its log Prob value exceeded 1.3 (p < 0.05), or
• its Andromeda score was above 50.

Further, a peptide ion was only included in the energy-
dependence analysis if it was identified at least at three
consecutive collision energy values and for at least one collision
energy it was found to have

• a Byonic score value above 400 (being a “very good”
score),37 or

• a log Prob value exceeding 2 (p < 0.01), or
• an Andromeda score greater than 75.32

For each peptide ion, the optimum energy was determined
from the normalized score vs collision energy shift data sets by
fitting one or two Gaussian functions. The score cutoff, while
important to avoid false identifications biasing our results,
resulted in no data points at low scores; therefore, we decided to
add two points with zero score at a shift of ±35 eV to avoid
erroneously wide peaks to be fitted. Where there were less than
12 data points in the original data, we only attempted to fit one
Gaussian. Data for peptide ions with at least 12 points were fitted
using both one and two Gaussian function, and the two-peak fit
was accepted if it provided significantly better fit. The nonlinear
fits were carried out, and the corresponding plots were generated
using the levmar38 and PGPLOT39 libraries through their Perl
Data Language interfaces. The positions of the center of the
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Gaussian peaks were considered as optimal values: a single
energy value for one-peak fits (unimodal peptides) and two
energy values for each two-peak fit (lower and higher energy
optimum of the bimodal peptides).
Analysis of Performance Gain. The practical proteomics

performance of LC-MS/MS runs using various collision energy
settings in conjunction with various search engines was
compared using Scaffold version 4.10 (Proteome Software,
Portland, OR), using the following settings: LFDR-rescoring on,
95% peptide threshold, 1% FDR for proteins, and a minimum of
two peptides was required for the identification of proteins.

■ RESULTS AND DISCUSSION

Energy-Dependent Experiments

As a first part of this work, we wanted to broaden the scope of
our earlier investigation on collision energy dependence of the
identification score. We thus constructed energy-dependence
curves of Byonic scores, Byonic log Prob values, and Andromeda
scores, analogous to theMascot score curves done earlier, for the
peptides identified from the same experimental data set on a
standard HeLa tryptic digest. It was found that Byonic score and
log Prob values gave practically identical energy dependence, so
we will discuss only the Byonic score here; results on log Prob
can be found in Supporting Information S5. Overall, 21 different
collision energies were examined for all peptides, mapping the
energy dependence in 2 eV steps. When a given peptide was
identified more than once in the same LC-MS/MS run, that is,
measured several times at the same collision energy, the best
scoring match was accepted. Overall, from these runs with an
elevated MS/MS threshold, we identified 2188 and 1765
peptides using the Byonic and Andromeda search engines,
respectively (see Table 1). Among these, 1378 and 1041

peptides, respectively, were considered sufficiently reliable to be
included in the energy-dependence analysis (see the Data
Analysis section). Using either search engine, approximately
three-quarters of these peptides were doubly charged, and most
of the rest were triply charged.
Analogous to the previousMascot results, normalized score vs

collision energy curves revealed three qualitatively different
curve shapes in all cases, namely, a single, well-defined
maximum; a broad plateau; or two well-defined peaks. We
therefore modeled them using one or two Gaussian functions,
based on fit quality, and we refer to them as showing unimodal
and bimodal behavior. In total, 79 and 40% of the peptides were
found to be bimodal for Byonic and Andromeda, respectively,
which points out that a large fraction of the curves shows either
two maxima or a broadening due to overlapping peaks. As was
discussed in our earlier paper,30 the phenomenon of bimodal
curves can be associated with the different energy dependence of

b- and y-type fragment intensities. Typically, y ions are more
stable, less sensitive to the collision energy, and therefore more
intense in the MS/MS spectra than b ions at all collision
energies. Their optimum can be found ca. at the higher energy
optimum of bimodal peptides. In contrast, b ions easily fragment
to smaller ions and their intensity shows a relatively sharp
maximum at the lower collision energy optimum. The heights of
the two peaks in the score vs collision energy function are
comparable, with the peak at the higher collision energy usually
having a somewhat lower score. The data in our earlier paper30

shows that it is on average∼93% of that at the lower energy peak
for Mascot. The reason might be that although the contribution
of y ions increases with the increase of collision energy, it is less
energy-dependent, almost constant in a large collision energy
range. The smaller effect of b ions is only present around the
lower energy optimum. In addition, bimodal peptides have a
fairly wide range of collision energies with relatively high scores
(i.e., a plateau), as we found that even the minimum Mascot
score between the two peaks is on average as much as 77% of the
score at the lower energy peak (see Figure 1 for representative
examples). Another interesting observation is that at higherm/z
the bimodal behavior becomes more frequent.
Figure 1a depicts example fitting results for the bimodal

NNASTDYDLSDK2+ peptide (blue curve and triangles belong

Table 1. Number of Peptides with Various Properties for All
Search Engines Considered30 a

Mascot Byonic Andromeda

identified from 21 runs 2152 2188 1765
considered for energy-dependence study 1721 1378 1041

from this, 2+ 1405 1087 834
from this, 3+ 284 252 183
from this, unimodal fit 733 288 623
from this, bimodal fit 988 1090 418

aMascot results were taken from our earlier work.

Figure 1. Result of fitting Gaussians to the energy-dependence data
points (score as % of the maximum value vs collision energy in eV) of
the bimodal example peptides (a) NNASTDYDLSDK2+ and (b)
TTDGYLLR2+. Symbols denote measured data, while solid lines depict
the two-Gaussian model functions. The peak positions of the latter are
marked by crosses on the horizontal axis. Blue/triangles, gray/circles,
and orange/squares depict Byonic, Andromeda, and Mascot results,
respectively.
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to Byonic, while gray curve and circles show Andromeda results)
together with the earlier Mascot data as a comparison (indicated
by orange curve and squares). The centers of the Gaussian
functions were accepted as collision energy optimum values;
they are denoted by crosses on the horizontal axis in Figure 1. In
this particular example, the normalized score vs collision energy
curves and the two Gaussian model functions obtained in the
case of the three search engines have similar characteristics. The
resulting optima fall close to each other; the lower optima are
21.1, 18.7, and 19.9 eV, while the determined higher energy
optima are 43.4, 40.7, and 41.1 eV for Byonic, Andromeda, and
Mascot search engines, respectively. Nevertheless, we also found
numerous peptides that were identified by all three engines, but
the behavior with them is not uniform. Figure 1b shows the
representative example of a bimodal TTDGYLLR2+ peptide
where the determined optimal collision energies for Byonic and
Andromeda search engines are lower than for Mascot, especially
for the lower energy optimum. A full explanation of all
differences would require knowledge and analysis of details of
the algorithms in the three engines (two of them being
proprietary) and would not fit into the current study focusing on
practical usability and design of protocols. We believe that key
reasons include differences in what types of fragment ions the
engines look for and how they utilize experimental intensity
information.32,34,40 Regarding the former, b and y ions are always
considered for all three engines. Further, Mascot and Byonic
assumeNH3 loss (K, N, Q, and R) andH2O loss (D, E, S, and T)
from b/y ions, while Andromeda takes them into account only if
the corresponding b/y ion is present. Finally, Byonic also
includes a-type fragment ions as well. As an example, we
included MS/MS spectra of the TTDGYLLR2+ peptide at
Mascot’s and Byonic’s optimum energy, annotated by both
engines, in Supporting Information S4. Byonic appears to take
into account more of the low-intensity b fragment ions that favor
low energies, which might be the reason for its optimum being
lower. In addition, specifics of the peak list generation
(Andromeda’s own algorithm vs MS vendor’s software for the
other two engines) might also contribute to the observed
differences. Again, as our ultimate goal is to design measurement
workflows, we decided not to focus more on the differences of
individual peptides but instead to move on to an analysis at an
aggregated level.
From the analysis of individual peptides, we therefore zoomed

out to the whole set of them and plotted the optimum collision
energies as a function of the peptide ion m/z value. Results for
doubly charged peptides using Byonic and Andromeda are
shown in Figure 2a,b. Peak positions of the unimodal fits are
represented by blue circles, while gray and orange circles belong
to the lower energy and the higher energy optimum of bimodal
peptides, respectively. Apparently, peak positions in each group
follow linear trends with respect to m/z with relatively large R2

values (see dashed/dotted lines). We carried out a separate
analysis for the triply charged peptides (see Supporting
Information S6), which shows a broadly similar overall picture,
with optimum energies being slightly lower as expected because
of the higher charge. These findings are in line with the general
observation that optimum collision energies are linear in m/z.15

Studies targeting 50% fragmentation,14 maximum fragment ion
intensity for selected18,20 or multiple17,21 reactions, and scores of
modified peptides27,41 all found and employ collision energies
linear in m/z though the coefficient of determination and the
actual parameters differ. In addition, Thermo has explicitly

included the linear equation in their definition of “Normalized
Collision Energy”.42

The large residual variance around the trend line points to
further effects determining the optimum. As highlighted in our
previous paper,30 the majority of the investigated peptides have
+2 charge and only one basic residue (C-terminal R or K). This
limits the extent to which the effect of factors like position and
number of charged residues or potential presence of salt bridges
can be assessed. At the same time, the variance of the +2 peptides
with one basic residue is comparable to that of the full data set,
suggesting that these factors alone cannot account for the
observations and warranting further studies.
We also investigated the effect of precursor intensity on the

score and on the optimal collision energy trend. In general, we
found no strong correlation between the peptide intensity and
the maximum achievable peptide score (see Supporting
Information S7). Further, the typical run-to-run variations by
ca. a factor of two in peptide precursor intensity do not translate
into variations in score (see Supporting Information S7). Hence,

Figure 2. Peak positions in eV as a function of m/z for doubly charged
peptides using the (a) Byonic search engine and (b) Andromeda search
engine. Blue circles indicate the position of the sole peak for peptides
having unimodal behavior, while orange and gray circles are the higher
and the lower collision energies, respectively, for bimodal peptides.
Dashed and dotted lines represent linear fits.
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the somewhat different timing of the precursor selection for a
certain peptide between LC-MS/MS experiments does not
affect the determination of optimal collision energy. Finally,
optimal collision energies of peptides with higher intensity
weakly tend to deviate less from the trend line, but there is no
systematic relationship between the spread and the intensity
(see Supporting Information S7).
To compare the three examined search engines, we displayed

all of the obtained trend lines, together with those for Mascot
from our earlier work, in Figure 3. The scoring functions are very

different in the three search engines, which apparently gives rise
to slightly different trends, particularly in the case of the lower
energy peak of bimodal peptides. Apparently, Andromeda and
Byonic favor somewhat lower optimum energies than Mascot in
the m/z region of ca. 400−600, containing most of the analyzed
peptides. On the other hand, considering the sizeable residual
variance of the optimum energy around the trend lines (recall
Figure 2), we can still conclude that the choice of search engine
has only a minor effect on the notion of the “good spectrum”
and, hence, on the optimal collision energy.
Performance Gain over Factory Settings Using a Single
LC-MS/MS Run

The results on individual peptides for all three search engines
revealed reasonably good m/z-dependent linear trends for the
optimum energies. These can form a basis for the selection of
collision energies in a practical DDA measurement run, where
only them/z (but not the identity of the peptide) is known at the
time the collision energy is chosen. To explore the potential
proteomics performance gain via this approach, we used the
results of the previous section to set up several m/z-to-collision
energy mappings for a single LC-MS/MS run and tested the
latter in actual measurements. Due to the close similarity of
trend lines obtained for the three different search engines, we
based the LC-MS/MS setups on the equations of the Mascot
results, and we do not expect this choice to have any material
impact on the conclusions.
We created five different setups (see Figure 4 and Supporting

Information S8): (1) the first setup corresponded to the line
fitted to the single Mascot score optimum of unimodal peptides

vsm/z and was called 100%; (2) the second setup corresponded
to an energy of 135% of the first setup (and was also called as
such) and practically coincided with the fit to the higher energy
Mascot score optimum of bimodal peptides; (3) 70% of the first
setup, being an approximation of the lower energy Mascot score
optimum of bimodal peptides; (4) a stepped setting, involving
70 and 100% in a 50−50% time distribution; and (5) another
stepped method, combining the 70, 100, and 135% settings in
equal times. The latter two methods were motivated by the
observation that the unimodal optimum falls in between the
optima for the bimodal peptides. Hence, a combination of these
two or three collision energies within one LC-MS/MS runmight
provide favorable conditions for the measurement of both
peptide classes simultaneously. As a reference, we also tested the
manufacturer’s recommendation for protein identification,
referred to as factory settings. Five repeated runs were recorded
for each applied collision energy setup.
The performance of the various collision energy settings was

characterized by the number of identified peptides and proteins.
To bring the three studied search engines to the same platform,
we determined the numbers by importing the raw results into
Scaffold software and using Scaffold’s criteria for peptide and
protein identification (see the section on Data Analysis). The
values of the five repeats were averaged, and we then calculated
the performance gain in % relative to the factory settings. All
gains for all three search engines are summarized in Table 2,
while Figure 5 illustrates the numbers for the Mascot search
engine (similar bar charts for the other search engines can be
found in Supporting Information S9).
As can be seen, the collision energy setting of 100% means a

significant gain for each search engine, raising the number of
identified proteins from 712 to 790 for Mascot, from 878 to 957
for Byonic, and from 832 to 929 for Andromeda. In contrast, the
high energy setting (135%) brings hardly any advantage over the
manufacturer’s recommendations. The impact of the low energy
setting (70%) is strikingly different among the three engines,
performing best for Andromeda, on par with 100% for Byonic,

Figure 3. Linear fits to the optimal collision energy vs m/z data for
doubly charged peptides. Solid lines represent theMascot search engine
results,30 while dashed and dotted lines belong to the Byonic and
Andromeda search engine, respectively. Blue, single optimum for
unimodal peptides; orange, higher energy optimum for bimodal
peptides; gray, lower energy optimum for bimodal peptides.

Figure 4. Compared energy settings in eV as a function of m/z for +2
peptides. (Results for +3 peptides can be found in Supporting
Information S8.) Red line, factory setting (see Supporting Information
S8 for equations). Blue line, 100% (the line fitted to the Mascot score
optimum of unimodal peptides). Dashed brown line, 135% (practically
the line fitted to the higher energy Mascot score optimum for bimodal
peptides). Dotted gray line, 70% (practically the line fitted to the lower
energy Mascot score optimum for bimodal peptides). The two applied
stepped methods combine the 100 and 70% settings (blue and gray
lines) and 100, 70, and 135% settings (blue, gray, and brown lines),
respectively.
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and no better than the factory setting forMascot. This difference
might be related to the above-observed difference in the low-
energy optima for the three engines.
Generally speaking, the stepped settings do not seem to show

signs of synergism; the observed gains are usually between those
of their constituents. Only in one case, for Byonic, was the
combination of 100/70% marginally better than either 100 or
70%. In summary, 100% turned out to be the best setting for
Mascot, 100/70% was the best performer for Byonic, and 70%
was the most efficient for Andromeda, but several other settings
yielded comparable results. In all cases, the best methods
provided a gain of∼10% in the number of proteins and∼20% in
the number of peptides (see Table 2).
Since better collision energy leads to improved spectrum

quality, we expect not only a higher number of identified
compounds but also higher confidence in them. To confirm this
expectation, for each search engine, the best collision energy
setting for a single LC-MS/MS run (as determined above) and
the factory setting were also compared in terms of identification
scores of the common peptides and sequence coverage of
common proteins, as determined by Serac and Scaffold,
respectively. The gains were determined as averages over three
pairs of LC-MS/MS runs. As is apparent from Figure 6, the
collision energy optimization process significantly improved the
DDA analysis. Both the identification confidence of peptides
and the sequence coverage of identified proteins increased
significantly (on the order of 20%) for all three search engines
applied. Andromeda profited most from the fine-tuning though

it had slightly lower sequence coverage values at the factory
setting to begin with. The larger sequence coverage values are in
line with the increased number of peptides.
Performance Gain Using a Combination of Multiple
LC-MS/MS Runs

As noted before, the investigation of individual peptides revealed
two types of behavior (unimodal and bimodal),30 and it seemed
logical to use two different collision energy settings. Besides
combining them within one run (see above), we studied the
effect of using them in two separate runs and aggregating the
results via data processing. Specifically, we tested the number of
identified peptides and proteins from the joint processing of two
LC-MS/MS measurements, one run with the 100% method and
another one collected at 70% collision energy setting. Since
repetition of runs may already increase the number of identified
peptides/proteins,43 the reference we took is the combination of
two runs, both taken at the best setting for single LC-MS/MS
runs. Combined data analysis was performed by Scaffold using
identical criteria as above. The procedure was carried out for all
possible combinations of the repeated measurements. Where
identical runs were combined, we created all possible pairs from

the five repetitions, leading to =( )5
2 10 combinations. Where

different runs were combined, five repetitions from one setting
and five repetitions from the other setting meant 5 × 5 = 25
combinations. The results over these 10 or 25 combinations
were then averaged. Figure 7 depicts the results for the number
of proteins together with the single run at factory setting and the
optimum method for the given search engine as comparisons.
The number of identified peptides shows very similar trends and
is presented in Supporting Information S10. As can be seen, two
measurements provided 10−20% more identified proteins than
a single LC-MS/MS run, but the use of two runs with different
collision energy settings could not provide a consistent benefit
over a repetition at the optimum setting. In fact, the latter
resulted in more identified proteins (by 4% for Mascot) or
performed similarly well (in the cases of Byonic and
Andromeda) to the combination of 100 and 70% methods.
Practical Approach to Collision Energy Optimization

In the above sections, we demonstrated the potential gain in
performance of proteomics measurements from a collision

Table 2. Performance Gain in Terms of Increase in the
Number of Identified Peptides and Proteinsa

aAverages over five repeats, obtained using various collision energy
settings and analyzed by three different search engines, are shown,
expressed as and color-coded on the basis of the gain in % over the
factory setting (darker red means higher gains).

Figure 5. Number of identified peptides and proteins as average of five
repeats at several collision energy settings analyzed by the Mascot
search engine and Scaffold. Left-hand-side bars and scale (blue),
number of proteins; right-hand-side bars and scale (orange), number of
peptides. Error bars indicate ±1 standard deviation.

Figure 6. Performance gain of the best collision energy method for a
single LC-MS/MS over factory setting in terms of identification scores
and sequence coverage of proteins. Left-hand-side bars and scale
(green), sequence coverage; right-hand-side bars and scale (purple),
identification scores.
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energy optimization directly targeting identification scores. The
steps we performed provided us with a general picture of energy-
dependent peptide behavior, but the actual collision energy
settings are specific to our instrument. Comparison of spectra of
model compounds44 and of large sets of peptides45 across
instruments relevant for proteomics (QTof, Orbitrap) indicates
that energy dependence is broadly similar but the optimal
energies may differ to some extent, hampering the direct transfer
of the optimized settings across instruments. In line with this, a
brief survey of the recent proteomics literature suggests some
variation in the employed collision energy settings, but the
authors typically did not provide any details regarding their
choice, hinting that no targeted optimization was carried out.
Here, we suggest a simple approach to transfer our optimization
concept to any other instrument, which has the potential to
bring about comparable performance gains. A key step of this
optimization is to find the equivalent of the 100% trend line.
While here it was obtained from hundreds of peptides, we
propose that it can also be determined from a handful of
carefully selected ones. We suggest carrying out energy-
dependent measurements focusing only on a few peptides
from the HeLa standard that are identifiable in a wide energy
range, show unimodal behavior, and have their Mascot optimum
energy very close to the 100% line. After scoring the results with
Mascot and identifying the best energy for each peptide, the
100% line can be fitted for the alternative instrument. We
provide a collection of peptides recommended for this purpose
in Supporting Information S11.
To support and strengthen our conclusions and prove the

utility of the above-presented collision energy optimization
protocol, we designed and performed several further experi-
ments. First, we carried out a performance check on E. coli digest
in the above-described manner using our Bruker QTof
instrument (see Supporting Information S12). A 300 ng sample
was injected in each LC-MS/MS run, and four replicates were
measured. Applying the optimized collision energy values, we
could achieve gains of 5−13 and 8−18% over the factory settings
in the numbers of identified proteins and peptides, respectively,
depending on the search engine used. These findings
corroborate the generality of our approach to the tryptic digest
sample.

As a next step, we focused on the transferability to another
mass spectrometer. To this end, we carried out LC-MS/MS
measurements on HeLa tryptic digest using Thermo Fusion
Orbitrap equipment with varying HCD collision energies from
NCE = 13% to 45% (see Supporting Information S13). From
these measurements, most of the reference peptides presented in
Table S2 could be identified at several collision energy settings.
Based on the well-defined energy-dependent behavior of the
Mascot score, 20 peptides were chosen for benchmarking
purposes covering the whole m/z range (see Table S2). Since
NCE values of Thermo instruments already contain a charge
factor, we deliberately refrained from separate calibration for
different charge states. The optimal collision energy setting was
determined by the fitting procedure of the Mascot score vs
collision energy curves of the 20 peptides, and NCE = 28% was
obtained as average. Comparison of the defaultNCE = 35%
and the optimized method in two or three replicates resulted in
5−13% more proteins and 8−28% more peptides upon
optimization (see Supporting Information S14). These results
clearly show the applicability of the designed protocol to set up
other instruments.
Finally, we repeated the experiments on the Thermo Obritrap

Fusion mass spectrometer operating in the low-energy CID (ion
trapIT) fragmentation mode (see Supporting Information
S13). Since in ITs the parent ion is selectively energized and the
energy of the dissociating ion does not change with increasing
excitation, typically the increase of collision energy has minimal
effect on the mass spectra.46−48 Therefore, no significant
collision energy dependence of the identification scores and
number of identified proteins/peptides is expected. Indeed,
despite the large investigated collision energy range (NCE from
19 to 43%), both the fragments itself and their relative intensity
were the same in theMS/MS spectra and the performance of the
LC-MS/MS runs remained constant.

■ CONCLUSIONS
For tandem mass spectrometry, collision energy is of key
importance in determining spectrum characteristics. Bottom-up
proteomics relies on identification of peptides via matching their
MS/MS spectra against a database. In this work, we examined
how the confidence of peptide identification (the “score”)
depends on the collision energy and what the optimum value
might be, for two widely used search engines, Byonic and
Andromeda (as part of the MaxQuant tool). We used our
findings, together with our earlier results30 on Mascot, to design
optimized proteomics workflows and assessed the performance
of the latter on an actual proteomics sample. The main
conclusions we could draw from our work are as follows.

• As a function of collision energy, Byonic and Andromeda
scores for identification of a given peptide may simply
show a maximum (“unimodal behavior”). But for a
significant fraction of peptides, the dependency is more
sophisticated and can be characterized either by two
separate maxima or by a broad plateau (“bimodal
behavior”). These observations are in line with our earlier
findings on Mascot and corroborate that the common
cause might be the different energy dependences of b- and
y-type fragment ions.30

• Across all peptides, the optimum collision energy depends
linearly on the peptide ion m/z with significant residual
variance. Different charges and the different classes
(unimodal and bimodal) follow separate trend lines. On

Figure 7. Number of identified proteins using several protocols
analyzed by various search engines. Red, single run at factory setting;
blue, single run at optimal setting; orange, two runs at optimal setting
combined; and pink, two runsone at 100% and another one at 70%
collision energy setting combined.
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the other hand, different search engines display very
similar trends for identical categories.

• Knowledge of the various m/z-dependent trends in
optimum collision energies allowed us to design
experimental workflows with different collision energy
settings that can be used in the LC-MS/MS measure-
ments of a complex sample in its entirety. We assessed the
performance of single-run and two-run workflows on a
tryptic HeLa digest standard.

• For all search engines, the optimized workflows out-
performed the factory settings according to several key
measures of proteomics. The optimization increased the
number of identified peptides and proteins, sequence
coverage, and identification score of the individual
peptides. Gains in the various measures ranged from 10
to 40% for single-run workflows. Dedicated two-run
workflows did not provide additional improvement over
that expected by simply repeating measurements.

• Even though differences between search engines were
minor in peptide-level trends, the best performing
workflows were different for them. Mascot was found to
yield optimal results only in a narrow energy range.
Byonic and Andromeda showed less clear preferences, but
they, Andromeda in particular, tend to work better with
lower energies.

Confidence in the identification of a peptide from an MS/MS
spectrum stems from characteristics that are formed in a
complex interplay of many energy-dependent fragmentation
processes. Our investigations highlight the importance of
optimizing the collision energy directly with the database search
scores as target and also suggest that the specific search engine
should be taken into account when the experimental settings are
fine-tuned. We recommended a simple protocol and provided
reference data to carry out this fine-tuning on other mass
spectrometers widely used in proteomics. As an example, we
demonstrated the usefulness of this protocol on an Orbitrap
instrument.
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