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Preterm births are rising in Canada and worldwide. As clinicians strive to identify preterm neonates at greatest
risk of significant developmental or motor problems, accurate predictive tools are required. Infants at highest
risk will be able to receive early developmental interventions, and will also enable clinicians to implement and
evaluate newmethods to improve outcomes.While severewhitematter injury (WMI) is associatedwith adverse
developmental outcome, more subtle injuries are difficult to identify and the association with later impairments
remains unknown. Thus, our goal was to develop an automated method for detection and visualization of brain
abnormalities in MR images acquired in very preterm born neonates. We have developed a technique to detect
WMI in T1-weighted images acquired in 177 very preterm born infants (24–32 weeks gestation). Our approach
uses a stochastic process that estimates the likelihood of intensity variations in nearby pixels; with small varia-
tions beingmore likely than large variations.We first detect the boundaries between normal and injured regions
of thewhitematter. Following this we use ameasure of pixel similarity to identifyWMI regions. Our algorithm is
able to detect WMI in all of the images in the ground truth dataset with some false positives in situations where
the white matter region is not segmented accurately.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent decades, improved neonatal intensive care unit (NICU)
therapies have reduced the mortality and increased the survival rate
of preterm neonates. However, developmental outcomes remain poor
and we urgently need to improve the health and developmental trajec-
tories of these children. Yet, despite advances in neonatal care, preterm
birth (b37weeks of gestation) remains a leading cause of childhood and
lifelong disability (Hack et al., 2002; Nand et al., 2011). Very preterm in-
fants, born at 32 weeks of gestation or younger, have the highest risk of
poor outcome.More than half of these very preterm infants have serious
developmental problems including cognitive, language, behavioral, sen-
sory, ormotor deficits (e.g., cerebral palsy) (Grunau et al., 1990; Grunau
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et al., 2002). Poor developmental outcomes place enormous burdens on
the child, the family and the community (Bodeau-Livinec et al., 2008;
Grunau et al., 2004; Lindstrom et al., 2007; Marlow et al., 2005; Miller
et al., 2005; Oskoui et al., 2013; Roberts et al., 2009; Roberts et al.,
2010; Saigal et al., 2003; Walsh et al., 2010). Consequently, the major
remaining challenge in the care of the preterm is to optimize
neurodevelopmental outcomes and reduce childhood and lifelong
disabilities.

As clinicians strive to identify preterm neonates at greatest risk of
significant cognitive ormotor problems, accurate predictive tools are re-
quired. This will enable infants at highest risk to receive early develop-
mental interventions, and will also enable clinicians to implement and
evaluate novel treatments to improve these outcomes. The expertise
to identify and quantify brain injury in preterms is limited by the nu-
ances of interpreting neonatal brain MRI scans. Severe white matter in-
jury (WMI) and abnormal white matter maturation is associated with
poor neurodevelopmental outcome; however more subtle injuries are
difficult to identify and their impact on cognitive and motor develop-
ment remains less understood. Our software toolkit incorporating auto-
matic WMI detection will facilitate rapid brain imaging of preterm
neonates, including longitudinal evaluations, so that those at high risk
of neurodevelopmental impairment receive timely and appropriate
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intervention and support, ultimately improving long-term outcomes.
Thus, our goal was to develop a new system for automated detection
and visualization of brain abnormalities in the preterm neonate. In
this study, 177 very preterm born neonates (24–32 weeks gestation)
were assessed with MRI at two time points, early in life around the
time of birth, and at term-equivalent age.

Previous work has established multi-focal WMI as the characteristic
pattern of brain injury in preterm neonates (Chau et al., 2009; Miller
et al., 2005), and is most readily evident on T1 weighted images in the
first weeks after birth. Unlike periventricular leukomalacia (PVL), or
periventricular hemorrhage, an increasingly uncommon brain injury
(Hamrick et al., 2004), multi-focal WMI is identified by MRI in one-third
of preterm neonates, and predicts a higher risk of neurodevelopmental
disabilities in this and other neonates cohorts followed through child-
hood (Chau et al., 2013; Miller et al., 2002; Miller et al., 2005;
Woodward et al., 2012). More specifically, the burden of white matter
lesions was more predictive of neurodevelopmental outcome than the
lesion locations.WMI is also associatedwithmore diffuse abnormalities
of brain development (Back and Miller, 2014; Chau et al., 2009; Chau
et al., 2012). While focal WMIs seen on MRI are associated with signifi-
cant visual,motor and cognitive dysfunction, they are often indicative of
concurrent abnormal maturation (Counsell et al., 2008; Krishnan et al.,
2007; Miller et al., 2005; Woodward et al., 2006). WMI is followed by
diffusely abnormal microstructural (e.g., Fractional Anisotropy) and
metabolic brain development as preterm neonates grow to term age
(Adams et al., 2010; Chau et al., 2009; Miller et al., 2002). These abnor-
malities in brain development persist through childhood with associat-
ed adverse neurodevelopmental outcomes (Adams et al., 2010; Chau
et al., 2013; Counsell et al., 2008; Kalpakidou et al., 2012; Kesler et al.,
2008; Ment et al., 2009; Mullen et al., 2011; Srinivasan et al., 2007).
While other brain lesions occur in the preterm neonate, including
intraventricular hemorrhage, these are readily diagnosed on neurora-
diological review, with WMI being a risk for abnormal maturation and
thus the focus of the study. Yet the clinical application of MRI is limited
by the lack ofmethods to automatically detect and display areas of inju-
ry to the clinician. Thus, we focus on developing methods to identify
WMI.

2. Methods

Parametric modeling, e.g., Gaussian, requires a large number of sam-
ples and consistency of the underlying distribution for validity. Based on
the Law of Large Numbers (Rao, 1989) asymptotically the average of an
arbitrary distribution tends towards the Normal (Gaussian) distribu-
tion. However, given a small sample size this assumptionmay not be ac-
curate. There are also several additional constraints in our dataset
compared to usual adult brain MRI datasets. First, the infant brain un-
dergoes rapid changes, thus it is difficult to register different infant
brains to a specific model and compute an Atlas representing the aver-
age infant brain. Second, WMI in preterm neonates tend to be diffused
over a region of anMRI, compared to tumorswhich show up as a clearly
identifiable connected region. Third, the absolute intensities of pixels in
an injured region may be similar to intensities in non-injured regions;
thus, it is difficult to identify WMIs considering intensities alone. Thus,
our earlier attempts at identifying WMI using thresholding techniques
(Cheng et al., 2013) had limited success.

A characteristic of WMI is the abrupt intensity variation observed in
an MRI relative to surrounding pixels. We detect such changes using a
stochastic process which avoids the need for assumptions regarding
any underlying distributions, such as Gaussian.

Before detectingWMIswe need to segment thewhite matter region
of the brain and distinguish it from the graymatter. There are several al-
gorithms in the literature, such as (Zhang et al., 2001), that have shown
promising results in differentiating between the gray and white matter
regions. However, these methods work on adult brains and large
datasets where structures do not vary significantly among subjects.
We extended our Fluid Vector Flow (Wang et al., 2009) algorithm
using a fuzzymask for whitematter boundary detection. Our fully auto-
matic 3D algorithm (Wang et al., 2010) can be combined with fuzzy
clustering for brain white matter segmentation, following skull strip-
ping (Fischmeister et al., 2013). Results on various sections on a prema-
ture brain are shown in Fig. 1. We followed the steps below that were
applied to T1-weightedMRI scans (coronal volumetric T1-weighted im-
ages: TR, 36; TE, 9.2; FOV, 200 mm; slice thickness, 1 mm; no gap) ac-
quired on a Siemens Avanto 1.5 T scanner (Erlangen, Germany).

1 Pre-processing to enhance contrast;
2 A newNormalizedGaussianMixtureModel computed using Expecta-

tion Maximization;
3 Computing a Gaussian Bayesian Brain Map;
4 Processing this brain map to highlight the white matter and initialize

a Fluid Vector Flow algorithm;
5 Automatic initialization assisted by fuzzy clustering, supplemented

with a 3 × 3 median filter; and;
6 Using Fluid Vector Flow to segment the target region.

Though our results look promising the accuracy in delineating the
white matter region still needs improvement. It can be observed from
Fig. 1 that some regions outside the actual white matter are also detect-
ed by the current algorithm. Thus, further work is needed to make the
accuracy more reliable. Furthermore, accurate delineation of the
white matter region is not the focus of this work. Thus, we relied
on manual delineation of the white matter as the starting point to
test our WMI detection method. Our approach to limiting analysis
to the white matter region is consistent with recent work by others,
e.g. Deoni et al. (2013).

Assuming that the white matter region can be reasonably segment-
ed (Zhang et al., 2001) in the brain, we have developed a stochastic al-
gorithm for detecting WMIs. The absolute intensities of pixels in an
injured region may be similar to intensities in non-injured regions;
thus, it is difficult to identify injuries considering intensities alone. How-
ever, a characteristic of injuries is the abrupt intensity variation ob-
served relative to surrounding pixels. We detect such changes using a
stochastic process which avoids the need for assumptions regarding
any underlying distributions. To improve the robustness of our ap-
proach we stretch the histogram of a white matter region and group
small range of intensities. The probability of intensities in nearby pixels
being similar (very different) is assumed to be high (low). Based on this
assumption, and the statistical properties of a small subset of the images
we are workingwith, a transition probability matrix is estimated which
gives the likelihood of changing from one intensity at a given pixel to
another intensity at an adjacent pixel. A very small (statistically de-
fined) transition probability indicates the possibility of an injury. Fol-
lowing the identification of significant transition boundaries, we grow
regions by considering statistically close nearby values.

Detailed steps in our algorithm are described below.

• Divide pixel values into (N + 1) intervals to improve robustness and
add consistency when processing different images with varying
range of pixel values. These intervals can be considered as the State
Space {s0, s1, …, sN} of a stochastic process (Hoel et al., 1972).

• Compute the Conditional Transition Probability Matrix for pairs of
transformed pixel values, details described below. The transition
probability P(X(i, j) = sn, X_neighbor(i, j) = sb) is the probability of
transition from Sate sn to State sb at adjacent pixel locations; with ad-
jacency being defined by 8-connectivity (Rosenfled, 1970). For sim-
plicity, we consider the transition probabilities for adjacent pixels on
a 2D image. However, the approach can be generalized to non-
adjacent pixels by introducing another dimension in the matrix
reflecting distance between pixels. The method can be extended to
3D volumetric images by considering adjacency of voxels defined by
26-connectivity (Bertrand, 1994).

• Mark potential boundaries of WMIs considering the transition



Fig. 1. (Left column) original sections of different levels on a premature brain; (middle) enhanced MRI after pre-processing; and (right) the white matter region automatically
detected.
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probabilities. We detect potential boundaries by looking for low tran-
sition probabilities; i.e., considering low likelihood of large variations
in intensities at adjacent pixel locations. The threshold for low transi-
tion probabilities is determined by analyzing the statistical properties
of the entire white matter region.

• Remove false boundaries at the margins of the white matter region.
This is accomplished by considering small neighborhoods around
boundaries and deleting small boundaries detected in the previous
step.

• Fill in the injury parts considering neighborhood similarity. To grow
the injury region starting with a detected boundary, we deploy a re-
gion growing algorithm that adds a neighboring pixel to a region if
the difference between the intensity of the pixel and the average of
the current injury region scaled by the standard deviation is smaller
than a small pre-defined fraction. This fraction is determined based
on the statistical properties of the WMIs as delineated by expert
neuro-radiologists.

When computing the conditional transition probabilities we consid-
er the current pixel to be brighter than the neighbors and compute
P(X(i, j)= sn, X_neighbor(i, j)= sb | given sn N sb).We consider the prob-
ability of staying in the same state to be q, and the probability of going
down one state from a pixel to its neighbor to be qα, going down two
state (i.e., from sn to sn − 2) to be qα2, …, going down to State 0 to be
qαn. In other words, P(X(i, j) = sn, X_neighbor(i,j) = sb | given sn N sb) =



Fig. 2. (Top row) original MRI slices of pretermneonate brains; and (bottom row) ground truth onwhitematter injury (marked in red) by our clinical experts. (Note that these images are
in JPEG to reduce the size of the document, and thus may not have the visual quality of the originals. Also, the images were cropped before being inserted into the document; thus, the
images in the top and bottom rows may not be alignEd.).
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qαn− b. The sumof all these conditional transition probabilities is equal to
1, since one of these events must occur. Thus, we have the following
equation:

Xn

b¼0

qαn−b ¼ 1 1ð Þ ⇒q
Xn

b¼0

αn−b ¼ 1

⇒q
1−αnþ1

1− α
¼ 1 ð1Þ
Fig. 3. (Top row) white matter regions in MRI slices after pre-processing; and (bottom
(Considering the sum of a geometric series.)

⇒qαnþ1−α þ ð1−qÞ ¼ 0 ð2Þ

Eq. (2) is a polynomial of degree (n + 1) in α, which can be solved
using mathematical packages given q and n. One of the roots of Eq. (2)
is 1, which does not satisfy Eq. (1); most of the roots are imaginary;
and there is only one feasible root in the interval (0, 1). Following are
some examples.

Example 1: q = 0.4, n = 3
In this case α= 0.69141. Which implies that the conditional transi-

tion probabilities are .4, .276, .192, and .132.
row) injuries detected automatically (marked in red) by our stochastic algorithm.
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Example 2: q = 0.8, n = 3
In this case α= 0.20131. Which implies that the conditional transi-

tion probabilities are .8, .161, .032, and .007.
Example 3: q = 0.4, n = 6
In this case α= 0.61301. Which implies that the conditional transi-

tion probabilities are .4, .245, .150, .092, .057, .035, and .021.
The parameter q can be estimated by considering the intensities of

neighboring pixels given that the current location is in state sn for a col-
lection of images related to a given application. If the threshold for de-
tecting a low transition probability is 0.01 (i.e., 1%) then only a
transition from s3 to s0 for Example 2 will be considered significant.
However, if the threshold is 0.05 (5%) then several more cases will be
identified as significant. The threshold needs to be determined based
on results on a few test images compared to the ground truth.
3. Results

To test our algorithm we used an expert delineated subset of slices
obtained in infants with and without WMI from our dataset (Fig. 2).
Fig. 4. (Left) original images; (middle) white matter regions in MRI slices after pre-processing
Results of our algorithmare shown in Fig. 3. Note that the automatic de-
tection is fairly close to the expert delineated ground truth in Fig. 2.

Results on additional images are shown in Fig. 4; with the middle
column showing the white matter regions and the right column show-
ing the automatically detected injuries in the white matter (WMI). In
most cases our algorithm does not detect any WMI for images without
any injury. Some examples of this can be seen in Fig. 5. Note that in
case the white matter is not properly segmented, and gray matter is
present in the boundaries, some false positives may be detected (Fig. 6).

As a preliminary estimate of accuracy we plotted the distance be-
tween an automatically detected pixel and the nearest ground truth
pixel. Fig. 7 shows the “Accuracy Distance Histograms.” On the left in
Fig. 7 is a typical histogram for an image without any false positives de-
tected at boundaries of white and gray matter. We can observe that
most automatically detected injury pixels fall within the ground truth
regions, with some pixels being just outside (1 pixel distance) and
even fewer lying 2 pixels away. Fig. 7 right shows a typical histogram
for cases where there may be some false positives detected at the
boundary between white and gray matter, in addition to correctly de-
tected WMI.
; and (right) injuries detected automatically (marked in red) by our stochastic algorithm.



Fig. 5. (Left) original images; (middle) white matter regions in MRI slices after pre-processing; and (right) no injuries were detected by our stochastic algorithm in these cases.
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Our automaticWMI detection algorithmworks regardless of wheth-
er the injuries are clustered or isolated. For example, Fig. 3 left shows an
isolated injury, whereas the other injuries in this figure are clustered.
Similarly, both isolated and clustered injuries are detected in Fig. 4.

The processing time taken by our automatic WMI detection algo-
rithm is around 0.36 s per image for the premature infant database we
worked with. By comparison, manual delineation of ground truth re-
quires takes significantly longer, since 10–15min are required to review
the scans to identify the WMI alone. Additional time, on the average
15 min, is required to manually segment the WMI. However, the time
Fig. 6. (Left) white matter region with some gray matter on the boundary in a pre-processed M
chastic algorithm.
taken is highly dependent on the spatial extent of the lesions, with
some lesions requiring a few seconds or minutes to label while other
more severe lesions requiring as long as 30 min. More importantly,
automatic detection can be useful for WMI identification in remote
communities and in low-resource settings where there is limited
availability of expert neuroradiologists who can assist in WMI
detection.

We show a Bland–Altman Plot in Fig. 8 comparing the areas of
ground truth and automatically detected regions. This plot indicates
that the automatically detected regions tend to be smaller than the
RI slice; and (right) some false positives (in red) detected on the boundaries by our sto-



Fig. 7. (Left) accuracydistancehistogramwithout any false positive regions; and (right) accuracydistance histogramwhen some false positives are detected on theboundaries. Thevertical
axis shows pixel counts, while the horizontal axis indicates distance to the nearest injury region.
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correspondingmanually demarked ground truth. The range of values on
the vertical axis of this plot is determined by themaximumpossible dif-
ference. The red line in the plot signifies the mean and has the value of
0.0942, while the blue lines correspond to ±1.96 standard deviations
and have values of +0.2453 and −0.0569. From the figure we can ob-
serve that for small injury regions the difference between the ground
truth area and the automatically detected area is very small. However,
in general this difference tends to get larger as the size of the injury re-
gion increases. This trend can be observed in Table 1 for values below
0.5 cm2. For the x-axis value of 0.55 the difference was 0.0253, not fol-
lowing the trend in the table.

4. Discussion

We presented a simple algorithm and results for WMI detection in
MRI scans acquired early-in-life in preterm neonates. The toolkit has
the potential to have a major impact in terms of reducing the effort
needed to identify and demark WMI manually. Therefore, automating
the identification and demarcation of injuries will allow a greater num-
ber of infants to be accurately diagnosed using radiological methods
early in the neonatal period. The method was validated on T1-
weighted images acquired at 1.5 T with 1 mm isotropic voxels. Other
groups have reportedWMI in pretermborn neonates using different an-
atomical sequences and scanner types (de Vries et al., 1993; Debillon
et al., 2003; Inder et al., 2003) indicating that our method would have
broad appeal.
Fig. 8.ABland–Altmanplot comparing the areas of the ground truth and automatically de-
tected regions.
Despite the promise of our initial results, there are still several short-
comings that need to be addressed in the long term. First, our approach
works only in 2D and not 3D. Second, we need to develop a robust and
scientific method to detect the injury regions surrounding the initially
identified seeds. Third, we need to evaluate performance with respect
to ground truth and measure volume of injury in 3D (Nakamura et al.,
2014) for clinicians to have a quantitativemeasure of the extent of inju-
ry. Finally, whether the method could be applied to scans acquired at
later postmenstrual ages after the brain has undergone substantial
myelination remains to be explored in future work. As WMI is most
readily detected on early neonatal MRI scans, we focused on scans in
the first weeks of life prior to myelin being evident in the region of the
corticospinal tracts and posterior limb of the internal capsule.

Another issue that needs further research is the accuracy of the
method for WMI detection. We have been able to identify the WMIs
in every image where they are present, however how close the auto-
matic demarcation is to the expert defined ground truth remains diffi-
cult to quantify. Future work will focus on defining a quantitative
measure, weighting various factors; including overlap between ground
truth regions and automatic demarcation, and disjoint regions between
ground truth and automatic demarcations.

Expert delineation is often recognized as “ground-truth” for evaluat-
ing the accuracy of automated algorithms. However, our automatic al-
gorithm offers the advantage of increased reliability as it is user
independent removing inter-rater reliability concerns. Our automatic
method tends to detect an area that is within the injury area that is rel-
atively brighter than the surroundings. Thismay explainwhy the area of
the automatically detected injury appears to be consistently smaller
than the area demarked by the ground truth. The Bland–Altman Plot
in Fig. 8 supports our observation that the automatically detected re-
gions tend to be smaller and more tightly covering the WMI. We will
study this issue in our future research, and attempt to validate ground
truth possibly by looking into the consistency of demarcation by multi-
ple experts. Also, wewill conduct further studies on the effect of varying
Table 1
Differences for various range of values of injury regions.

Av. of automatic + ground
truth area (x-axis in Fig. 8)

Av. difference in this range
(y-axis in Fig. 8)

No. of observations
in this range

0–0.1 0.0421 8

0.1–0.2 0.0821 12

0.2–0.3 0.1337 5

0.3–0.4 0.1549 1

0.4–0.5 0.2478 3
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the parameters of the region growing step on the area of the automati-
cally detected injury.

Currently the ground truth is specified for 2D cross-sections of the
MRIs. This limits the ultimate goal of detecting injuries directly in a 3D
MRI and measuring the volume of an injury relative to the volume of
the entire white matter region. Thus, in future research we will investi-
gate delineation of ground truth directly on a 3D volume extending our
earlier work on a 3D computer mouse (Azari et al., 2010).

The scope of this paperwas ondeveloping andevaluating an automat-
ic WMI detection algorithm. In the next phase of our research, especially
following 3D detection and localization of injuries, wewill work on strat-
egies for automatically predicting outcomes. However, outcomes could
also depend on other factors, such as other brain injuries and factors
that occur after neonatal intensive care such as access to rehabilitation
services. Thus, the new tool for WMI quantification presented in this
manuscript should also facilitate future studies examining the contribu-
tion of punctate WMI to outcomes and how this relationship may be
modified by clinical factors in the intensive care unit and afterwards.

In a prospective cohort of very preterm born infants, prolonged exposure
to indomethacin was associated with reduced WMI over the last decade
(Gano et al., 2015). In the current cohort we have not observed a similar de-
cline inWMI. Variation in indomethacin use and its effect on the incidence of
WMI remains an area of interest as the application of a prolonged prophylac-
tic indomethacin protocol (Miller et al., 2006) is not universally used. Auto-
matic WMI detection methods, such as ones proposed in this paper, will
facilitate faster and wider detection of WMI which will improve the ability
to quantify WMI burden to assess potential prevention strategies for WMI.
However, addressing other aspects of brain injury in the preterm neonate,
suchas injury-inducedcerebellar atrophy(Pottset al., 2009)orDEHSI (diffuse
excessivehighsignal intensity)onT2weighted images,mayrequirenewthe-
oretical modeling to distinguish these changes from the normal brain.
Note that we focused on WMI given the challenge it presents for ro-
bust detection in clinical workflow. This is in contrast to extra-axial
CSF fluid, and ventriculomegaly which are readily detected on MRI
and even ultrasound.

Our focus was on WMI detection from T1 weighted MRI for prema-
ture newborns; however, white matter abnormalities can be associated
with a number of disorders. For example, severity of autism has been
linked to white matter microstructures (Gibbard et al., 2013) and al-
tered brain networks (Rudei et al., 2012); performances of Diffusion
Kurtosis Imaging and Diffusion Tensor Imaging in detecting white mat-
ter abnormalities in Schizophrenia has been analyzed in Zhu et al.
(2015); white matter integrity has been studied for chronic stroke pa-
tients in Schulz et al. (2015); and a template-based procedure for de-
tecting white matter integrity early after stroke has been described in
Petoe et al. (2014). In future work, we plan to extend our stochastic
model to address some of the many other applications of detecting
various types of whitematter abnormalities and how they relate to cog-
nitive and behavioral outcome (Chau et al., 2013). However, under-
standing and characterizing the changes in MR images associated with
these different disorders and health conditions will require detailed
and careful analysis before we can mathematically model the process.
The present work provides the first steps towards automatic segmenta-
tion of small punctate WM lesions in very preterm born neonates; with
the ultimate goal of developing a software toolkit to aid diagnoses and
provide improved localization of lesions in a 3D MR image space.
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