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There is mounting evidence that ischemic cerebral infarction contributes

to vascular cognitive impairment and dementia in elderly. Ischemic stroke

and glioma are two majorly fatal diseases worldwide, which promote each

other’s development based on some common underlying mechanisms. As

a post-transcriptional regulatory protein, RNA-binding protein is important

in the development of a tumor and ischemic stroke (IS). The purpose of

this study was to search for a group of RNA-binding protein (RBP) gene

markers related to the prognosis of glioma and the occurrence of IS,

and elucidate their underlying mechanisms in glioma and IS. First, a 6-

RBP (POLR2F, DYNC1H1, SMAD9, TRIM21, BRCA1, and ERI1) gene signature

(RBPS) showing an independent overall survival prognostic prediction was

identified using the transcriptome data from TCGA-glioma cohort (n = 677);

following which, it was independently verified in the CGGA-glioma cohort

(n = 970). A nomogram, including RBPS, 1p19q codeletion, radiotherapy,

chemotherapy, grade, and age, was established to predict the overall survival

of patients with glioma, convenient for further clinical transformation. In

addition, an automatic machine learning classification model based on

radiomics features from MRI was developed to stratify according to the

RBPS risk. The RBPS was associated with immunosuppression, energy

metabolism, and tumor growth of gliomas. Subsequently, the six RBP

genes from blood samples showed good classification performance for IS

diagnosis (AUC = 0.95, 95% CI: 0.902–0.997). The RBPS was associated

with hypoxic responses, angiogenesis, and increased coagulation in IS.

Upregulation of SMAD9 was associated with dementia, while downregulation

of POLR2F was associated with aging-related hypoxic stress. Irf5/Trim21
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in microglia and Taf7/Trim21 in pericytes from the mouse cerebral cortex

were identified as RBPS-related molecules in each cell type under hypoxic

conditions. The RBPS is expected to serve as a novel biomarker for studying

the common mechanisms underlying glioma and IS.
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elderly, glioma, ischemic stroke, RNA binding protein (RBP), dementia

Introduction

There is mounting evidence that ischemic cerebral infarction

contributes to vascular cognitive impairment and dementia

in elderly, but the origins of ischemic cerebral infarction are

unclear. Understanding the vascular pathologies that cause

ischemic cerebral infarction may yield strategies to prevent

their occurrence and reduce their deleterious effects on brain

function (Hartmann et al., 2018). Worldwide, ischemic stroke

(IS) accounts for about 70% of all stroke events, with a

proportion as high as 87% in the United States, and is also the

second leading cause of death (Musuka et al., 2015; Benjamin

et al., 2019; Phipps and Cronin, 2020). Glioma is a common type

of invasive brain tumor and the leading cause of primary brain

tumor-related deaths (Musuka et al., 2015; Velasco et al., 2019;

Wang E. et al., 2019). Among them, glioblastoma multiforme

(GBM; WHO IV) accounts for 45.2% of all primary malignant

tumors of the central nervous system (CNS) and is one of the

fatal tumor types, with a median survival time of fewer than 15

months (Ostrom et al., 2013; Bi et al., 2020; Wang et al., 2020).

Clinical studies show that glioma and cerebral ischemia can

promote each other’s occurrence during disease development

and treatment (Fraum et al., 2011; Seidel et al., 2013;

Wojtasiewicz et al., 2013; Farkas et al., 2018; Noda et al.,

2022). Previous studies have reported that the incidence of

brain tumors is higher in a cohort of patients with IS than

in those without a history of IS (Qureshi et al., 2015; Chen

et al., 2017; Tanislav et al., 2019). Similarly, stroke is a common

complication among patients with tumor. A postmortem-based

study reported that about 14.6% of non-CNS cancer cases

showed cerebrovascular disease (CVD) (Graus et al., 1985).

Moreover, embolic strokes are the most common cause of

strokes in patients with cancer, possibly due to intravascular

coagulopathy (Cestari et al., 2004); patients with active cancer

show multiple infarcts (Kikuno et al., 2021). Gliomas account

Abbreviations: TCGA, The cancer genome atlas; CGGA, Chinese

glioma genome atlas; LGG, Lower-grade gliomas; GBM, Glioblastomas;

RBP, RNA-binding protein; LASSO, Least absolute shrinkage and

selection operator; GO, Gene ontology; GSEA, Gene set enrichment

analysis; IDH, Isocitrate dehydrogenases; MGMT, O6-methylguanine-

DNA methyltransferase; IS, Ischemic stroke.

for 60% of ischemic strokes secondary to primary brain tumors,

whereby complications due to surgery and radiotherapy form

the majority (Kreisl et al., 2008). In these coexisting diseases,

stroke is usually missed, often leading to increased neurological

disabilities and injuries in susceptible individuals. Therefore, the

pathogenesis of glioma could provide potential mechanisms for

cerebral ischemia.

RNA-binding protein (RBP) is a large protein family,

which plays a vital role in regulating gene expression through

interactions with RNA. These proteins participate in many

biological processes, such as splicing, lysis, and polyadenylation,

as well as mRNA editing, localization, stabilization, and

translation (Kedde et al., 2007; Liao et al., 2020; Van Nostrand

et al., 2020). In addition, some studies suggest that the

interaction between RBP and RNA plays a vital role in the

occurrence and development of cancers (including renal cell

carcinoma, triple-negative breast cancer, and lung squamous cell

carcinoma) (Mohibi et al., 2019; Duan and Zhang, 2020; Kim

et al., 2020; Li et al., 2020; Qin et al., 2020). In this context,

many RBPs are reportedly associated with a poor prognosis

of gliomas (Shao et al., 2013; Barbagallo et al., 2018; Lan

et al., 2020). In IS, several RBPs participate in the development

and influence the prognoses of these patients by promoting

inflammatory reactions (Zhou et al., 2014; Sharma et al., 2021),

increasing cerebrovascular permeability, promoting vasogenic

cerebral edema (Ardelt et al., 2017), regulating apoptosis (Si

et al., 2020; Zhang et al., 2020), and protecting neurons (Fang

et al., 2021).

In the development of glioma and ischemic stroke events,

some common pathways, such as hypoxia, brain inflammation,

angiogenesis, and hypercoagulability, have been identified

(Ghosh et al., 2019). Among them, hypoxia is the most widely

accepted basis for building research models for studying the

common mechanisms underlying glioma and IS (Søndergaard

et al., 2002; Kasivisvanathan et al., 2011). However, the specific

mechanism of co-occurrence or mutual promotion of glioma

and ischemic stroke remains unclear. Many clinical studies

have described this problem from a clinical perspective and

expounded the possible common pathway underlying the

pathogenesis from the perspective of each disease. Several

RBP molecular or molecular combination markers are used to

identify specific subgroups of patients with glioma, showing
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poor survival. Similarly, several RBPs are involved in the

development of IS. However, there is a lack of a comprehensive

analysis of the RBP family of genes in the common pathway

underlying glioma and IS. Through an in-depth study on the

role of RBPs, we hypothesized that RBP signature could not

only provide an effective identification for molecular subtypes of

patients with glioma with a poor prognosis but also yield certain

reference values for the diagnosis of IS. Such biomarkers will also

provide more reliable risk stratification and treatment targets

for the clinicians to customize more accurate personalized

treatment plans and ultimately improve the treatment efficacy.

Bioinformatics based on medical big data has solid

advantages for analyzing the common molecular mechanisms

and pathways for such coexisting diseases. In addition, the

combination of radiomics and machine learning shows a good

performance in image-based diagnosis or molecular subtype

prediction and is more convenient for clinical application (Acs

et al., 2020). The primary purpose of this study was to identify

a group of RBP genes related to the prognosis of glioma and

the occurrence of IS, and elucidate their mechanism in glioma,

dementia, and IS. First, we identified a panel of RBP genes

related to the prognosis and analyzed the pathogenesis of these

genes in glioma. Next, using the radiomics features from MRI

images, an automatic machine learning classifier was used to

predict risk stratification based on this RBP gene signature in

glioma. Finally, using bulk RNA sequencing (RNA-seq) and

single-cell RNA sequencing (scRNA-seq) data, the classificatory

performance and the potential mechanism of these RBP genes in

IS were analyzed.

Materials and methods

Research design and data extraction

According to the research purpose, the study design was

divided into two stages. The first stage involved the identification

of a 6-RBP gene signature (RBPS) and functional analysis of the

RBPS in glioma. The second stage was evaluating the expression

and functions of the RBPS in IS and mouse cerebral cortex cells

under hypoxic conditions.

The first stage could be subdivided into three steps as

follows: the discovery and verification of biological genemarkers

and automatic machine learning prediction based on radiomics

features. First, the standardized RNA expression profile data of

677 patients with glioma (including 698 tumor tissues and 5

adjacent normal tissue samples) were downloaded from TCGA

(https://portal.gdc.cancer.gov/), and a 6-RBP gene signature

related to the prognosis of glioma was identified. Next, the

identified biomarkers were verified in independent clinical

data sets using the transcriptome RNA expression profile data

and clinical characteristics of patients with glioma (N = 970;

Verification Cohort 1) in CGGA (https://www.cgga.org.cn/).

Moreover, the clinical data of patients with Grade IV glioma

in the GSE72951 data set (Erdem-Eraslan et al., 2016) (N

= 110; Validation Cohort 2) and the gene expression profile

data from gene chip analysis were obtained from the Gene

Expression Omnibus (GEO) database for verification. Finally,

using MRI-based radiomics features, an automatic machine

learning classifier was constructed to predict the RBPS. MRI-

based radiomics feature data from 132 patients with glioma were

downloaded from TCIA (Clark et al., 2013) and used to train

classifiers for predicting RBPS risk stratification (Bakas et al.,

2017; Beers et al., 2018).

In the second stage, the possible mechanism underlying

the six RBP genes in stroke and dementia was evaluated, and

the gene regulatory network related to hypoxia was analyzed

in mouse cerebral cortex cells. First, the GSE16561 dataset

was retrieved from the GEO database to examine differentially

expressed genes (DEGs) related to ischemic stroke. RNA-seq

data in this dataset were derived from peripheral blood samples

of 39 patients with ischemic stroke and 24 healthy controls (Barr

et al., 2010; O’Connell et al., 2016, 2017). The GSE36980 dataset

was used to explore DEGs associated with Alzheimer’s disease,

which included 33 patients with AD and 47 non-AD controls

(Hokama et al., 2014). In addition, to study the expressions

of the related genes at a single-cell level, RNA-seq data from

7,925 isolated mouse cerebral cortex cells were obtained from

the GSE125708 dataset. In this data set, mice were divided

into two groups: one group living in indoor air for 7 days

was the normal oxygen concentration group, and the other

group living in 7.5% oxygen concentration for 7 days was the

hypoxia concentration group. Using this dataset, we examined

the regulatory changes for the RBPS-related genes with changes

in the oxygen concentration (Heng et al., 2019).

Analysis of di�erentially expressed RBP
genes

A total of 1,542 RNA-binding protein genes were collected

from a published dataset (Gerstberger et al., 2014). Differentially

expressed RBP genes were analyzed between tumor samples

and normal samples adjacent to cancer in the TCGA-glioma

dataset. An adjusted p value < 0.05 using the Benjamini-

Hochberg false discovery rate (FDR) method (FDR < 0.05) and

a logarithmic value of fold change >1 (|log2FC| > 1) were

used as the cut-off criteria to screen differentially expressed

RBP genes. Differentially expressed genes (DEGs) were used to

perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis using

the online DAVID database. The protein-protein interaction

(PPI) analysis of DE-RBP genes was performed using STRING

software (https://string-db.org/). Cytoscape software was used

to build a sub-network to identify the PPI network’s core DEGs.
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The “limma” (Ritchie et al., 2015) and “sva” (Leek et al., 2012)

R packages were used to remove the batch effect for the gene

expression data of the shared RBP genes in TCGA, CGGA, and

GSE72951 datasets.

Construction of a 6-RBP gene signature

To identify a clinically translatable RBP gene signature, the

univariate Cox proportional hazard regression model and the

Lasso penalty Cox regression model were used for evaluating

the association of RBP genes in predicting overall survival (OS)

in patients with glioma. Next, RBPS was constructed, and its

value in predicting OS was evaluated. The risk score (RS) of

the RBPS was calculated based on the linear combination of

the gene expression (EXPi) multiplied by the corresponding

coefficient (Coefi).

RS =

n∑

i=1

Coefi × EXPi (1)

The median value of the gene signature risk score was

used as a cut-off threshold to divide the entire patients with

glioma into high- and low-risk groups. The Kaplan-Meier (K-

M) method was used to plot survivor curves. The log-rank

test was used to calculate the statistical difference between

the two groups to evaluate the correlation of the RBPS with

the OS outcome. Receiver operator characteristic (ROC) curve

analysis of the RBPS with prognosis was performed using the

“survivalROC” package (https://CRAN.R-project.org/package=

survivalROC), and 95% confidence intervals (CI) of the area

under the curve (AUC) were calculated by the “timeROC”

(Blanche et al., 2013) package.

Risk stratification of the RBPS

The expressions of the RBPS genes in samples were analyzed

using the “pheatmap” package. The risk scores of RBPS were

sorted from low to high to evaluate the relationship between the

risk scores and patients’ living status and overall survival time.

Circosplot was drawn using the “RCircos” (Zhang et al., 2013)

package to show the copy number variant status distribution of

the RBPS genes and their position on chromosomes. To explore

the relationship between the expression and copy number

variant status of the RBPS genes, the differential expression

analyses of RBPS genes among different copy number variants

were performed to explore the role of a gene copy number

variant in RBPS genes expression.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is a bioinformatics

algorithm used to identify the differential expression of

biological pathways between two biological states (Subramanian

et al., 2005). GSEA was used to identify the pathway related to

the RBPS. The “c2.cp.kegg.v7.1.symbols.gmt[Curated]” gene set

collection from the Molecular Signatures Database (MSigDB)

was used as a reference for enrichment analysis (Subramanian

et al., 2005; Liberzon et al., 2011, 2015). The false discovery rate

(FDR) and the normalized enrichment score (NES) were used to

sort the KEGG pathways.

Association between the RBPS and
glioma stemness

The tumor stemness index refers to the gradual loss of

cell differentiation phenotype and acquisition of progenitor

cell and stem-cell-like characteristics during tumor progression

(Malta et al., 2018). Two types of glioma stemness indices,

namely, the RNA expression-based stemness score (RNAss)

and the DNA methylation-based stemness score (DNAss) were

downloaded fromUCSCXena (Goldman et al., 2020) to evaluate

the correlation between the RBPS and glioma stemness indices.

The stemness indices range from 0 to 1, where 0 indicates a high

degree of differentiation, and 1 indicates undifferentiated.

Immune-related tumor
microenvironment and potential
compounds

First, the “ESTIMATE” algorithm (Yoshihara et al.,

2013) was used to calculate the immune-related tumor

microenvironment features from gene expression data,

including stromal, immune, and ESTIMATE scores. The

profiles of six immune subtype categories representing TME

features and potential therapeutic and prognostic implications

were downloaded from UCSC Xena (Thorsson et al., 2018). In

addition, the abundance of 22 infiltrating immune cell types

was calculated and inferred from RNA expression profiles

using CIBERSORTx (Newman et al., 2019). Moreover, a list

of important immune checkpoint molecules, including PD-1,

PDL1, and CTLA-4, was obtained. In the TCGA-glioma cohort,

the correlations between these immune-related features and

RBPS were analyzed. Finally, to identify the potential drugs

targeting these RBPS genes, drug concentration and gene

expression profiles were downloaded from CellMiner (Reinhold

et al., 2012) to perform correlation analysis. Drugs were filtered

according to FDA’s approval results for clinical trials.
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Radiomics-based TPOT analysis

Radiomics features data were downloaded from TCIA to

establish an Automatic Machine Learning (AutoML) prediction

model. Radiomics features were extracted from T1WI, T2WI,

Flair, and T1Gd images (Bakas et al., 2017; Beers et al., 2018),

including 483 usable features. Univariate logistic regression

analysis evaluated the association between each Radiomics

feature and RBPS in patients with glioma, and RBPS-related

radiomics features were selected for autoMLmodel training. The

steps of autoML model construction include features selection,

parameters selection, and final model selection, which were

fully automated using the Tree-based Pipeline Optimization

Tool (TPOT) (Le et al., 2020). TPOT is an automated machine

learning tool based on Python, which uses genetic algorithm

programming (https://github.com/rhiever/tpot) to optimize the

machine learning pipeline. Before TPOT analysis, the dataset

was randomly divided into a training set (99 patients) and a

test set (33 patients) according to 3:1, and the random number

state was fixed at 42. The training process was set as follows:

generations = 100, population size = 100, and 10-fold cross-

validation on the training set. Finally, TPOT will return a model

with the best classification performance and parameters. The

TPOT was repeated 20 times, and the models were sorted by

the area under the curve (AUC). After that, the top 10 models

with the best performance were screened out. In addition, ROC

curves and precision-recall curves were also used to compare the

performance of these ten models. By comparing the sensitivity,

specificity, accuracy, AUC, and average precision (AP) of these

ten models, the best model was finally determined based on the

accuracy metrics (Su et al., 2019).

Single-cell analysis

RNA-seq data of 7,925 single cells from the mouse cerebral

cortex under normoxia and hypoxia conditions were analyzed

using the “Seurat” package (Stuart et al., 2019). Based on pre-

set filter conditions (at least 200 expressed genes but no more

than 6,000 expressed genes, RNA counts >1,000, mitochondrial

gene expression<20%, and hemoglobin-related gene expression

<1%), a total of 7,789 cells and 14,271 gene features were

filtered for further single-cell analysis. The scRNA-seq data were

integrated with the “SCTransform” function and then processed

using “RunPCA” and “RunUMAP” functions, including noise

removal, information extraction, and cell dimension reduction.

The results of cell dimensionality reduction were visualized with

uniform manifold propagation and projection (UMAP) (Becht

et al., 2019) to observe the effect of batch effect removal between

groups. The “FindNeighbors” and “FindClusters” functions

were used to detect cell clusters. Finally, each cell cluster was

annotated according to the commonly used marker genes of cell

types. After cell annotation, microglia, astrocytes, and pericytes

were extracted as cell subsets, and “FindMarker” was used

to calculate differentially expressed genes in those cell types

between hypoxia and normoxia conditions.

Single-cell regulatory network inference
and clustering

Single-cell regulatory network inference and clustering

(SCENIC) was used to identify the main gene regulatory

networks in each cell type between different groups from single-

cell transcripts (Aibar et al., 2017). First, pySCENIC (version

0.11) was used to identify the major transcription factors and

their corresponding gene regulatory networks in mouse cerebral

cortex cells. Transcription factors and their gene regulatory

networks constitute a regulatory module called regulon. Based

on the expression of transcription factors and downstream-

regulated molecules in the regulon, the regulon activity score

(RAS) is used to measure the regulatory ability of each regulon

in each cell. Finally, based on the RAS, the regulon activity score

(RSS) is calculated to describe the regulatory power of each

regulon in each cell subtype, and the regulons in each cell type

are ranked according to RSS so as to infer the influence of each

regulon on cell transcription regulation in a specific cell type.

Pseudotime analysis and cell trajectory
inference

Monoclec3 (version 1.0) and Monoclec2 (version 2.4)

(Trapnell et al., 2014; Qiu et al., 2017a,b; Cao et al., 2019) were

used to calculate the pseudotime and analyze cell trajectory

based on scRNA-seq transcripts from the mouse cerebral cortex

for further identifying transcriptional differences among these

cells and examining changes in RBPS and its transcription

factors during cell fate transition. First, differentially expressed

genes were determined for each cell type between normoxia

and hypoxia groups. Then, the “DDRTree” method was used

to calculate the cell state for each cell type. The velocyto.py

(version 11.2) was used to calculate the RNA velocity in each cell.

The workflow, annotation files, and visual tools can be obtained

following the methods described in the previous studies (Vidal

et al., 2019; Lin et al., 2021).

Statistical analysis

All statistical analyses were performed using the R software

(version 4.0.2, R Foundation for Statistical Computing, Vienna,

Austria; http://www.r-project.org/) and Python (version 3.8).

The “rms” R package was used to draw the nomogram.

Spearman correlation coefficient and the Benjamini-Hochberg

method adjusted-p value (FDR) were used for correlation
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analysis. All p-values were two-sided, and p < 0.05 was

considered statistically significant.

Results

Di�erentially expressed RBP genes

First, a panel of 1,542 RBP genes was collected. Among

them, 1,472 were selected to analyze the differentially expressed

RBP genes between tumor and normal samples in TCGA.

A total of 170 DEGs were identified according to the preset

filter conditions, and the results are shown in the heat map

(Supplementary Figure 1A). Subsequently, the GO and KEGG

pathways for DEGs were analyzed, and the results showed that

the differentially expressed RBP genes were mainly enriched in

RNA processing-related pathways (Table 1). Furthermore, the

protein-protein interactions (PPI) of DEGs were predicted and

analyzed using the STRING website, following which a PPI sub-

network analysis of DEGs was performed using the Cytoscape

software (Supplementary Figures 1B,C). The core genes and

molecular interaction networks related to the differential RBP

genes were obtained through PPI analysis.

Identification of the 6-RBP gene
signature

First, 170 differentially expressed RBP genes were screened

and the commonly shared intersecting genes in RNA expression

profiles of patients with glioma in TCGA, CGGA, and GSE72951

datasets were obtained. The filtered expression profiles from

these three datasets were further processed to remove batch

effects. Next, by univariate Cox analysis for TCGA glioma

expression profile data, a total of 100 RBP genes were analyzed

along with the total survival time data, and the top 17

RBP genes significantly related to survival were screened out

(Figure 1A). Finally, in the TCGA training set, the Lasso

penalty Cox regression analysis was performed to screen gene

variables, and a prognosis model was constructed according to

the multivariate Cox regression model. Using the lambda.min

threshold (Figure 1G), a 6-RBP gene signature (RBPS) was

identified, comprising 6 RBP genes (TRIM21, BRCA1, ERI1,

POLR2F, DYNC1H1, and SMAD9). The RBPS was associated

with the adverse OS in glioma. The volcanic plot showed the

differential analysis results of these six RBP genes, which showed

that POLR2F and DYNC1H1 were downregulated in glioma,

while TRIM21, BRCA1, ERI1, and SMAD9 were upregulated

in glioma (Figure 2A). Figure 2B showed the copy number

variation of these six RBP genes and their positions on 24

chromosomes. The RBPS risk score (RS) was calculated based

on the linear combination of the expression values of the six

RBP genes multiplied by their corresponding coefficients. The

TABLE 1 GO function and KEGG pathway enrichment result.

ID Term P-value

hsa03010 Ribosome <0.001

hsa03015 mRNA surveillance pathway <0.001

hsa03018 RNA degradation <0.001

hsa03013 RNA transport 0.011

hsa03040 Spliceosome 0.022

GO:0000956 Nuclear-transcribed mRNA catabolic

process

<0.001

GO:0006401 RNA catabolic process <0.001

GO:0006402 mRNA catabolic process <0.001

GO:0022626 Cytosolic ribosome <0.001

GO:0000184 Nuclear-transcribed mRNA catabolic

process, nonsense-mediated decay

<0.001

hsa03013 RNA transport <0.001

hsa03018 RNA degradation 0.020

hsa03015 mRNA surveillance pathway 0.020

hsa04914 Progesterone-mediated oocyte

maturation

0.020

hsa03008 Ribosome biogenesis in eukaryotes 0.022

hsa04114 Oocyte meiosis 0.027

hsa04962 Vasopressin-regulated water

reabsorption

0.028

hsa05134 Legionellosis 0.040

GO:0008380 RNA splicing <0.001

GO:0043484 Regulation of RNA splicing <0.001

GO:0050684 Regulation of mRNA processing <0.001

GO:0048024 Regulation of mRNA splicing, via

spliceosome

<0.001

GO:0000377 RNA splicing, via transesterification

reactions with bulged adenosine as

nucleophile

<0.001

formula for calculating the RBPS RS was as follows:

RSRBPS = 0.294× EXPTRIM21 + 0.525× EXPBRCA1

+0.400× EXPERI1 − 0.313× EXPPOLR2F

−0.303× EXPDYNC1H1 − 0.432× EXPSMAD9 (2)

Among the six RBP genes constituting the RBPS, higher

expression levels of POLR2F, DYNC1H1, and SMAD9 were

associated with a lower risk of death (HR < 1). In contrast,

higher expressions of TRIM21, BRCA1, and ERI1 were

associated with poorer overall survival (HR > 1; Figure 1B;

Supplementary Table 1). Patients with glioma were stratified

according to the median value of the RBPS risk score in the

TCGA cohort and were divided into high-risk and low-risk

groups. The 5-year OS rates for RBPS-derived high- and low-

risk patients were 19 and 75%, respectively; WHO II-IV (HR:

6.76, 95% CI: 4.84–9.44; p < 0.001), WHO II (HR: 3.47, 95% CI:
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FIGURE 1

Construction of a prognostic signature based on OS events in glioma. (A) Univariate Cox analysis for the top 17 RBP genes. (B) Multivariate Cox

analysis for six RBP genes. Survival analysis for patients with glioma between the high- and low-risk groups in (C) TCGA and (D) CGGA datasets.

Yellow indicates high risk and blue indicates low risk for glioma. Bioinformatics analyses for the 6-gene risk stratification signature; receiver

operator characteristic curve analysis for the 6-gene signature in (E) TCGA and (F) CGGA datasets. (G) Selection of the tuning parameter

(lambda) in Cox-penalized regression analysis via 10-fold cross-validation in the TCGA cohort. The vertical dotted lines on the left and the right

indicate “lambda.min” and “lambda.1se” criteria, respectively. The red dots represent partial likelihood deviation values, while the gray lines are

the corresponding standard errors. AUC, the area under the curve.
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FIGURE 2

Characteristics of the six RBP genes in the RBPS. (A) Di�erently expressed genes between the normal and tumor samples are shown in the

volcano plot. The dots in red represent upregulated genes (Yang et al., 2020), while those in green are signed downregulated genes (Boucas

et al., 2015) in tumor samples. Significant di�erences were determined using the thresholds of|log2 FC|> 1 and FDR < 0.05. (B) The location of

the six RBP genes on the 24 chromosomes, as well as the copy number variation events. The expression of the six RBP genes, distribution of the

RBPS risk scores, survivor status, and survival time of the patients with glioma ranked by their risk scores in (C) TCGA and (D) the CGGA datasets.

1.68–7.18, p < 0.001), WHO III (HR: 2.85, 95% CI: 1.75–4.64,

p < 0.001), WHO IV (HR: 1.54, 95% CI: 1.04–2.26, p = 0.028;

Figure 1C; Supplementary Figures 2A–C).

Subsequent validation in the CGGA dataset showed the

outcomes were consistent with the findings in the TCGA cohort;

WHO II-IV (HR: 4.11, 95% CI: 3.40–4.95; p < 0.001), WHO II

(HR: 2.02, 95% CI: 1.32–3.10; p = 0.001), WHO III (HR: 3.12,

95% CI: 2.32–4.19; p < 0.001), and WHO IV (HR: 1.28, 95% CI:

1.03–1.60, p = 0.027; Figure 1D; Supplementary Figures 2D–F).

These findings indicated that Subsequent validation in tRBPS

could predict adverse prognosis for patients with glioma as

well as the glioma subgroups based on the WHO grades. In
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addition, the gene expression differences for these six RBP genes

with respect to copy number variation events were analyzed

(Supplementary Figures 3A–F). The results showed that copy

number variants were significantly associated with mRNA

expressions of POLR2F (p < 0.001), DYNC1H1 (p < 0.001),

TRIM21 (p < 0.001), SMAD9 (p < 0.001), and ERI1 (p= 0.005).

This suggests that copy number variants may be an important

factor in the poor prognosis of RBPS.

RBPS is associated with a poor OS for
glioma

In the TCGA discovery cohort, the RBPS showed robustness

for identifying the poor survival of gliomas, as evidenced by

the good AUC values for WHO grades: WHO II-IV (AUC =

0.887, 95% CI: 0.854–0.937), WHO II (0.736, 95% CI: 0.577–

0.919), WHO III (0.775, 95% CI: 0.7–0.893) and WHO IV

(0.665, 95% CI: 0.417–0.855; Figure 1E). Similarly, in the CGGA

validation cohort, the AUC value of RBPS for identifying poor

OS prognoses in all patients with glioma was 0.819 (95% CI:

0.794–0.851): WHO II (0.705, 95% CI: 0.622–0.799), WHO III

(0.769, 95% CI: 0.721–0.829), and WHO IV (0.603, 95% CI:

0.507–0.687; Figure 1F). These results indicated that the RBPS

had a potential clinical value, and the gene signature comprised

of the six RBP genes could be used to identify the adverse OS

in patients with glioma with various WHO grades. Additionally,

in the CGGA validation cohort, the expression of the six RBP

genes, survival status, and survival time distribution for patients

according to their RBPS risk scores are shown in Figures 2C,D.

RBPS is an independent predictor of
glioma risk and survival outcome

To further evaluate the performance of RBPS as a clinical

marker for risk stratification, its utility was analyzed along

with clinical features for predicting survival and prognosis.

First, in the TCGA cohort, univariate and multivariate Cox

regression analyses were performed for various clinical features,

including age, sex, WHO grade, and histopathology, along

with the RBPS. In univariate analysis, age (p < 0.001),

WHO grade (p < 0.001), histopathology (p < 0.001), and

RBPS (p < 0.001) were important predictors for adverse

OS (Supplementary Figure 3G). Subsequently, multivariate Cox

regression analysis showed that age (p < 0.001), grade (p

< 0.001), and RBPS (p < 0.001) were independent risk

factors in predicting adverse OS in patients with glioma

(Supplementary Figure 3H). In the CGGA cohort, univariate

and multivariate cox regression analyses were conducted.

Apart from age, WHO grade, and histopathology, the clinical

features included radiotherapy, chemotherapy, IDH mutation,

1p19q codeletion, and methylation status of the MGMT gene

promoter region (MGMTp). The results showed that WHO

classification (p < 0.001), age (p= 0.012), and RBPS (p < 0.001)

remained independent risk factors in predicting adverse OS

(Supplementary Figures 3I,J). These results verified that RBPS

based on these six RBP genes was reliable in predicting OS and

could be used as an independent predictor of survival outcomes

in patients with glioma.

The GSE72951 dataset included patients with recurrent

glioblastoma only. In this dataset, K-M analysis showed that

the median survival time in the high-RBPS-risk group was

longer than that in the low-RBPS-risk group (p = 0.010,

Supplementary Figures 4A,B), while univariate and multivariate

Cox analyses suggested no statistical correlation between

RBPS and survival outcomes (Supplementary Figures 4C,D).

According to statistical significance and comparison of RBPS

risk scores of WHO IV glioma in the three data sets, it

was speculated that the RBPS risk scores of patients with

WHO IV glioma in the GSE72951 dataset were relatively

close to each other, thereby resulting in no statistically

significant correlation between RBPS and survival outcomes

(Supplementary Figures 4E–L). In addition, the expressions of

protective genes (POLR2F, DYNC1H1, and SMAD9) for glioma

in the GSE72951 dataset increased, while those of the risk genes

(TRIM21, BRCA1, and ERI1) decreased so that the risk scores of

patients in GSE72951 were the lowest among the three groups,

but the median overall survival time was the shortest among the

three datasets. The survival time of patients withWHO IV in the

GSE72951 data set was the shortest, which could be attributed to

the fact that the total survival time in this data set was calculated

from the first recurrence and could be related to the inclusion of

patients with recurrent glioblastoma. In addition, these patients

received CCNU and/or bevacizumab treatment, which may be

the reason why gliomas in the GSE72951 data set have lower

RBPS risk scores. These findings suggested that the RBPS risk

score may show dynamic changes with chemotherapy, which

may, in turn, reflect the therapeutic efficacy.

Construction of a nomogram for
predicting the OS for patients with glioma

In order to further improve the predictive ability and

applicability of RBPS in clinical practice, RBPS, and other critical

clinical features (WHO grade, age, radiotherapy, chemotherapy,

and 1p19q codeletion) were used to construct a multivariate

Cox regression model and a risk nomogram for ease of use in

clinical settings for predicting survival probabilities of patients

with glioma. The parameters of this model are listed in Table 2.

As shown in Figure 3A, the total score was calculated based on

the sum of scores for each factor. The higher the total score, the

lower the OS rate for 1 year, 3 years, and 5 years. As shown in the
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TABLE 2 Prediction factors for survival in glioma.

Variables Prediction model

β Hazard ratio (95% CI) P value

Grade (III vs. II) 1.074 2.928 (2.506–3.421) <0.001

Grade (IV vs. II) 1.753 5.773 (4.905–6.795) <0.001

Age 0.011 1.011 (1.007–1.014) 0.006

Radiotherapy (yes vs. no) −0.252 0.777 (0.689–0.876) 0.035

Chemotherapy (yes vs. no) −0.357 0.7 (0.623–0.785) 0.002

1p19q codeletion (yes vs. no) −1.043 0.352 (0.3–0.413) <0.001

Risk score 0.062 1.064 (1.048–1.079) <0.001

β is the Cox regression coefficient. For grade, radiotherapy, and 1p19q codeletion, HR

represents the average HR over the entire time period.

example (the red dot) in the figure, a patient with WHO grade

III and an RBPS risk score of 1 (wherein no radiotherapy, no

chemotherapy, and no 1p19q codeletion all corresponded to 34

points, WHO grade III corresponded to 70 points, and the RBPS

risk score of 1 corresponded to 33 points in the nomogram), the

total score corresponding to all characteristics was 233 points,

and the predicted survival probabilities for 3 years and 5 years

based on this total score were 0.344 and 0.219, respectively.

Figure 3B shows the AUC of themodel between 0.74 and 0.85 for

predicting the overall survival rate for 1–5 years. The calibration

curve showed that the predicted values using the model were in

good agreement with the actual values (Figure 3C), suggesting a

good prediction performance.

Gene set enrichment analysis for RBPS

GSEAwas performed usingMSigDB Collection [c2. cp.kegg.

v7.1. symbols (curated)] to identify differentially expressed

signaling pathways in gliomas between high- and low-risk

groups of patients with glioma. All genes were ranked according

to their fold changes between the high- and low-risk groups,

following which a GSEA was performed. FDR < 0.05 was used

to filter and select significant enrichment signaling pathways.

The results showed that a high RBPS risk score was related

to the carcinogenesis of glioma, including multiple pathways

related to cellular metabolism, immunity, and proliferation

(Figures 3D,E). Furthermore, based on the sharing signaling

pathways in TCGA and CGGA datasets, GSEA showed that

the RBPS was associated with cytokine-cytokine receptor

interaction (TCGA: NES = 1.72, size = 264, FDR = 0.046;

CGGA: NES = 1.91; size = 209; FDR = 0.037) and intestinal

immune network for IgA production (TCGA: NES = 1.75, size

= 46, FDR = 0.048; CGGA: NES = 1.86; size = 42; FDR =

0.040). Taken together, the activity of immune, metabolic, and

proliferative pathways may be enhanced, which may be related

to the enhanced carcinogenic phenotype in patients with a high

RBPS risk score.

Relationship between RBPS and glioma
stemness

To evaluate the relationship between RBPS and tumor

stemness of glioma, the correlation of the RBPS score with

DNAss and RNAss was calculated (Figure 4A). In all WHO

grade II-IV gliomas, DNAss was positively correlated with

the RBPS score, ERI1, BRCA1, and TRIM21, while negatively

correlated with POLR2F, DYNC1H1, and SMAD9 [Spearman

correlation, Benjamini-Hochberg (BH)-adjusted p < 0.05].

However, RNAss was negatively correlated with the RBPS score,

ERI1, BRCA1, and TRIM21, while positively correlated with

POLR2F, DYNC1H1, and SMAD9 (Spearman, BH-adjusted p

< 0.05). In WHO grade II and III gliomas, the correlation of

RBPS with DNAss and RNAss also showed a similar pattern in

the overall glioma cohort. However, no significant correlation

between RBPS and stemness index was observed in WHO grade

IV gliomas, which may be attributed to their high malignancy

and stemness.

Correlation between RBPS and tumor
microenvironment

GSEA showed that RBPS was associated with immune-

related pathways. In order to evaluate the relationship between

RBPS and the immune microenvironment of glioma, the

correlation between RBPS and immune-related characteristics

was analyzed. Figure 4A shows that RBPS and these six

RBP genes were significantly correlated with the stromal

score (Spearman, BH-adjusted p < 0.05), the immune

score (Spearman, BH-adjusted p < 0.05), the ESTIMATE

score (Spearman, BH-adjusted p < 0.05), and tumor purity

(Spearman, BH-adjusted p < 0.05), as, also, tumors of all

WHO subtypes.

As shown in Figure 4B, significant correlations between

RBPS and individual immune cell types were observed.

Specifically, RBPS was positively correlated with CD8+ T cells,

M1 and M0 macrophages, activated memory CD4+ T cells,

regulatory T cells, γδ T cells, and neutrophils (Spearman, BH-

adjusted p < 0.05), and negatively correlated with naive B

cells, naive CD4+ T cells, eosinophils, activated mast cells,

activated NK cells, monocytes, and dendritic cells (Spearman,

BH-adjusted p < 0.05). In addition, the RBPS scores and the

expressions of the six RBP genes were significantly different

among the immune subtypes C1, C3, C4, C5, and C6 (the

Kruskal-Wallis test, p < 0.05; Figure 4C). Among the WHO

subtypes of glioma, the expression differences for RBPS and the
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FIGURE 3

Construction of a CGGA-based clinical prediction model. (A) The nomogram for predicting the 3- and 5-year overall survival of patients with

glioma based on the six independent prognostic factors from the CGGA dataset. (B) Relationship between the AUC values for the prognostic

(Continued)
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FIGURE 3 (Continued)

prediction model and the correspondingly predicted survival times. (C) The calibration plot shows that the prediction using the model is in good

agreement with the actual situation. (D) Glutathione metabolism, an amino sugar, and nucleotide sugar metabolism, lysosome, pyrimidine

metabolism, viral myocarditis, base exception repair, and cytosolic DNA-sensing path were significantly di�erentially enriched between the

high- and low-risk-score groups in the TCGA dataset. (E) JAK-STAT signaling, ECM-receptor interaction, cytokine-cytokine receptor interaction,

systematic lupus erythematosus, intestinal immune network for IgA production, focal adhesion, and small cell lung cancer pathways were

di�erentially enriched between the high- and low-risk groups in the CGGA database.

six RBP genes among different immune subtypes were analyzed,

and the results are illustrated in Supplementary Figure 5.

To further elucidate the potential role of RBPS in

immunotherapy, the correlations of RBPS and six RBP genes

with common immune checkpoint molecules were analyzed.

The results showed that, for glioma, the RBPS scores were

positively correlated with the expression of immune checkpoint

molecules, PDCD1, CD274, PDCD1LG2, CTLA4, CD86, CD80,

CD276, and FAS (Spearman, BH-adjusted p < 0.05) but

negatively correlated with VTCN1 (Spearman, BH-adjusted p

< 0.05; Figure 4C). In WHO grades II, III, and IV gliomas,

RBPS was positively correlated with CD274, CD276, CD80,

CD86, CTLA4, FAS, and PDCD1LG2. Finally, to identify

potential drugs that targeted RBPS, the potential drugs related

to the expression of these six RBP genes were queried in the

database, and a correlation analysis was performed. The top

16 compounds with the highest correlation with the six RBP

genes are shown (Supplementary Figure 5D). As shown, the top

16 predicted compounds were mainly related to DYNC1H1

and POLR2F.

Radiomics features for RBPS and
automatic machine learning prediction
model

First, by univariate logistic regression analysis, 180

radiomics features were selected according to p < 0.05 and

included in the automatic machine learning model (Figure 5A).

When splitting the training and test sets from the whole dataset

to reduce the randomness in selecting patients for high- and

low-RBPS risk between training different models and comparing

their performances, the samples of the two sets were fixed (the

random state was set at 42) and standard TPOT was performed.

TPOT was used to calculate the average cross-validation score

(AC) for each model in the training set (each model was trained

100 times/generation) and return the model with the best

accuracy in the test set. Finally, by repeating the TPOT process

ten times, ten independent classificatory models were obtained

to predict the risk stratification according to RBPS. Overall,

these 10 models showed good classification performances in

training and test sets, along with high accuracy (Accuracy,

ACC) (Supplementary Tables 2, 3). During the training process,

each model showed the following performance in training and

test sets: Model 1 (AC = 0.829, ACC = 0.727), Model 2 (AC

= 0.868, ACC = 0.758), Model 3 (AC = 0.868, ACC = 0.667),

Model 4 (AC = 0.829, ACC = 0.697), Model 5 (AC = 0.858,

ACC = 0.818), Model 6 (AC = 0.859, ACC = 0.697), Model

7 (AC = 0.858, ACC = 0.697), Model 8 (AC = 0.839, ACC =

0.727), Model 9 (AC = 0.848, ACC = 0.788), Model 10 (AC

= 0.829, ACC = 0.727), and 10 Average of models generated

based on TPOT (AC = 0.848, ACC = 0.736). Among them,

according to the accuracy in the test set, Model 5 was selected

as it showed the best classification performance. Figures 5B,C

show the average accuracy (AP) and the area under the curve

(AUC) for the 10 models in the test set. The parameters of

Model 5 are as follows: Model [5] = make_pipeline [binarizer

(threshold = 0.3), OneHotEncoder (minimum_fraction = 0.15,

sparse = false, threshold = 10], GradientBoostingClassifier

[the learning_rate = 0.5, max_depth = 8, max_features = 0.3,

min_samples_leaf = 1, min_samples_split = 3, n_estimators

= 1t00, subsample = 0.95)]. In this model, Binarizer and

OneHotEncoder were used to process the radiomics features

(see Supplementary Table 4 for detailed parameter descriptions

of the other nine models).

The six RBP genes are associated with
ischemic stroke, dementia, and aging

In order to examine the potential role of RBPS genes

in ischemic stroke, RNA transcripts from peripheral blood

samples of 39 patients with ischemic stroke and 24 healthy

controls were analyzed. The six RBP genes included in the

RBPS could distinguish IS from the healthy control group

(Figure 6A, AUC = 0.950). Differentially expressed analysis

showed that POLR2F, BRCA1, and TRIM21 in this RBPS were

associated with ischemic stroke. Among them, TRIM21 and

BRCA1 were upregulated, while POLR2F was downregulated

in IS (Figure 6B). GSEA showed that the upregulation of

TRIM21 was significantly related to upregulated pathways,

including (REACTOME) response to elevated platelet cytosolic

Ca2+, (REACTOME) cellular response to hypoxia, (KEGG)

complex and coagulation cascades, and (KEGG) focal adhesion

(Figure 6C). In BRCA1-upregulated samples, (REACTOME)

oncogenic MAPK signaling, (REACTOME) platelet activation
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FIGURE 4

(A) Correlation analysis for the expression of the six RBPs and the RBPS with stemness (RNAss and DNAss), TME (the stromal score, the immune

score, the ESTIMATE score, and tumor purity), and immune checkpoints (CD274, CD276, CD80, CD86, CTLA4, PDCD1, PDCD1LG2, and VTCN1).

Correlation analysis of RBPS for Grades II, III, and IV glioma, respectively; red: positive correlation and blue: negative correlation. Relationship of

the expressions of the six RBP genes (POLR2F, DYNC1H1, SMAD9, TRIM21, BRCA1, and ERI1) and RBPS with (B) infiltration of eight types of

immune cells (B cells, CD8+ T cells, CD4+ T cells, NK cells, monocytes, macrophages, dendritic cells, neutrophils), and (C) immune subtypes in

TCGA.
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FIGURE 5

(A) The heatmap of the 180 radiomics features between the high- and low-RBPS-risk-score samples. (B) Receiver operating characteristic

curves and (C) precision-recall curves for 10 models based on the testing set. AP, average precision; AUC, area under the curve.

signaling and aggregation, (WP) angiogenesis, and the

(PID) VEGFR1 and VEGFR2 pathway were upregulated,

while the (REACTOME) respiratory electron transport

pathway was downregulated significantly (Figure 6D). In

POLR2F-upregulated samples, (REACTOME) response to

elevated platelet cytosolic Ca2+, (KEGG) complement and

coagulation cascades, and (KEGG) focal adhesion pathways

were downregulated, while (REACTOME) cellular response to

hypoxia was upregulated (Figure 6E). In IS, the upregulation of

TRIM21 was related to platelet function activation, increased

coagulation, and response to hypoxia. Upregulation of BRCA1

was related to tumor progression, platelet activation, and

angiogenesis. The downregulation of POLR2F was accompanied

by an upregulation of platelet reaction and coagulation, and

downregulation of hypoxia-related response.

Further analyses revealed that SMAD9 in the RBPS

was associated with the Alzheimer’s disease onset

(Figure 6F). In addition, aging was positively associated

with ERI1 expression and negatively with POLR2F

expression (Figure 6G).

Cell clustering shows the highest
proportion of microglia and astrocytes

First, quality control for single-cell RNA-seq (scRNA-

seq) data (Supplementary Figures 6A–G) was performed

according to cell characteristic distributions and preset quality

filtering conditions. UMAP showed no significant batch effects
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FIGURE 6

Diagnostic e�cacy of the six RBP genes for IS. (A) Diagnostic e�cacy of the six RBP genes for IS using blood samples (AUC = 0.950, 95% CI:

0.902–0.994). (B) The volcano plot shows the DERBPs associated with IS. GSEA for (C) TRIM21, (D) BRCA1, and (E) POLR2F in IS. (F) The volcano

plot shows SMAD9 is associated with dementia. (G) The correlation heatmap shows that aging correlates with POLR2F and ERI1 expression.

for cells between the two groups after integration analysis

(Supplementary Figure 6H). By clustering, 16 cell clusters

were finally identified, and 11 cell types were annotated

(Figures 7A–C; Supplementary Figures 6I, 7). Among

them, microglia and astrocytes had the highest proportion

(Figure 7D).
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FIGURE 7

Cell clustering and annotation for the mouse cerebral cortex. (A) Single-cell analysis shows 16 cell clusters in hypoxic and normoxic conditions.

(B) Expression of marker genes for cell annotation between the cell clusters. (C) Cell annotation results show 11 cell types. (D) Comparison of

proportions of cells between the normoxia and the hypoxia groups.
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RBPS-related genes associated with
pseudotime in microglia

Pseudotime analysis showed three main cell stages

of microglia at normal- and low-oxygen concentrations

(Figures 8A,B, Supplementary Figure 8). In microglia, Sox4

and Tcf7l2, which regulated Brca1, and Irf5, which regulated

Trim21, were significantly related to the pseudotime of these

cells (Figures 8C,D). The expression of transcription factors

and RBPs in microglia during the transition from hypoxia to

normal oxygen concentrations (Figures 8A,E) were observed

using the pseudotime distribution plot. Sox4, Irf5, and Tcf7l2

were downregulated at the early stages of pseudotime but

upregulated at normal-oxygen concentrations. These results

suggested that Sox4 and Tcf7l2, which regulated Brca1, and

Irf5, which regulated Trim21, may change under hypoxia, thus

participating in cellular phenotypic changes.

RBPS-related genes associated with
pseudotime in astrocytes

Pseudotime analysis showed that astrocytes went through

eight major cell stages in normal-oxygen concentration and

hypoxia conditions (Figures 9A,B; Supplementary Figure 9).

According to SCENIC analysis, a regulatory relationship

between Tcf7l2 and Brca1 was observed (Figure 9C). In

astrocytes, Tcf7l2 was an important pseudotime-related gene

(Figure 9D). In addition, from the pseudotime distribution map,

astrocytes were found in the early, middle, and late pseudotime

stages in the normal oxygen concentration group, while, in the

hypoxia group, astrocytes were dominant in the middle stage

and lesser in the early and late stages; Tcf7l2 increased in the

early stages and decreased toward the later stage (Figures 9A,E).

These results suggested that (Brca1-related) Tcf712 may play a

role in the transition to a hypoxic environment.

RBPS-related genes associated with
pseudotime in pericytes

Pseudotime analysis showed that pericytes went through six

cell stages (Figures 10A,B; Supplementary Figure 10) in normal

oxygen concentration and hypoxia conditions. According to

the prediction of the gene regulatory network by SCENIC

analysis, a regulatory relationship between Taf7 and Trim21

was obtained (Figure 10C). In astrocytes, Taf7 was an important

pseudotime-related gene (Figure 10D). In addition, as shown

in the pseudotime distribution plot, pericytes were obviously

stagnating in the early pseudotime stages under hypoxia

(Figure 10A). Taf7 increased at an early stage of pseudotime

but decreased toward the end stage; pericytes under hypoxia

were mostly dominant in the early stage of pseudotime

(Figure 10E). These results suggested that Taf7 may play an

important role in cell-state transition between hypoxia and

normal oxygen conditions.

Pseudotime-related regulons

SCENIC analysis was performed for single-cell data to

identify important regulons of each cell subtype. In the

SCENIC analysis flow, UMAP and tSNE showed single-

cell dimension reduction results and the distributions for

each cell type (Supplementary Figure 11). Figures 11A–C show

the distribution of microglia, astrocytes, and pericytes under

normal- and low-oxygen conditions. Irf5 was an essential and

specific regulon of microglia in the normal oxygen and hypoxia

concentration groups (Figures 11D,G,J). The RSS and rank of

Tcf7l2 were related to oxygen concentration. The rank of Tcf7l2

in the normoxia group was higher than that in the hypoxic group

(Figures 11E,H,K). The Taf7 regulon played a regulatory role in

many other cells apart from pericytes (Figures 11F,I,L).

Discussion

The RBP family of proteins plays an important regulatory

role in glioma and IS (Shao et al., 2013; Zhou et al., 2014;

Barbagallo et al., 2018; Lan et al., 2020; Si et al., 2020; Zhang

et al., 2020; Sharma et al., 2021); however, there is a lack of a

systematic analysis of the role of RBP in both these diseases.

Herein, we describe a set of previously unreported six RBP

genes that can be used to predict the prognosis of glioma

and diagnostic classification for IS. In particular, we found

that the RBPS was associated with tumor immunosuppression

in glioma and hypoxia and coagulation in IS. In addition,

automatic machine learning was used to predict the risk

stratification based on RBPS in glioma. In this RBPS, SMAD9

was found to be associated with dementia; POLR2F and ERI1

were identified to be associated with aging. In view of hypoxia

as the basis of common models for studying glioma and IS,

the expressions of these six RBP genes in microglia, astrocytes,

and pericytes, along with their gene regulatory networks, were

analyzed using single-cell data from the mouse cerebral cortex.

The six RBP genes and the transcription factors in their gene

regulatory networks were analyzed using pseudotime analyses

between normal oxygen and hypoxia conditions. Irf5/Trim21

and Tcf712/Brca1 in microglia, Tcf712/Brca1 in astrocytes,

and Taf7/Trim21 in pericytes were identified as RBPS-related

genes that were regulated in response to hypoxia. These new

findings indicated that RBPs, post-transcriptional regulators,

are essential regulatory molecules involved in the underlying

common pathways in the development of glioma and IS.
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FIGURE 8

Results of pseudotime analysis for microglia. (A) The pseudotime distribution plot of microglia. (B) The RNA velocity plot; the longer is the arrow,

the stronger is the transcriptional activity. (C) The Sankey diagram shows the RBPS-related transcription factors (E2f4, Elk3, Irf1, Irf5, Nr3c1,

Sox11, Sox4, Sox8, Taf7, Tcf712, and Zbtb7a), which are associated with the pseudotime. (D,E) Changes in the expression of these RBPS-related

transcription factors with changes in pseudotime.
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FIGURE 9

Results of pseudotime analysis for astrocytes. (A) The pseudotime distribution plot of astrocytes. (B) The RNA velocity plot, wherein the longer

the arrow, the stronger the transcriptional activity. (C) The Sankey diagram shows the RBPS-related transcription factors (Bclaf1, E2f4, Rad21,

Sap30, Six1, Sox8, Tcf712, and Zbtb7a), which are associated with the pseudotime. (D,E) Changes in the expression of these RBPS-related

transcription factors with changes in pseudotime.
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FIGURE 10

Results of pseudotime analysis for pericytes. (A) The pseudotime distribution plot of pericytes. (B) The RNA velocity plot, wherein the longer the

arrow, the stronger is the transcriptional activity. (C) The Sankey diagram shows the RBPS-related transcription factors (Bclaf1, Nr3c1, Taf7),

which are associated with the pseudotime. (D,E) Changes in the expression of these RBPS-related transcription factors with changes in

pseudotime.
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FIGURE 11

Major regulons in microglia, astrocytes, and pericytes. (A–C) tSNE shows the distribution of microglia, astrocytes, and pericytes. (D–F) Major

gene regulatory networks in the three types of cells under normoxia condition, wherein red dots represent the gene regulatory networks

regulated by corresponding transcription factor related to the RBPS. (G–I) Major gene regulatory networks in the three types of cells under

hypoxia condition. (J–L) Distribution of regulons associated with the RBPS in cells.
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Significance of identification of
molecular markers for glioma

Glioma is the most common primary intracranial

tumor with high mortality, among which glioblastoma is

the most malignant type (Liu et al., 2020). According to

molecular genetic characteristics, some important glioma

subtypes, including IDH mutation, TERT promoter,

and 1p/19q codeletion, improve the therapeutic efficacy

for glioma (Wang et al., 2020). It is worth trying to

identify biomarkers that are robust and can guide the

treatment and predict a prognosis so as to stratify the

patients according to the risk and help choose appropriate

treatment methods.

Role of RBP in tumors

Previous studies have shown that RBP plays a vital role

in tumor progression. For example, in the progression of

HCC, global changes in RBP are more evident than those of

transcription factors (Dang et al., 2017). In immunity, RBP

CAPRIN1 promotes innate immunity mediated by IFN-γ-

STAT1 by stabilizing the Stat1 mRNA (Xu H. et al., 2019).

In addition, some studies suggest that the genetic system of

RBP dysfunction can provide methods for describing different

immunological conditions (Kafasla et al., 2014). In AML,

the effects of RBM39 deletion on splicing further lead to

preferential lethality for AML with spliceosome mutations,

which provides a strategy for the treatment of those carrying

RBP-splicing mutations (Wang E. et al., 2019; Villanueva

et al., 2020). In glioma, although some studies report several

RBPs related to a poor prognosis of these patients (Boucas

et al., 2015; Bhargava et al., 2017; Barbagallo et al., 2018;

Velasco et al., 2019; Wang J. et al., 2019; Lan et al.,

2020; Wang et al., 2020), their potential clinical application,

including for an individual prognostic risk assessment, lacks

systematic evaluation. In the research on RBPs, some new

technologies have been developed to enrich and extract RBPs

and their homologous RNAs, such as the orthogonal organic

phase separation (OOPS) (Villanueva et al., 2020), which is

a fast, efficient, and reproducible method to purify cross-

linked RNA-protein complexes in an unbiased manner, thus

making it more efficient for identifying and studying new

RBPs. Taken together, we first developed a risk stratification

gene signature based on RBP gene expression profiles and

an automatic machine learning prediction model based on

radiomics for individualized risk assessment of patients with

glioma. Below, we discuss the roles of these core RBPs in

glioma genesis.

Identification of RBPS and the role of the
six RBP genes in glioma

First, six prognostic-related RBP genes (POLR2F,

DYNC1H1, SMAD9, TRIM21, BRCA1, and ERI1) were

obtained from the TCGA-glioma dataset. Based on these

six RBP genes, a 6-RBP gene signature (RBPS) with risk

stratification characteristics was constructed. Among them,

POLR2F, DYNC1H1, and SMAD9 in tumor tissues of patients

with glioma were downregulated as compared to normal tissues

adjacent to cancer, while TRIM21, BRCA1, and ERI1 were

upregulated. In literature, only BRCA1, TRIM21, and POLR2F

have been implicated in the progression of glioma (Rasmussen

et al., 2016; Yang et al., 2020; Zhao et al., 2020). Breast cancer

susceptibility gene (BRCA) mutations, including BRCA1, are

found in several tumors (Sun et al., 2020). Umphlett et al.

(2020) reported a case of a patient with GBM with extensive

metastases, whereby BRCA1 (p.I571T) was considered the

possible driving mutation. Through bioinformatics analyses

based on the GSE53733 dataset, Yang et al. (2020) report that

POLR2F is one of the four potential key genes that affect the

OS in GBM. Higher levels of TRIM21 expression are associated

with a poor prognosis of glioma and promote proliferation,

drug resistance, and migration of glioma cells (Zhao et al.,

2020). SMAD9mutations have been reported in the progression

of gastrointestinal ganglioma. In addition, a low expression

of SMAD9 is related to a poor OS in lung adenocarcinoma

(Ngeow et al., 2015; Zhai et al., 2021). The microtubule motor

protein encoded by DYNC1H1 is involved in many cellular

processes, such as mitosis and intracellular transport.DYNC1H1

mutations have been implicated in nervous system diseases

(Hoang et al., 2017) and pancreatic cancer (Furukawa et al.,

2011), and these mutations are consistent with a high immune

activity of tumor mutation load in various cancer types (Bai

et al., 2020). In addition, DYC1H1 is upregulated in gastric

cancer (Gong et al., 2019) and downregulated in primary

gallbladder carcinoma (Huang et al., 2014). In mice, Eri1 is a

histone mRNA-related protein involved in RNA metabolism

pathways and various cellular processes regulated by RNA

(Thomas et al., 2014). Declercq et al. (2020) show that the

exogenous nuclease, ERI1, interacts with PB2, PB1, and NP

components of the viral ribonucleoprotein, thus promoting

viral transcription. Previous studies have reported that gene

copy number variations in glioma may lead to changes in

RBP gene expression (Bhargava et al., 2017), which was also

observed in this study. In addition, in tumor stemness, RBPS

was positively correlated with DNAss but negatively correlated

with RNAss. For results of RBP genes and tumor stemness, we

speculated that, due to the characteristics of post-transcriptional

regulation of RBPs, the correlations of DNAss and RNAss with

RBP would be different, and the underlying mechanism needs

to be elucidated in the future.
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A high risk of RBPS in glioma is related to
immunosuppression

GSEA showed differences in immune-related functional

pathways between high- and low-RBPS-risk-score groups. By

evaluating the relationship between RBPS and immune-related

characteristics, it was possible to improve the understanding

of the anti-tumor immune intervention and highlight feasible

immunotherapeutic strategies. Therefore, the associations of

RBPS with the tumor microenvironment, immune subtypes,

immune cell types, and immune checkpoint molecules were

further analyzed. Xu et al. (2021) report that higher stromal and

immune scores predict a poor prognosis in patients with LGG.

In LGG and GBM of this study, gliomas with higher RBPS risk

are related to higher immune and stromal scores, thus indicating

that the RBPS index was related to immune responses in

gliomas. A previous study reports that macrophage infiltration

indicates a worse OS in GBM (Iglesia et al., 2016). Differentiated

GBM cells promote GSC-dependent tumor progression by

enhancing macrophage infiltration into tumor tissues (Uneda

et al., 2021). RBPS also showed a positive correlation with

the proportion of infiltrated macrophages in the tumor, which

indicated that RBPSmay play a potential role in the involvement

of macrophage infiltration in the development of glioma.

Conventional type-1 dendritic cells (cDC1) play an important

role in immunotherapy-mediated reactivation of tumor-specific

CD8+ T cells to promote tumor regression (Liang et al., 2021).

In this study, RBPS was negatively correlated with dendritic cell

infiltration and positively correlated with CD8+ T cells, which

implied that, in gliomas with a high RBPS risk, a complete

CD8+ T cell reactivation for immunotherapy may be difficult

due to the lack of dendritic cells, thus making the anti-tumor

effects difficult to be achieved. Due to several reasons, including

inherent challenges in drug application, a unique immune

environment of the brain, and heterogeneity between and within

tumors, immune checkpoint blockade therapy has not been

effective for GBM (Khasraw et al., 2020). A comprehensive

understanding of the unique tumor microenvironment of the

brain is important for glioma immunotherapy with immune

checkpoint blockade (Qi et al., 2020). In this study, RBPS

was positively correlated with the expressions of CD274,

CD276, CD80, CD86, CTLA4, FAS, PD1, and PDL1 in gliomas,

indicating that the expressions of immune checkpoint-related

genes increased with a high RBPS risk, thus leading to a

worse prognosis. The relationship between RBPS and immune

checkpoint molecules needs further studies.

Automatic machine learning model
predicts RBPS

Generally, the RBPS showed reliable prognostic value

for predicting the OS and immune-related characteristics

of glioma and comprised only six RBP genes, making

its clinical translation convenient. Recently, with the

development of computing power, researchers have tried

to replace some expensive molecular detection techniques

using MR image-based artificial intelligence so as to stratify

the risk of tumor phenotypes, screen patients with cancer,

and predict their responsiveness to treatment (Acs et al.,

2020). Therefore, using MRI-based radiomics features, we

developed an automatic machine learning classification

model to predict the risk of RBPS in glioma, thus making

the molecular signature more convenient and attractive for

preoperative evaluation.

Diagnostic performance and the roles of
the six RBP genes in IS

The prediction model based on the six RBP genes from

blood samples could also predict the occurrence of IS, suggesting

their association with IS. Among the six RBP genes, TRIM21

and BRCA1 were upregulated in IS, while POLR2F was

downregulated in IS. Functional pathway enrichment analysis

showed that TRIM21 upregulation was related to platelet

activation, enhanced coagulation, and response to hypoxia.

Previous studies have shown that TRIM21 is mainly expressed

in hematopoietic cells, wherein it is induced by IFNs in

case of infections and autoimmune diseases (Sjöstrand et al.,

2013). Pan et al. (2016) show that TRIM21 modulates redox

homeostasis through the ubiquitination of p62, and TRIM21-

deficient cells exhibit enhanced antioxidant responses and

reduced cell death under oxidative stress. In addition, TRIM21

deficiency induces naive T cells to differentiate into Th17 and

promotes IL-17 expression, along with a stable atherosclerotic

plaques phenotype formation (Brauner et al., 2018). In cerebral

ischemia/reperfusion (I/R), BRCA1 overexpression can alleviate

or prevent nerve injury caused by I/R due to reduced production

of reactive oxygen species (ROS) and lipid peroxidation (Xu

et al., 2018). Overexpression of BRCA1 in neural stem cells

(NSCs) reduces apoptosis and oxidative stress after the oxygen-

glucose deprivation/reoxygenation (OGD/R) insert, stimulating

their proliferation, thus improving the therapeutic effects of

NSC transplantation in cases of ischemic stroke (Xu P. et al.,

2019). Genome-wide association analysis shows that POLR2F

(22q13.1) is associated with periventricular white matter

hyperintensions (PVWMH), and PVWMH are associated with

ischemic stroke (Armstrong et al., 2020).

Dual action of ROS under hypoxia

In the cerebrovascular unit, hypoxia can induce astrocytes,

microglia, pericytes, and neuronal cells to produce ROS and

reactive nitrogen species (RNS) (Sumbayev and Yasinska, 2007;

Chen et al., 2013). ROS and RNS play dual roles in the
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neurovascular unit, destroying tissues and macromolecules

upon injury (global cerebral ischemia and reperfusion injury)

while promoting cellular proliferation, tissue repair and

regeneration, and angiogenesis in the recovery stage (acute

ischemic stroke and hypoxic tumor core) (Kalogeris et al., 2014).

The role of hypoxic stress in tumor
immunity and angiogenesis

In tumors, hypoxic stress plays an important role in tumor

progression and immune escape by controlling angiogenesis,

promoting immunosuppression, and tumor resistance (Noman

et al., 2015). Several hypoxia-induced immunosuppressive cells

in the hypoxic zones of solid tumors, such as myeloid-derived

suppressor cells, tumor-associated macrophages (MDSCs), and

T-regulatory (Treg) cells, have been reported (Mantovani

et al., 2002; Ohta et al., 2011). Hypoxia increases MDSC-

mediated T cell tolerance by upregulating the tumoral MDSC

expression of PD-L1 (Noman et al., 2014); hypoxia-inducible

factor-1 (HIF-1) is the primary regulator of PD-L1 (Barsoum

et al., 2014). Hypoxia decreases the expression of several

molecular markers of differentiation and maturation of DCs

in response to lipopolysaccharide and inhibits the stimulating

ability of DCs to activate T cell functions (Mancino et al.,

2008). In addition, VEGF produced by human tumors can

inhibit the functional maturation of DCs and promote the

escape of tumor cells (Gabrilovich et al., 1996). Hypoxic stress

increases the lytic functions of CD8+ T cells and decreases

their proliferation and differentiation (Noman et al., 2015).

Hypoxia attracts Treg cells to the tumor bed by affecting

the distribution of cytokines in the tumor microenvironment

and enhancing the immunosuppressive functions of Treg cells

(Noman et al., 2015). For cancer stem cells (CSCs), hypoxia

and HIFs are considered to induce tumor cells to dedifferentiate

into immature phenotypes andmaintain their stemness (Kallergi

et al., 2009; Semenza, 2012). In this study, RBPS in glioma was

related to tumor immunosuppression. Glucose and amino acid

metabolism increased in gliomas with a high RBPS risk score.

This may serve the increased demand for energy and oxygen

of highly proliferating tumor masses. In addition, among these

six RBP genes, the upregulation of TRIM21 and BRCA1 in

IS was related to angiogenesis and responses to hypoxia. The

upregulation of TRIM21 and BRCA1 and the downregulation

of POLR2F were related to platelet activation and increased

coagulation, thus suggesting that an imbalance among these

genes may result in a state of hypercoagulation, which could

easily lead to an ischemic cerebral infarction. Along with aging,

POLR2F was downregulated, while ERI1 was upregulated. In

IS, downregulated POLR2F was associated with downregulation

of pathways in response to hypoxic responses, implying that

POLR2F may be associated with aging-related hypoxic stress.

Astrocytes, microglia, and pericytes are important cells

that maintain brain homeostasis. In order to observe the

regulation and potential mechanism underlying the six

RBP genes in the hypoxic environment at the cellular

level, the gene regulatory network in various cell types

was investigated.

Gene regulatory networks in astrocytes

Astrocytes are the most abundant cell types in the central

nervous system. As an integral part of the neuron-glial

system, astrocytes serve as housekeeping functions, including

the formation of the blood-brain barrier (BBB), regulation

of cerebral blood flow, repair of blood vessels (Williamson

et al., 2021), and the resistance to oxidative stress (Blanc

et al., 1998; Ransom and Ransom, 2012). After an ischemic

stroke, reactive astrogliosis involving astrocytes exerts harmful

and beneficial effects on neuronal survival and nerve recovery

(Liu and Chopp, 2016; Xu et al., 2020). The upregulation

of BRCA1 in IS was related to tumor promotion, platelet

activation, and angiogenesis. On examining the gene regulatory

network in astrocytes, Brca1 was identified in Tcf712 regulon

that was upregulated under hypoxia. These results suggested

that Tcf712/Brca1 may play an important role in the response

of astrocytes to hypoxic stress.

Gene regulatory networks and immune
responses of microglia

As resident macrophages in the central nervous system,

microglia are the first immune cells that perceive and

respond immediately during cerebral ischemia (Lambertsen

et al., 2019). During a stroke, with the dynamic changes in

pathology, microglia undergo polarization (Tsuyama et al.,

2018). According to the phenotypic changes in microglia,

they can be roughly classified into pro-inflammatory (M1)

or anti-inflammatory (M2) types (Ransohoff, 2016). The

interferon regulatory factor (IRF) family of proteins has an

important relationship with microglial polarization after stroke

(Zhao et al., 2017; Al Mamun et al., 2018). For instance,

IRF4 negatively regulates inflammation and promotes M2

polarization of macrophages (Eguchi et al., 2013), while IRF5

induces M1 polarization (Paun et al., 2008). Recent studies

have shown that the IRF5-IRF4 regulatory axis in microglia

regulates neuroinflammation after ischemic stroke and affects

stroke outcomes (Al Mamun et al., 2020). IRF5 mediates

pro-inflammatory activation of microglia and affects anti-

inflammatory responses (Fan et al., 2020; Al Mamun et al.,

2021). We found that Irf5 regulon was an important regulator

in microglia, and Trim21 was a downstream molecule in

this gene regulatory network. The expression of Irf5 was
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downregulated under hypoxia, which may be related to the

time of experimental conditions, suggesting that the main

microglia types may be changing toward the anti-inflammatory

phenotype after living in 7.5% oxygen concentration for 7 days.

The Tcf712 regulon was another important gene regulatory

network identified in microglia, and Brca1 was a member of

this network. The expression of Tcf712 was also downregulated

under hypoxia.

Multiple microvascular regulatory
functions of pericytes

Pericytes play an important role in regulating various

microvascular functions, such as angiogenesis (Winkler

et al., 2011), the formation and maintenance of the BBB

(Armulik et al., 2010; Daneman et al., 2010), capillary

blood flow regulation (Hall et al., 2014; Korte et al., 2022),

neuroinflammatory regulation (Stark et al., 2013; Korte et al.,

2022), glial plaque formation (Göritz et al., 2011), and stem

cell characterization (Özen et al., 2014; Nakagomi et al., 2015).

Pericytes are important therapeutic targets in stroke, glioma,

Alzheimer’s disease, spinal cord injury, and other diseases due

to their vital role in the nervous system diseases (Cheng et al.,

2018). Variable permeability of BBB can be observed in the high

cell proliferation regions, which may be related to an increase

in the NG2-expressing pericytes herein (Jackson et al., 2017). In

addition, hypoxic regions of tumors recruit activated pericytes

through the regulation of hypoxia-inducible factors (Svensson

et al., 2015). In acute ischemic stroke, pericyte HIF-1 can destroy

BBB and affect the prognosis of stroke (Tsao et al., 2021). In

addition, glioma stem cells can also differentiate into pericytes,

thus supporting BBB integrity and angiogenesis (Cheng et al.,

2013; Segura-Collar et al., 2021). Under hypoxia, in vitro,

pericytes derived from the human brain acquire a microglial

phenotype and are a new source of inflammatory cells during

cerebral ischemia (Özen et al., 2014). Interestingly, Trim21

(Irf5 and Taf7 regulon) is present in different gene regulatory

networks of microglia and pericytes in response to hypoxia.

This suggests that RBPs, as post-transcriptional regulators,

participate in different regulatory pathways, thus performing

various cellular functions.

Owing to the heterogeneity of pericytes (Armulik et al.,

2011), the selection of specific cell markers and the correct

identification of pericytes in “-omics” studies pose a challenge

(Cheng et al., 2018). Using transcriptomics and proteomics,

mRNA and protein expressions in pericytes at different positions

of the capillary bed would be accurately defined.

This study is the first attempt to comprehensively evaluate

the role of RBPs in glioma and IS using computational biology,

thus providing a panoramic map of a panel of genes between

the two diseases and a research paradigm for the study of

such scientific issues. Using bulk RNA-seq and scRNA-seq data,

we examined the important roles of a panel of RBP genes in

glioma and IS and identified the relationship between the two

diseases. In this study, a prognostic RBPS consisting of six RBP

genes was identified for glioma. These six RBP genes obtained

from blood samples had a high classificatory performance for

diagnosing IS. RBPS was associated with immunosuppression,

enhanced energy metabolism, and tumor growth in glioma, and

hypoxia response, angiogenesis, and enhanced coagulation in IS.

In this RBPS, SMAD9 was found to be associated with dementia;

POLR2F and ERI1 were identified to be associated with aging.

Under hypoxia, Irf5/Trim21 in microglia and Taf7/Trim21 in

pericytes were identified as RBPS-related networks. There are

some limitations to this study. The gene signature was developed

based on large publicly available databases and retrospective

cohorts. However, no independent clinical cohort in local

hospitals for validation was evaluated. In addition, the properties

of these RBP genes need to be verified at cellular levels and using

animal models. With the identification of new RBP molecules,

computational biological analyses need to be updated to identify

important molecules in the occurrence and development of

glioma and IS.

Conclusion

In conclusion, we developed a 6-RBP gene signature

associated with a glioma prognosis and an IS diagnosis.

In addition, an automatic machine learning classification

model based on radiomics features from MRI was developed

to stratify the RBPS risk. The RBPS was associated with

immunosuppression, energy metabolism, and enhanced tumor

growth in glioma, and hypoxia response, angiogenesis, and

increased coagulation in IS. Upregulation of SMAD9 was

associated with dementia, while downregulation of POLR2F

was associated with aging-related hypoxic stress. The RBPS

is expected to serve as a biomarker to study the common

mechanism between glioma and IS. These six RBP gene markers

play a critical role in the association of IS with glioma, as revealed

by our study.
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