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Quantitative Morphometry for 
Osteochondral Tissues Using 
Second Harmonic Generation 
Microscopy and Image Texture 
Information
Takashi Saitou1,2,3, Hiroshi Kiyomatsu4 & Takeshi Imamura1,2,3

Osteoarthritis (OA) is a chronic joint disorder involving degeneration of articular cartilage and 
subchondral bone in joints. We previously established a second harmonic generation (SHG) imaging 
technique for evaluating degenerative changes to articular cartilage in an OA mouse model. SHG 
imaging, an optical label-free technique, enabled observation of collagen fibrils, and characterized 
critical changes in the collagenous patterns of the joints. However, it still remains to be determined how 
morphological changes in the organization of tissue collagen fibrils should be quantified. In this study, 
we addressed this issue by employing an approach based on texture analysis. Image texture analysis 
using the gray level co-occurrence matrix was explored to extract image features. We investigated an 
image patch-based strategy, in which texture features were extracted on individual patches derived 
from original images to capture local structural patterns in them. We verified that this analysis enables 
discrimination of cartilaginous and osseous tissues in mouse joints. Moreover, we applied this method 
to OA cartilage pathology assessment, and observed improvements in the performance results 
compared with those obtained using an existing feature descriptor. The proposed approach can be 
applied to a wide range of conditions associated with collagen remodeling and diseases of cartilage and 
bone.

Articular cartilage is a specialized avascular connective tissue that covers the ends of long bones. It serves to dis-
tribute loads on bones, absorb impacts, and provide smooth articulation and protection for the underlying bone1. 
Articular cartilage is composed of extracellular matrix (ECM) whose main components are a dense network of 
type II collagen fibers, hydrated proteoglycans, a large amount of interstitial water, and a sparsely distributed pop-
ulation of chondrocytes. Chondrocytes are cells embedded within the ECM that are responsible for its synthesis 
and maintenance. The modification of the composition and structure of the ECM can cause pathological states of 
cartilage. Osteoarthritis (OA), the most common form of arthritis, is initiated by the deterioration of chondro-
cytes, loss of proteoglycans, and modification of the collagen network, which leads to the degradation of articular 
cartilage and subchondral bone2–4. Imaging methods such as X-rays, magnetic resonance imaging (MRI) and 
computed tomography (CT) have been used clinically to evaluate cartilage degeneration in OA. X-rays and CT 
provide useful diagnostic information by detecting morphological changes in bone and calcified tissues, but these 
techniques are limited to detecting the late stages of OA progression. MRI can be used to detect degenerative 
changes in cartilage; however, due to limited resolution, it is difficult to detect early changes in articular cartilage5. 
Therefore, it is highly desirable to develop a novel diagnostic method that can allow more sensitive cartilage 
assessment to evaluate disease progression.
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Second harmonic generation (SHG) microscopy has become a vital tool for visualizing extracellular collagen 
in living tissues directly without tissue staining. It is a nonlinear and coherent optical process where two excita-
tion photons are effectively combined in an optically nonlinear medium, to create an energy-doubled photon at 
half the wavelength of the excitation source. Molecules possessing non-centrosymmetric structures emit a strong 
SHG signal. Due to its nonlinearity, this technique allows highly localized optical excitation, resulting in high 
resolution imaging. In living tissues, since the SHG signal comes specifically from collagen molecules, SHG has 
been used extensively for label-free imaging of fibrillar organization, and applied to the assessment of various 
diseases6–11. Approaches using the SHG imaging technique to assess degeneration of the cartilage matrix and 
its pathological states have been reported12–16. Although morphological studies of articular cartilage using SHG 
microscopy are now becoming popular, the development of quantitative methods which allow detection and 
automatic classification of disease states is not well established.

In this study, we addressed this issue by combining the technique of image texture analysis17–20 with SHG 
imaging. We employed a statistical texture analysis method using the gray-level co-occurrence matrix (GLCM)21, 
which has attracted attention to applications in MRI22–24, CT images25, ultrasound images26, histopathological 
images27, and cellular level images28,29. By using this computational method, we developed a patch-based texture 
feature extraction scheme, in which the whole image is divided into pieces of cropped images and texture fea-
tures are obtained in each patch for quantitative characterization of SHG images of the cartilaginous and osseous 
tissues. The image patch size was chosen to include particular structures observed in the tissues, the sparsely 
distributed chondrocytes, and the surrounding ECM. We showed how this analytical method discriminates the 
tissue collagen types using images from tissue sections. Furthermore, based on the extracted texture features, we 
explored the use of a generic image classification method, Bag of Features (BoF)30, in order to evaluate the dis-
crimination potential. The BoF method is based on a collection of independent units, called visual words, which 
correspond to quantized local features extracted from image patches. Due to the simplicity of its implementation 
and the high performance of classification, this method is well established in the field of generic image catego-
rization31. BoF has been applied to the classification of histopathological images32,33, and two photon excitation 
fluorescence images34,35. We have demonstrated the utility of texture information from SHG images and Bag of 
Features (BoF)-based image classification analysis. Moreover, we applied this established method to OA cartilage 
pathology assessment. Our study is aimed at developing a quantitative collagen feature descriptor in osteochon-
dral tissues based on texture information. The proposed texture extraction technique and the BoF image classifi-
cation strategy would provide a potential diagnostic tool for OA assessment of collagenous SHG images.

Results
SHG imaging captures morphological distinctions between cartilage and bone tissues.  In order  
to investigate how SHG imaging characterizes the morphological differences between cartilage and bone tissues 
of mouse knee joints, we first performed SHG imaging and histological analyses of tissue sections by using a 
multi-photon excitation microscope. Frontal sections were obtained from the normal medial condyle of the distal 
femur for a total of four mice. The SHG images were captured prior to histological staining of the tissue sections, 
and histological examination was performed using Safranin O Fast Green (SO) staining of the sections (Fig. 1). 
The articular cartilage has a smooth surface, and in this peripheral region, the cartilage was well-stained in red on 
the SO images (Fig. 1A,B SO). This indicated a normal structure for the articular cartilage in which chondrocytes 
and chondrocytic lacunae surrounded by the ECM were discernible. The subchondral bone was stained in blue 
within the interior of the condyle (Fig. 1A,B SO). The SHG signal can be detected in the ECM of the surface layer 
of articular cartilage, whereas the chondrocytic lacunae did not show any signals, indicating that the hyaline 
cartilage was selectively imaged with SHG signals (Fig. 1A,B SHG). On the other hand, the SHG signal emitted 
by the subchondral bone ECM was stronger than that from the cartilage matrix, exhibiting a fibrous pattern of 
osseous collagen structures. Therefore, the SHG images enabled us to differentiate the cartilage and subchondral 
bone tissues morphologically in the knee joints.

On the basis of these observations, we performed image categorization in order to conduct quantitative image 
analysis using texture information. As described in detail in the Methods section, the SHG images were examined 
based on the SO staining results, and the 512 × 512 pixel size sub-images were obtained manually from the orig-
inal images (2048 × 2048 pixels) in such a way that each cropped imaged is confined almost exclusively to either 
the cartilage or subchondral bone regions (Fig. 2A). The images obtained were therefore categorized as either 
‘Bone’ or ‘Cartilage’ images, before being subjected to analysis.

Texture features quantify morphological characteristics of cartilage and bone tissues.  By 
using SHG image sets categorized as either ‘Bone’ or ‘Cartilage’ (Fig. 2A), we next considered how to extract 
texture features reflecting the morphological characteristics of the SHG images. In order to do this, we employed 
a patch-based feature extraction scheme to capture the local morphologies of the cartilaginous and the osse-
ous tissues from the images. The whole image was divided into pieces of cropped images and texture features 
were obtained from each patch. The image patch-based strategy is compatible with the BoF image classifica-
tion approach, which is based on a collection of local image patches. The image patches were taken as 64 × 64 
pixel images corresponding to a 16 × 16 μm2 area, large enough to capture the local structures, since the distance 
between the neighboring chondrocytic lacunae was estimated at 10–20 μm. The image patches hence include 
few lacunae, and thus these may be typical size for characterizing morphology (Fig. 2B). Features were chosen 
to locate at the fixed regular grid locations, defined by the grid step g, which was either 32 or 64 pixels (Fig. 2B).

Image texture analysis is a mathematical method for enumerating complex visual patterns that reflects homo-
geneity, density, roughness, regularity, frequency, and randomness, etc. Approaches to image texture analysis 
are categorized into the following ways: structural, statistical, model-based, and transform17–19. In this study, 
we employed a statistical texture analysis method using the gray-level co-occurrence matrix (GLCM)21. The 
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cartilaginous and osseous SHG images possess a large amount of textural information without any particular 
formed patterns. Therefore, the statistical approach seems to be suitable for our purpose. The GLCM, denoted 
as p(i, j), represents the probability of occurrence of pixel pairs with gray levels i and j, which are separated 
from each other by a distance d along a given direction θ (Supplementary Fig. 1A). In this study, the GLCM was 
calculated in four orientations, namely horizontal, vertical, and two diagonals (θ = 0°, 45°, 90°, or 135°). From 
this matrix, several parameters can be calculated. Here, we measured texture parameters of correlation, angular 
second momentum (ASM), contrast, inverse difference moment (IDM), entropy, sum entropy, sum average, and 
sum variance. In order to obtain these parameters of the image patches, the following calculation strategy was 
adapted. We first selected regions of interest (ROIs) each composed of 8 × 8 blocks of 8 × 8 pixel images divided 
from an image patch. The GLCM calculation was done individually on each ROIs and subsequently the texture 
parameters were computed on each ROI (Supplementary Fig. 1B). The texture parameters, correlation, and ASM, 
calculated from the patches shown in Fig. 2C were plotted in Supplementary Figure 2. Overall, ASM values in 
Bone patches were lower than those in Cartilage ones, indicating greater homogeneity for collagen structures 
in cartilaginous tissues. Within Bone patches, ASM values at which fibrous collagens exist were relatively lower, 
while within Cartilage patches, lacunae showed relatively higher ASM values compared with the surrounding 
ECM. Meanwhile, in the correlation maps, relatively higher values were detected where SHG signals are observed, 
reflecting the high linearity of collagenous structures. These data demonstrated that the texture parameters can 
be used to provide the quantitative morphological features of image patches for discriminating cartilaginous and 
osseous SHG signals. Next, we constructed feature vectors for the image patches by calculating the histogram of 
texture parameters within the image patch. Results derived from randomly selected image patches are shown in 
Fig. 2C. The distribution of correlation in Bone patches was concentrated in the latter half (0.5–1), while those 
in Cartilage patches are also concentrated in the same range, but these patches have values within a lower range, 
indicating the presence of higher linear structures in Bone patches. From the ASM histogram, it is clear that the 
distribution in Bone patches was located in a lower range (<0.2), however, that in Cartilage patches extends to 
a higher range (up to 0.6). This suggested that higher homogeneous images are included in Cartilage, possibly 
reflecting the existence of lacunae which appear as dark holes with little variance in gray levels. The parameters 

Figure 1.  Histological and SHG images of frontal sections from the normal medial condyle in the distal femur. 
Left: Bright-field images of the SO-stained sections. Right: SHG images corresponding to the white frames in 
the SO (left) images. These are representative images that captured the subchondral bone (A) and cartilage (B). 
Scale bar: 100 μm.
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for contrast and IDM also exhibited different behaviors between Cartilage and Bone patches. Higher contrast 
values were observed more in Cartilage than in Bone, and IDM was distributed about a higher range in Cartilage. 
Furthermore, entropy and sum entropy showed different behaviors, while sum average and sum variance showed 
no apparent differences between Cartilage and Bone images (Supplementary Figs S3 and S4). Based on these 

Figure 2.  Scheme for texture feature extraction from SHG images. (A) Representative images of the subchondral  
bone (upper) and articular cartilage (lower). Scale bar: 50 μm. (B) Image patches to be subjected to feature 
vector calculations are selected according to the regular square grid (white dashed lines). This grid is defined by 
the parameters of the grid step and the image patch size, where the grid step is the distance between neighboring 
patches. (C) Next, the patches are subjected to the texture parameter calculation using the GLCM. Correlation, 
ASM, contrast, and IDM corresponding to the images presented in (B) are shown. Scale bar: 10 μm. Cor value: 
Corralation value. Con value: Contrast value.
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results, we concluded that the texture parameters statistically summarized to histograms contained discriminant 
information for analyzing Bone and Cartilage image sets.

Texture feature-based machine learning for image classification.  In order to determine the dis-
crimination ability of texture parameters, we employed the BoF framework, a machine learning approach for 
image classification. The BoF method is a popular visual classification method used in a variety of applications31. 
In brief, this method is based on an unordered collection of quantized image descriptors derived from local image 
patches. An image is represented as a histogram of the number of occurrences for particular patterns of image 
patches, called visual words. The BoF framework adjusted to make use of the texture information is illustrated in 
Fig. 3A. In order to make a terminological distinction, the hierarchical relationship is illustrated in Fig. 3B. The 
framework was comprised of three parts, namely codebook construction, training, and testing. In the codebook 
construction step, patches were extracted from categorized images, and texture parameters were calculated for 
each patch using the GLCM method. We assigned a feature vector for an image patch by integrating the texture 
parameters calculated in the previous section. Thus, the resulting one was a vector with a dimension of 352 
elements. The feature vectors collected from the image patch sets were used to create visual words by using the 
k-means clustering method. During the training step, in order to represent image properties numerically, we 
created a histogram of visual word occurrences (term vector) for each image. In order to do so, the image was 
divided into patches which were subjected to feature vector calculations. The term vector was subsequently calcu-
lated based on k-clustered visual words (Fig. 4A,B).

Next, based on these data, a classifier was constructed (Fig. 4C). In the test step, using the classifier and visual 
words, image prediction was performed by assigning a term vector and running the vector through a classi-
fier that uses the term vectors of the training images. For details, see the Methods section. To compare existing 
feature extraction methods, we used the speeded-up robust feature (SURF) which is a popular gradient-based 
feature description technique36. The texture-BoF algorithm depends on three variable parameters, namely the 
image patch size, the grid step g, and codebook size, k. The image patch size is fixed at 64 × 64 pixels for reasons 
described above. The grid step, which is the distance in pixels between the nearest neighbor patches, was set at 
either g = 32 or 64. The codebook size, which is the number of visual words, was taken as either k = 20, 50, or 100. 
We investigated parameter sensitivities for the image classification by varying these parameter values.

We showed the computed term vectors for representative Cartilage and Bone images in the case where k = 20 
(Fig. 4,B). Comparing the term vectors for Cartilage and Bone images demonstrates the difference in distribution 
patterns. The differences can be recognized at a k value of 9 or 10. Figure 4C showed classification results for the 
training data set, and these demonstrated a good separation of the two categorized images in the space of the 
specific k values.

Next, we evaluated the classification performance of the texture- and the SURF-BoF framework for the 
SHG image sets. The prediction by the trained classifier was represented in a structure known as a confusion 
matrix (Table 1 and Supplementary Table 2). The results shown are averaged values for four consecutive runs 
of the classification test designated in Supplementary Table 1. Overall, the results showed higher accuracy for 
the texture-BoF than that for the SURF-BoF. For example, in the case that k = 20, the texture-BoF framework 
achieved 97.5% accuracy for Cartilage images and 94.4% accuracy for Bone images. On the other hand, within the 
SURF-BoF framework, the accuracies were 75.5% and 78.5% for Cartilage and Bone images, respectively. When 
we changed the codebook size, the accuracy values were affected; however, the tendency for texture-BoF to have 
better classification accuracy did not change. We next changed the parameter of the grid step size, g = 32, indicat-
ing an increased number of patches extracted from an image. The results showed that the classification becomes 
more accurate than the case for g = 64 both for the texture- and SURF-BoF methods. Finally, it is noteworthy 
that the texture-BoF classification results are independent of the codebook size, while the accuracy values in the 
SURF-BoF decreased as the codebook size decreased. This result indicated that the texture-BoF framework does 
not need to create a larger codebook size.

Applying the texture-BoF algorithm to OA cartilage pathology discrimination.  In order to apply 
the texture-BoF algorithm to discrimination of the OA pathological state, we used OA model mice in which 
instability in the knee joints was induced surgically37. A total of 12 mice were subjected to surgery. For each 
mouse, the right knee was OA-operated and the left knee was sham-operated (Fig. 5A). Eight weeks after surgery, 
the femurs were excised, and ex vivo imaging with SHG of the medial condyle of the distal femur was performed. 
Representative SHG images of the cartilage tissue from the OA model were shown in Fig. 5B. An image from 
the control side showed a typical structure of the articular cartilage consisting of the chondrocytic lacunae and 
ECM (Fig. 5B, left). In contrast to the control side, an OA side image exhibited heterogeneous signal patterns and 
intensity distributions. SHG signals are strong in part, whereas the surface of the articular cartilage was uneven 
(Fig. 5B, middle). The signal patterns resembled those observed in sectioned SHG images of the subchondral 
bone, suggesting defects in the articular cartilage and exposure of the subchondral bone. Furthermore, on some of 
the OA mice, fibrous collagenous patterns on the surface of the cartilage were observed (Fig. 5B, right), indicating 
hyperplasia of the fibrous cartilage. These observations reflected typical characteristics of cartilage degeneration 
in the OA model14.

Following the ex vivo image analysis, histological sections were subjected to SO staining. We confirmed the 
exposure of the subchondral bone (Fig. 5C, left) and hyperplasia of the fibrous cartilage by SO staining tissue 
sections (Fig. 5C, right). Based on the results from SHG and histological analyses, we categorized the SHG images 
into three distinct classes, namely ‘Hyaline’, where the hyaline cartilage was dominant, ‘Fibrous’, where fibrous 
cartilage in the cartilage surface was observed, and ‘Bone’, where exposure of the subchondral bone was detected, 
so as to determine the utility of the texture-BoF algorithm for discriminating OA pathology (Supplementary 
Table 3).
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As in the test for the sectional SHG images, we evaluated the prediction accuracy of the texture- and 
SURF-BoF frameworks. The results were summarized in the confusion matrices (Table 2 and Supplementary 
Table 4). Overall, the prediction tests for the texture-BoF were more accurate than those for the SURF-BoF, 

Figure 3.  Schematic description of the BoF framework. (A) BoF comprises three steps, namely codebook 
construction, training, and test. In the codebook construction step, image patches are extracted and feature 
vectors calculated using the GLCM method. These vectors are used to create visual words by using the k-means 
clustering method. In the training step, an image is divided into patches that are subjected to feature vector 
calculation. A histogram of visual words occurrence (term vector) is subsequently calculated for each image. 
Based on these data, the classifier is constructed. In the test step, image prediction is performed based on the 
SVM (or multi-class ECOC) classifier. (B) Hierarchical relationship between terminologies: feature vector, 
visual word, codebook, and term vector. Beginning with feature vectors derived from image patches, visual 
words are created using a k-means clustering method. Codebook is a collection of visual words. Term vectors 
are histograms of visual word occurrence within an image.
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similar to the results demonstrated in the tests for tissue sections. The texture-BoF framework achieved greater 
than 90% accuracy for Hyaline and Bone image classifications, although the accuracy of Fibrous images was not 
as high, showing only 60–70% accuracy. However, since the accuracy in the SURF-BoF dropped to 28–42% for 
Fibrous images, the texture-BoF showed better performance. The codebook size independence in classification 
accuracy was also true in this case. When the grid step size was changed to g = 32, the results showed that the 
classification performance was higher, greater than 70% accuracy for Fibrous images.

Discussion
In order to establish quantitative morphometrics for osteochondral tissues, which are aimed at assessing diseases 
derived from collagenous disorganization, we have employed a combined approach involving both SHG imaging 
and image texture analysis, and demonstrated a methodology for performing the texture feature extraction from 
the tissue SHG images. In quantifying the collagen fibril morphology based on texture features, we developed an 
image patch-based analysis and evaluated the potential utility of this method for classifying images derived from 
both sectioned and intact cartilaginous and osseous tissues as either normal or diseased based on a mouse OA 
model by using the BoF based machine learning framework. The combined texture and BoF classification frame-
work proposed in this study provides a promising approach, and thus holds significant potential with respect to 

Figure 4.  Term vector calculation and training with images. Representative SHG images and term vectors 
(visual word occurrence histogram) are shown for the subchondral bone (A) and cartilage tissues (B). The 
results exhibited are k = 20 case. (C) Results of the training data set. The classifier was constructed by the SVM 
machine learning method. Scale bar: 50 μm.
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the assessment problem for cartilaginous and osseous tissues. When performing this process, we observed several 
remarkable features of the method, which was discussed below.

To extract texture features, we introduced an image patch-based method which carries out feature vector 
computations after dividing each image into smaller size images. In order to capture the local morphologies of 
the cartilaginous and osseous tissues, the partition size of images was set to a 64 × 64 pixel image, which corre-
sponds to an area of 16 × 16 μm2. This image size was large enough to capture the local structures, including a few 
lacunae, and hence may be a typical size for characterizing tissue morphology. From these images, we calculated 
the feature vectors using the GLCM method, which is a popularly used statistical texture analysis method. We 
demonstrated that the resulting parameters were sufficient to provide significant geometric information in char-
acterizing the articular cartilage and subchondral bone tissues. For example, ASM values in Bone patches were 
lower than those in Cartilage patches, reflecting a relatively stronger intensity from the osseous components than 
the cartilaginous ones (Supplementary Fig. 2). Since the ECM of the subchondral bone consists primarily of type 
I collagen, which emits a strong SHG signal with thick fibrous morphology, while the main collagenous compo-
nent of cartilage is type II collagen, which emits a relatively weaker signal and exhibits homogenous intensity 
profiles in the cartilage ECM. Furthermore, within Bone patches, ASM values at which the fibrous collagens exist 
were relatively lower, while within Cartilage patches, lacunae showed higher ASM values compared with the sur-
rounding ECM, indicating that the heterogeneous collagenous structures are reflected in the ASM. Other texture 
parameters were also able to capture differences in the fibril structures in different interpretations. Thus, these 
results suggested that the geometric information based on image patches are suitable for characterization and 
discrimination of hyaline and fibrous collagen patterns emitted from the cartilaginous and osseous SHG signals. 
Living tissues and organs have particular structures, derived from the distribution of cells and ECM organization, 
which include a wide variety of local texture information depending on local tissue organization. Therefore, it is 
reasonable to describe image features by dividing the whole image into smaller patches, before evaluating them 
using the integrated statistics from texture parameters.

Once the feature vectors of the image patches were calculated, it was possible to apply these vectors to the 
BoF image classification analysis. We demonstrated the feasibility of performing classification of collagenous 
SHG morphology based on texture information. We showed that the classification accuracy of the texture-BoF 
algorithm is always higher than that of the SURF-BoF algorithm, where SURF is a major feature descriptor used 
here for comparison. One reason for this performance result may be that the GLCM includes information of the 
intensity profiles of the images, while the SURF descriptor is a gradient-based feature extractor. The intensity 
profiles contribute to the texture parameters as demonstrated by the fact that the osseous SHG images showed 
stronger intensity than the cartilaginous ones. Furthermore, we investigated how the BoF parameters influence 
the results. A remarkable point is that the codebook size independence only exists in the texture-BoF framework. 
The codebook size in the BoF framework is defined by how many vocabulary terms are constructed in the pro-
cess of k-means clustering to create visual words. Generally, the codebook size takes on higher values such as 
k = 100–1000 within the BoF framework. The higher this value becomes, the higher the accuracy achieved. The 
SURF-BoF method inherited this tendency in contrast to the texture-BoF method. Although the reason why is 
not clear, this suggested that a large codebook size is not required, implying lower computational demand. In 
order to investigate how small a value of k is enough to classify the cartilaginous and osseous tissue SHG images, 
we tried to classify the images for k = 10 and k = 5. The computation of the k = 10 case still demonstrates a high 
accuracy of image classification results, but the accuracy for k = 5 case decreased ~60% (Supplementary Table 5).

A typical feature of the BoF method is an unordered collection of image patch information. This may be ben-
eficial when analyzing living tissues because repetitive and periodic patterns are typically observed anywhere in 
many types of living tissues. In cartilage, the chondrocytes are distributed in almost equal distance with the neigh-
boring cells, showing periodic distributive patterns. Therefore, applying the BoF method to other tissue collagen 
patterns and disease models will provide interesting future directions for study.

A weakness of the BoF method is computational costs due to the use of large numbers of image patches. As the 
number of patches per image increases, so does the classification accuracy, as we have demonstrated. We found 

Cartilage Bone

k = 20, g = 64

Cartilage 0.975 0.025

Bone 0.062 0.944

k = 50, g = 64

Cartilage 0.998 0.002

Bone 0.057 0.943

k = 100, g = 64

Cartilage 0.994 0.006

Bone 0.057 0.943

k = 50, g = 32

Cartilage 0.993 0.007

Bone 0.062 0.954

Table 1.  Results of BoF classification tests performed on SHG images of tissue sections. The probability of the 
confusion matrix is shown. Texture BoF method for k = 20, 50, or 100 and g = 32, 64 are shown.
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Figure 5.  Applying the BoF texture analysis to the classification of SHG images of the OA model mice. (A) 
Construction of the OA mouse model. The right knee is the OA-operated side while the left knee is the sham-
operated control side. Scale bar: 100 μm. (B) Representative SHG images of normal cartilage from the control 
side (left), and degenerative cartilage from the OA side, bone exposure (middle), and hyperplasia of fibrous 
cartilage (right). Scale bar: 50 μm. (C) Histological tissue sections from the OA-side. Typical images showing 
cartilage degeneration, bone exposure (left) and fibrous cartilage (right) are shown.

Hyaline Fibrous Bone

k = 20, g = 64

Hyaline 0.930 0.050 0.021

Fibrous 0.297 0.656 0.048

Bone 0.079 0.021 0.900

k = 50, g = 64

Hyaline 0.975 0.013 0.012

Fibrous 0.322 0.589 0.090

Bone 0.044 0.019 0.938

k = 100, g = 64

Hyaline 0.982 0.013 0.005

Fibrous 0.307 0.591 0.102

Bone 0.039 0.051 0.910

k = 50, g = 32

Hyaline 0.973 0.021 0.006

Fibrous 0.163 0.715 0.122

Bone 0.023 0.030 0.947

Table 2.  Results of BoF classification tests performed on SHG images of the OA model. The probability of the 
confusion matrix is shown. Texture BoF method for k = 20, 50, or 100 and g = 32, 64 are shown.
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the influence of different grid steps on the performance of the BoF framework to be consistent for the majority of 
the classification scenarios evaluated, and propose a high density grid as the preferred solution despite the higher 
computational demands.

The classification performance of the normal cartilage and bone tissues is high at ~90% accuracy. In contrast, 
the accuracy of fibrous cartilage classification is relatively low at 75%, depending on the codebook size and grid 
spacing. The areas where fibrillation occurred were found to be smaller than the area where the hyaline carti-
lage appears. Thus, the classifier recognized it as hyaline cartilage in many cases. To increase the classification 
accuracy, we need to increase the number of patches, alter the kinds of texture parameters, or change the patch 
extraction method. This would suggest that detecting the initial symptoms of OA and staging OA symptoms 
accurately requires improvements to the method, including spectral information in the descriptor, optimizing the 
number and types of images for codebook construction, and training. The use of autofluorescence and polariza-
tion dependence of excitation light is also a subject of future research.

Multi-photon excitation microscopy is becoming a widely used method to observe living, thick, and opaque 
tissues such as cartilage and bone in a non-invasive manner. Upon two-photon excitation, a strong SHG signal is 
generated specifically from collagen molecules. Therefore, changes in collagen architecture that occur in the car-
tilage matrix can be obtained by high-resolution and high-sensitivity imaging. Because the SHG does not require 
the use of any stains, approaches using this imaging technique to assess the degeneration of the cartilage matrix 
and its pathological states are increasingly being used to characterize OA pathology. It was demonstrated that 
morphological changes can be detected in degenerative bovine articular cartilage12, and in degenerative equine 
articular cartilage13,38. We have already studied the capabilities of SHG imaging for characterizing histopatholog-
ical changes induced by OA14. Furthermore, in morphological investigations of early stage of human osteoarthri-
tis, cartilage assessment was performed and clinical application was implied15. Additionally, miniaturized probes 
for multiphoton excitation microscopy were developed, which may be advantageous for overcoming constraints 
on the use of nonlinear microscopy in clinical studies39. Therefore, morphological studies of the articular carti-
lage by SHG microscopy can be a significant tool for assessing the OA disorder16. However, quantitative methods 
and a comprehensive strategy using advanced machine learning methods to assess the disease state of cartilage 
remain elusive. The texture feature-based classification method for SHG images presented in this paper could 
have clinical applications for detecting initial symptoms of OA. As a first step in the development of a method for 
implementing digital classification of the pathological state, here we have used the severe model of OA, which 
exhibits clear visual differences in the OA cartilage. Milder models that resemble the early stages of OA will be 
useful for automated detection of subtle but still distinct SHG patterning changes in cartilage.

Image texture analysis is a method which numerically represents features of complex visual patterns, including 
roughness, randomness, periodicity, and brightness. This method is starting to be used to analyze biomedical 
imaging data18,20. The GLCM texture analysis method has been used in MRI applications22–24, as well as on CT25, 
ultrasonic26, histopathological27, and cell images28,29. Focusing on the GLCM texture analysis applied to the SHG 
images, there are several examples in the literature of investigations of the utility of the computational method 
in characterizing cartilage ECM modifications under mechanical and biochemical constraints40, exploring the 
relation between collagen density in breast cancers and lymph node metastasis41, and evaluating collagen organi-
zation in skin dermis42,43. As for the purpose of the OA assessment, we have verified in this study that the GLCM 
pattern analysis allowed the discrimination of cartilaginous and osseous tissue in mouse joints. Within the BoF 
image classification framework applied to the OA cartilage pathology assessment, we demonstrated performance 
results higher than those implemented by the SURF descriptor. Therefore, unlike the generic image classification 
problem, the statistics-based texture features are more capable of discriminating biomedical images. Therefore, 
these results suggest that texture analysis is useful for detecting disease states, and its application to medical issues 
concerning the quantification of digital images increasingly becomes important.

Materials and Methods
Ethics statement.  All animal experiments were approved by the Ethics Committee for Animal Experiments 
of Ehime University (#05-RE-2–16). The experimental procedures we employed were conducted in accordance 
with the approved guidelines.

Surgery-induced OA model mice.  Male C57BL/6 J mice were purchased (CLEA Japan, Inc.), and six-week 
old mice were subjected to surgery to produce an OA model. The surgical induction of the severe OA model was 
performed according to37. The knee joints of the mice were prepared (the bilateral hind limbs were shaved) for 
the surgery under general anesthesia with isoflurane. The patellar ligament, anterior/posterior cruciate ligaments 
and medial/lateral collateral ligaments were transected, and the medial/lateral menisci were removed using a 
stereomicroscope. The skin was closed after surgery. The contralateral knee joint was sham-operated without any 
ligament transection and meniscectomy to produce the control side model. The mice were sacrificed via cervical 
dislocation and their femurs harvested eight weeks after surgery. In total, twelve mice were subjected to surgery. 
The harvested femur samples were fixed overnight in 4% paraformaldehyde (PFA) diluted in phosphate-buffered 
saline (PBS) prior to multiphoton excitation microscopy and histological analyses.

Preparation of tissue sections and SO staining.  For preparations of tissue sections, excised femurs 
were fixed overnight in 4% PFA in PBS. The specimens were decalcified in 10% ethylenediaminetetraacetic acid 
(EDTA) at 4 °C for two weeks, and subsequently embedded in paraffin. Four-micrometer thick frontal sections 
were cut from the medial condyle of the joints. The sliced sections were then deparaffinized with xylene, and 
subjected to SHG imaging. After performing SHG imaging, the sections were stained with Safranin O Fast Green. 
Bright field images of the sections were acquired using a wide field inverted microscope (All-in-one fluorescence 
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microscope BZ-X700, Keyence, Inc.) with a 20× magnification objective lens (PlanFluor 20× NA:0.45, Nikon). 
SHG images of the sections were acquired using multi-photon excitation microscope (A1R-MP, Nikon, Inc.) as 
described in detail below. For the sections, four mice samples were subjected to the analysis.

SHG image acquisition.  In order to perform SHG image acquisition, we utilized an upright multi-photon 
excitation microscope (A1R-MP, Nikon, Inc.). The microscope was equipped with a water immersion objec-
tive lens (CFI75 Apo 25 × W MP, NA:1.1, Nikon, Inc.) and a Ti:sapphire laser oscillator system (MaiTai eHP, 
Spectra-Physics, Inc.) with no additional optical modules for generating polarized light. To observe intact carti-
lage tissues, excised femurs were embedded in 1% agarose and the medial condyle was exposed under the objec-
tive lens of the microscopy system as previously described14. The images were acquired as z-stack image sequences 
with a step size of 3 μm ranging from the deepest portions to the surface of the cartilaginous tissue. To observe 
tissue sections, sections mounted on glass slides were placed on the microscope stage before acquiring xy-images. 
All SHG images were acquired at an excitation wavelength of 880 nm. To detect the SHG signal, we employed a 
dichroic mirror at 458 nm and an emission filter at 440/40 nm (center wavelength/bandwidth). The field of view 
of the acquired images was 0.5 mm × 0.5 mm and the resolution was 2048 × 2048 pixels, i.e. the pixel size was 
0.25 μm. The images originally recorded as 12-bit gray level images were converted to 8-bit gray level images for 
GLCM computation.

Image categorization.  For the machine learning-based classification test, we prepared two kinds of image 
sets, namely a set of images acquired from tissue sections of normal articular cartilage and a second set from 
intact tissues of the OA model. To analyze the sections, the images acquired by the SHG microscopy (recorded 
as 2048 × 2048 pixel images) were trimmed to 512 × 512 pixel size sub-images so that the cropped images were 
confined almost exclusively to either the subchondral bone or cartilage regions. During this trimming process, 
the images were first examined as SO-stained sections. Subsequently, regions were selected and the cropped 
images were created. Thus, these images were categorized as either ‘Bone’ or ‘Cartilage’. During the analysis of 
tissue sections, four mouse samples were used and a total of 133 ‘Bone’ tissue images and 328 ‘Cartilage’ tissue 
images were obtained. For the analysis of ex vivo SHG images, z-stack image sequences were separated as indi-
vidual xy-images before these images were divided into 4 × 4 blocks, each 512 × 512 pixels in size. To eliminate 
images in which most regions are empty with respect to the SHG signal, images possessing high signal levels were 
selected. The criterion used was that more than 25% of the image area was detected as signal region based on 
gray-level thresholding.

Our previous observation of the knee joints of the OA model successfully described the tissue types of 
hyaline cartilage, fibrous cartilage, and bone by SHG image patterns, that were consistently confirmed using 
well-established histological methods14. Therefore, to categorize the images obtained from OA model mice sam-
ples, we first examined the SHG images visually by comparing the SO-stained sections, and divided them man-
ually into three distinct categories, namely ‘Hyaline’, ‘Fibrous’, and ‘Bone’. ‘Hyaline’ images were obtained from 
the control side of the SHG images, while ‘Fibrous’ and ‘Bone’ images were obtained from the OA side of the 
SHG images. ‘Hyaline’ images predominantly contain ordinary structures of cartilage, such as lacunas, chondro-
cytes and extracellular matrix. ‘Fibrous’ images show fibrotic SHG signals typically located around the surface 
of cartilage, reflecting the hyperplasia of fibrous cartilage. ‘Bone’ images display the collagenous structure of the 
subchondral bone, indicating that the bone tissue was exposed in OA model joints. In total, we obtained 2612 
‘Hyaline’ images, 102 ‘Fibrous’ images, and 301 ‘Bone’ images.

Texture feature calculations.  Image texture analysis is a mathematical method enumerating complex 
visual patterns of digital images, which reflect properties such as lightness, uniformity, density, roughness, reg-
ularity, linearity, frequency, and randomness17–20. Approaches to image texture analysis are categorized as either 
structural44,45, statistical21,46, model-based47–49, or transform50. In this study, we employed a statistical texture 
analysis method using the gray-level co-occurrence matrix (GLCM)21. Cartilaginous and osseous SHG images 
possess a large amount of texture information without any particular patterns. Therefore, a statistical approach 
seems to be suitable for our case. The GLCM approach is based on the use of second-order statistics of the gray 
scale image histogram. The GLCM is constructed by counting the number of occurrences of gray levels for pixel 
pairs, which are spaced apart from each other by distance d and angle θ. Each count is divided by the total count 
to obtain a probability. In this study, we chose d = 1 and θ = 0°, 45°, 90°, or 135°. The result is output as a matrix, 
denoted as p(i, j) where i and j are indices of rows and columns of the N × N matrix respectively, representing 
the probability of the gray-level co-occurrence pixels. From this matrix, several parameters can be calculated and 
image texture is characterized by these parameters. Here, we used eight texture parameters, correlation, angular 
second momentum (ASM), contrast, inverse difference moment (IDM), entropy, sum entropy, sum average, and 
sum variance, which are defined as
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and gives information about the homogeneity of the image; homogeneous images are characterized by high ASM. 
ASM is highest in a constant image with a uniform gray-level and lower for those with more variation in images. 
Contrast indicates the variance between the gray levels of a pixel and its neighboring pixel. High contrast occurs 
when an image has a number of pixel pairs with large differences in gray levels. Correlation measures how corre-
lated a pixel is to its neighboring pixel over the whole image. The more this parameter increased, the more linear 
the texture elements will appear. IDM is a measure of the homogeneity of the image. This feature takes the highest 
value (=1) for a constant image, and gives information on the similarity of a pixel’s value to those of its neighbor-
ing pixels in the image. In our analysis, the following strategy for calculating feature vectors was adapted to cap-
ture the characteristic structures of the osteochondral tissues. We used the regular square grid to represent the 
images as a collection of patches to be subjected to feature extraction (Fig. 2B). The grid steps were either 32 or 64 
pixels, and the extracted image patch size was 64 × 64 pixels. To construct feature vectors for an image patch, we 
selected regions of interest (ROIs) composed of 8 × 8 blocks of 8 × 8 pixel images divided from a given patch. The 
GLCM calculation was performed individually on each ROI. After obtaining a set of GLCM parameters, the 
probability distributions of the parameters were computed to create feature vectors for an image patch (Fig. 2C). 
To avoid the influence of empty images on our analysis, we selected image patches with high signal levels over 
patches.

Bag of Features computations.  BoF has been proposed as a method for generic visual categorization, 
which is the problem of identifying various kinds of objects within images. This approach to image classification 
is based on an unordered collection of quantized image descriptors derived from local image patches, in which 
they discard any spatial information. In brief, the BoF represents a histogram of the number of occurrences of 
particular patterns in a given image. The BoF methods have been applied to image classification, object detection, 
and image retrieval. Due to its simplicity and performance, the BoF approach has been established in the field of 
computer vision. For a survey of relevant literature for BoF development and application, see31.

The BoF framework is illustrated schematically in Fig. 3. The first step in the BoF algorithm is to construct the 
codebook, which consists of quantized vectors in a feature space called visual words. For this, the feature vectors 
are extracted from the patch sets from each image and added to the codebook feature space. Next, to develop 
the codebook, the k-means clustering method with k = 20, 50, or 100 is performed. All the extracted feature 
vectors are thereby partitioned into k regions in which each feature vector belongs to the region with the nearest 
centroid. The extracted feature vectors are thus quantized to the centroid values in a codebook space, in which 
each cluster represents a visual word. Within the BoF framework, an image in the training and test image sets 
is represented as term vectors, which is a normalized histogram of the visual words. Given an image in the sets, 
features are detected and assigned to the nearest codes in the codebook. Here, we employed a k-nearest neighbor 
(kNN) classifier to assign the extracted features from images in a training set to the closest terms in the codebook. 
We went on to record the counts of each term that appears in the image to create a term vector. For machine 
learning, we used the SVM classifier for binary categorization of image sets of tissue sections and the multiclass 
error-correcting output codes (ECOC) classifier for ternary categorization of image sets of the OA model. For the 
image classification test, feature vectors are detected and assigned to their nearest matching terms from the code-
book in a way used in the training stage, and eventually constructed a term vector. A test image is subsequently 
predicted to fall into one of the predefined categories.
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Within the BoF machine learning framework, for computational simplicity, we used four texture parameters, 
correlation, ASM, contrast, and IDM. According to the feature vector construction scheme described above, we 
have a vector if we arrayed the histograms with twenty-two bins for different θs in a line as = θ θ θ θh h h h h( , , , )1 2 3 4 , 
where θ θ θ θ= ° = ° = ° = °0 , 45 , 90 and 1351 2 3 4 . We thereby obtained a vector by arraying the vectors for four 
texture parameters in order, =V h h h h( , , , )Cor ASM Con IDM . V therefore has the dimension of 352 and was used as 
a feature vector for an image patch.

In order to compare an existing feature extraction method with our texture analysis method, we used the 
speeded-up robust feature (SURF)36, which is a popular gradient-based feature description technique. The BoF 
parameters we have are the grid step g and codebook size k. The grid step controls sampling density, which is hori-
zontal and vertical displacement of each feature center to the next. The codebook size, which corresponds to the 
dimensions of the term vectors, is configured during the clustering stage of the BoF algorithm. We investigated 
the parameter sensitivity of the classification method by varying these parameter values. In order for all images in 
a set to be tested, we employed the strategy of running several consecutive implementations of the BoF algorithm 
(Supplementary Tables 1 and 4). To analyze the tissue sections, one of four sets from each subset was tested in one 
run of the algorithm. All images were used for vocabulary building while the other images were used for training 
(Supplementary Table 1).

Numerical calculations.  All the calculations were performed using the software MATLAB (Mathworks 
Inc.).

Data availability.  The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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