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Abstract 

Background: Computational prediction of the interaction between drugs and protein 
targets is very important for the new drug discovery, as the experimental determi-
nation of drug-target interaction (DTI) is expensive and time-consuming. However, 
different protein targets are with very different numbers of interactions. Specifically, 
most interactions focus on only a few targets. As a result, targets with larger numbers 
of interactions could own enough positive samples for predicting their interactions 
but the positive samples for targets with smaller numbers of interactions could be 
not enough. Only using a classification strategy may not be able to deal with the 
above two cases at the same time. To overcome the above problem, in this paper, a 
drug-target interaction prediction method based on multiple classification strategies 
(MCSDTI) is proposed. In MCSDTI, targets are firstly divided into two parts according to 
the number of interactions of the targets, where one part contains targets with smaller 
numbers of interactions (TWSNI) and another part contains targets with larger num-
bers of interactions (TWLNI). And then different classification strategies are respectively 
designed for TWSNI and TWLNI to predict the interaction. Furthermore, TWSNI and 
TWLNI are evaluated independently, which can overcome the problem that result 
could be mainly determined by targets with large numbers of interactions when all 
targets are evaluated together.

Results: We propose a new drug-target interaction (MCSDTI) prediction method, 
which uses multiple classification strategies. MCSDTI is tested on five DTI datasets, 
such as nuclear receptors (NR), ion channels (IC), G protein coupled receptors (GPCR), 
enzymes (E), and drug bank (DB). Experiments show that the AUCs of our method are 
respectively 3.31%, 1.27%, 2.02%, 2.02% and 1.04% higher than that of the second best 
methods on NR, IC, GPCR and E for TWLNI; And AUCs of our method are respectively 
1.00%, 3.20% and 2.70% higher than the second best methods on NR, IC, and E for 
TWSNI.

Conclusion: MCSDTI is a competitive method compared to the previous methods 
for all target parts on most datasets, which administrates that different classification 
strategies for different target parts is an effective way to improve the effectiveness of 
DTI prediction.
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Background
Drug development is a time-consuming and expensive process that is plagued with 
the problem known as the high attrition rate. This led to the practitioners’ great inter-
est in drug repositioning due to its potential to reduce the time, cost, risk and effort 
inherent in developing new drugs. Some drug-target interaction (DTI) prediction 
methods have been proposed in the past several years, which can be divided into two 
categorists: similarity based methods and feature based methods.

Similarity based methods mainly use the similarity relationships between sam-
ples. Some similarity based methods proposed new optimization objective functions 
for similarity decomposition [1–5]. Ban et  al. proposed a neighborhood regularized 
logistic matrix factorization [1], which can utilize the neighborhood information. Cui 
et al. proposed a L2,1 graph regularized matrix factorization to learn flow patterns in 
combination with the previous matrix-decomposition method [2]. Li et al. proposed a 
multi-view low rank embedding to integrate multi-view representations of drugs and 
proteins [3]. Mongia et  al. proposed a multi-graph regularized nuclear norm mini-
mization based method for DTI, which predicts the interactions between drugs and 
target proteins from three inputs [4]. Wang et al. proposed an effective computational 
model of dual Laplacian graph regularized matrix completion, where the drug and the 
target similarities can be fully exploited by using a dual Laplacian graph regulariza-
tion term [5].

Although designing different optimization objective functions can make the decom-
position factor meet different conditions, the decomposition factor heavily depended 
on similarity. Some similarity based methods designed a new method to calculate the 
similarity [6–8]. Zong et  al. calculate the similarities within linked tripartite network, 
which enhanced existing association discovery methods by using a topology-based simi-
larity measure [6]. Ding et al. developed a fuzzy bipartite local model, where multiple 
kernels are constructed in drug and target spaces [7]. Fan et al. introduced the similarity 
information of drugs/targets, and proposed the neighborhood constraint to regularize 
the unknown cases [8]. However, because the distributions of drugs and targets are very 
complex, it is hardly to design a good similarity calculation method. To overcome this 
problem and in order to make better use of the information contained in the feature, 
some feature-based methods have also been proposed.

Firstly, the feature is very important for the feature based methods, and some 
researcher proposed new feature extraction methods to extract more features from 
targets and drugs [10–15]. Li et  al. used rotation forest in DTI, where local phase 
quantization descriptors are used to extract evolutionary information in the position-
specific scoring matrix (PSSM) [10]. Farshid et al. used Adaboost in DTI, where many 
feature extraction methods were used in the same time [11]. Jiang et al. proposed an 
ensemble system integrating k nearest neighbor classifier with a novel feature encod-
ing scheme to identify DTI [12]. Mahmud et.al predicted DTI based on drug chemical 
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structure and protein sequence by using extreme gradient boosting (XGBoost) with 
synthetic minority oversampling technique (SMOTE) [13]. Han et al. predicted DTI 
by using Lasso with random forest based on evolutionary information and chemical 
structure [14]. Xu et al. infer the DTI by using graph isomorphic network and word 
vector matrix [15].

Secondly, because it is unclear which feature is the best, many features could be 
extracted for the target and the drug in the same time [16–18], and then some dimen-
sional reduction methods have been proposed for DTI [19–23]. Ezzat et  al. proposed 
a framework for DTI prediction by leveraging both feature dimensionality reduction 
and ensemble learning [19]. Aman et al. proposed a bagging based ensemble framework 
named for DTI prediction by using dimensionality reduction and active learning to deal 
with class-imbalanced data [20]. Mahmud et al. predicted DTI based on protein features 
with under sampling and feature selection techniques with boosting [21]. Feng et al. pro-
posed a supervised discriminative sparse principal component analysis [22] and a graph 
Laplacian sparse principal component analysis for dimensional reduction [23]

Thirdly, some new classifiers are also proposed for DTI [24–30]. He et al. presented 
a method called SimBoost that predicts continuous values of binding affinities of com-
pounds and proteins and thus incorporates the whole interaction spectrum from true 
negative to true positive interactions [24]. Rayhan et  al. proposed an ensemble model 
which uses extra tree as weak learners inside a boosting scheme while holding on to 
the best model per iteration [25]. Pliakos et al. proposed a new learning method which 
addresses DTI prediction as a multi-output prediction task by learning ensembles of 
multi-output bi-clustering trees on reconstructed networks [26]. Zhang et al. used sev-
eral random projections to build an ensemble random projection tree system [27]. Buza 
et  al. selected a random subset of features and used only the selected features when 
training the local models [28]. Ezzat et al. proposed another ensemble learning method 
that incorporates techniques to address the issues of between class imbalance and 
within-class imbalance [29]. Ye et al. proposed a multiple output deep neural network to 
enhance the deep neural network learning ability with a kind of auxiliary classifier layers 
[30].

Although the above methods can solve some problems from different sides, they do 
not solve the problem that different targets are with very different numbers of interac-
tions. For targets with larger numbers of interactions (TWLNI), many positive samples 
can be generated. But for targets with smaller numbers of interactions (TWSNI), so few 
interactions can only produce a small number of positive samples. As a result, different 
classification strategies should be designed for these two types of targets. Based on the 
above idea, in this paper, a new DTI prediction method based on multiple classification 
strategies (MCSDTI) is proposed.

In MCSDTI, targets are firstly divided into TWLNI and TWSNI. For TWLNI, because 
drug-target interactions are very sparsely distributed in the drug-target pair space, 
predicting interactions for these targets together with their neighbors could introduce 
more negative samples than positive samples. Furthermore, these targets could own 
enough positive samples for predicting their interactions. So interactions of TWLNI are 
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predicted by using their owned positive samples. For TWSNI, numbers of positive sam-
ples of targets are too small. So the positive samples of their neighbors are used together 
to predict their interactions. As a result, using different classification strategies in dif-
ferent situations can make better use of the advantages of these classification strategies. 
What’s more, TWLNI and TWSNI are evaluated independently, as the result could be 
mainly determined by TWLNI when TWLNI and TWSNI are evaluated together.

The contribution of this paper can be concluded as follows:

(1) As far as we known, this is the first time that interactions of TWLNI and TWSNI 
are predicted by different classification strategies, which can make better use of the 
advantages of these classification strategies in different situations.

(2) TWLNI and TWSNI are evaluated independently, which can overcome the prob-
lem that the improvement for TWSNI could be overwhelmed when TWLNI and 
TWSNI are evaluated together.

(3) Designe a new classifier and a new evaluator for TWLNI, which can overcome the 
negative impact of samples of the neighbors.

(4) Find a good classifier for TWSNI, whose effect for TWSNI has been overwhelmed 
by TWLNI.

(5) Provide a new research idea for DTI prediction, as interactions of TWLNI and 
TWSNI cannot be predicted in the same time.

The remaining of this paper is organized as follows. Section 2 introduces the Meth-
ods. Section 3 introduces the results. Finally, Section 4 gives concluding remarks.

Methods
Data and motivation

Five datasets are used in this work, such as nuclear receptors (NR) [31], ion 
channels(IC) [31], G protein coupled receptors (GPCR) [31] and enzymes (E) [31], 
and drug bank (DB) [32]. The simplified molecular input line entry system (SIMILES) 
of drugs and sequences of targets are offered by these datasets, which can be used to 
extract the features for drugs and targets. The simple statistics for five datasets are 
given in the Table 1, where the 2nd to 4th rows respectively represented the number 
of drugs, targets and interactions, the 5th row represented the proportion of interac-
tions among drug-target pair space.

By analyzing these datasets, two conclusions can be obtained. Firstly, drug-target 
interactions are very sparsely distributed in the drug-target pair space, which can be 

Table 1 Simple statistics for datasets

Data sets NR IC GPCR E DB

Drugs 54 210 223 445 5877

Targets 26 204 95 664 3348

Interactions 90 1476 635 2926 12,674

Proportion 6.4% 3.4% 3.0% 0.99% 0.064%
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shown by the Table 1. It can be seen from the 5-th row of the Table 1 that the per-
centage of interactions in the drug-target pairs space are only 6.4%, 3.0%, 3.4% 0.99%, 
0.064% respectively  on NR, GPCR, IC, E and DB, which shows that the number of 
interactions is much smaller than the number of drug-target pairs.

Secondly, most of the interactions focus on only a few targets, which can be shown 
by the Fig.  1. Distributions of interactions on four datasets are given. Targets are 
divided into five parts according to the numbers of interactions of targets and each 
part owns the same number of targets, where targets in the 1-th part owns smaller 
numbers of interactions, targets in the 2nd part owns larger numbers of interactions, 
targets in the 3rd part owns more large numbers of interactions and so on. It can be 
seen from Fig. 1 that more than 60% of interactions focus on 20% of targets on GPCR, 
E, DB, and nearly 50% of interactions focus on 20% of targets on NR and IC. And 
then some targets are with larger numbers of interactions, but other targets are with 
smaller numbers of interactions.

As a result, it is difficult to design a prediction strategy that can handle all these 
cases. So in this paper, different classification strategies are designed for these two 
types of targets.

To predict the DTI for a drug target pair, the feature vectors for the drug and the 
target should be firstly extracted. Some types of features have been proposed for the 
drugs, such as molecular substructure fingerprints, constitutional, topological, quan-
tum chemical properties, and geometrical. Here the PubChem molecular substruc-
ture fingerprint is extracted for the drug by PaDEL [33], where the input of PaDEL 
is the SMILES of the drug. The extracted drug feature is defined as D. In this type of 
representation, each molecular structure is described by a Boolean vector, which is a 
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Fig. 1 The distribution of interactions on five datasets, where Feature vector extraction
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fingerprint of a structural key according to a substructure pattern of the predefined 
PubChem database [34]. This feature gives a direct relationship between the molecu-
lar and properties and retain the entire structure of the drug molecule [34].

More types of features have been also proposed for targets, such as amino acid com-
position, dipeptide composition, autocorrelation descriptors, composition, transition, 
distribution, quasi-sequence-order descriptors, pseudo-amino acid composition, amphi-
philic pseudo-amino acid composition, topological descriptors for atom model, total 
amino acid properties. In this paper, all above features are extracted for targets by Pro-
tein features (PROFEAT) [35], where the input of PROFEAT is the sequence of the tar-
get. These features can describe the target from different aspects and the dimension of 
these features is not very big. The extracted target feature is defined as T.

The simple information of the extracted features is represented in the Table 2. It can 
be seen from Table 2 that dimensions of the drug feature, target feature and total feature 
are respectively 1024, 1437 and 2461. Furthermore, it also can be seen from the 4-th row 
of Table 1 that number of interactions of NR, GPCR, IC, E and DB are respectively  90, 
635, 1476, 2926 and 12,674. Obviously, this is a high-dimensional small sample problem, 
which will be considered in designing classification strategies.

Overview of MCSDTI

Given drug features D, target features T, interaction matrix Y, drug similar Sd and target 
similar St, the flowchart of MCSDTI is shown. It can be seen from Fig. 2 that MCSDTI 
has 5 steps, where 1st and 5th steps are the input step and the output step. Step 2 to step 
4 will be simply introduced in the following.

Table 2 Simple information of the extracted features

Data sets NR IC GPCR E DB

Drug feature dimension 1024 1024 1024 1024 1024

Target feature dimension 1437 1437 1437 1437 1437

Total feature dimension 2461 2461 2461 2461 2461

D, T, Y, Sd, St

Divided targets into TWLNI and TWSNI

TWLNI classifier TWSNI classifier

TWLNI evaluator TWSNI evaluator

TWLNI prediction result

Input

Preprocessing

Classification

Evaluation

Output TWSNI prediction result

Fig. 2 The flowchart of MCSDTI
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In the preprocessing step, the targets are divided into TWLNI and TWSNI accord-
ing to the number of interactions, where TWLNI contains targets with larger numbers 
of interactions, and TWSNI contains targets with smaller numbers of interactions. In 
the classification step, the TWLNI classifier and the TWSNI classifier are respectively 
designed for TWLNI and TWSNI, which can make better use of the advantages of 
these classifiers in different situations. In the evaluation step, the TWLNI evaluator 
and the TWSNI evaluator are respectively designed for TWLNI and TWSNI. Two 
evaluators are designed here, as percentages of interactions of targets with top num-
ber of interaction among all interactions are very big. And then the result could be 
mainly determined by TWLNI when all targets are evaluated together, which could 
make that the improvement for TWSNI is overwhelmed.

TWLNI classifier and evaluator

A larger number of positive samples can be generated for the TWLNI, and then there 
would be enough positive samples to predict the interactions of these targets. In this 
case, because drug-target interactions are very sparsely distributed in the drug-target 
pair’s space, after adding samples of neighbors, much more negative samples than pos-
itive samples would be added. And then the effect of predicting DTI for this target 
may be worsen, which can be shown by the Fig. 3, where Fig. 3a shows the samples of 
a target and Fig. 3b shows the samples after adding the samples of its neighbors, x is 
a testing sample of the target, x1 and x2 are two positive samples of this target, x3 and 
x4 are two negative samples of its neighbors. It can be seen from the Fig. 3b that many 
negative samples could be added around the positive samples of this target. As a result, 
the test sample x could be rightly predicted in the Fig. 3a but be wrongly predicted in 
the Fig. 3b.

To overcome the above problem, interactions of TWLNI are pre-
dicted by using their own positive samples in this paper. Given a  train-
ing drug feature   set  D = {d1, d2, . . . , du} ∈ Ru×p , training target feature  set   
T = {t1, t2, . . . , tv} ∈ Rv×q , and the corresponding interaction matrix Y ∈ Ru×v , where 
u is the number of drugs, p is the number of the drug features, v is the number of 
targets, and q is the number of target features. To predict the interaction of tj, D can 
be seen as u samples, Y , j can be seen as the corresponding class label. As a result, the 
pseudo code of TWLNI classifier can be shown by the Algorithm 1.

x
x

x4

x1

x2x2

(a) (b)

x1
x3

Fig. 3 An example used to show the negative impact of samples of the neighbors
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In the step 6 of Algorithm 1,  classifier models can be utilized here. However, the number of 
positive samples is small and the dimension of the extracted feature is high, which should be 
considered by the utilized classifier model. By analyzing the principles of some classification 
models, the decision tree has the ability to deal with such problem. The decision tree is gener-
ated by a recursive method [36]. In each recursive step, a feature that can gain the most infor-
mation is used to generate the child node of the decision tree. As a result, the decision tree is 
influenced by the number of useful features but not the total number of features

It can be seen from Algorithm 1 that this algorithm separately trains a classifier for each target. 
As a result, the evaluation criteria for each target should be also calculated separately. To more 
easily describe the evaluator, the pseudo code of TWLNI evaluator is shown in the Algorithm 2. 
It can be seen from the Algorithm 2 that the evaluation criteria result of tj is calculated by the 
step 4–10, and the mean of evaluation criteria results of all targets is calculated by the step 12.
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TWSNI classifier and evaluator

Too few positive samples can be generated for TWSNI. In this case, there are not enough 
positive samples for this target to predict DTI, so other positive samples should be utilized to 
improve the effect of DTI prediction. An optional method is to use the positive samples gen-
erated by its neighbors.

However, according to the principle of clustering, neighbors of TWSNI would also with 
smaller number of interactions. As a result, a feature based classifier could be hardly trained in 
this case. To overcome this problem, a similar based method is used to predict the interactions 
for these targets. However, because the distributions of drugs and targets are very complex, 
the similarity calculated by the existing similarity calculation methods could be not good. Spe-
cially, the further away the drug or target is, the worse the similarity is. As a result, the nearest 
profile (NP) [31] is used to improve the DTI effect for TWSNI in this paper.

Given drug similar Sd ∈ Rnd×nd , target similar St ∈ Rnt×nt , and interaction matrix 
Y ∈ Rnd×nt , where nd and nt are the number of drugs and targets, the interaction Ytnew of a 
new target tnew can be predicted as following [31]:

where tnearest is the nearest target of tnew and Y (:, tnearest) is the interaction of tnearest.
The interaction Ydnew of a new drug dnew can be predicted as following [31]:

where dnearest is the nearest target of dnew and Y (dnearest, :) is the interaction of 
dnearest.

Finally, the interaction Y (dnew, tnew) of a drug-target pair (dnew, tnew) can be predicted 
by mean of their scores.

The method NP is only used to evaluate the DTI effect for TWSNI. To utilize the informa-
tion offered by their neighbors, all targets are used to calculate Y (dnew, tnew) , as there are not 
enough positive samples for TWSNI.

After calculating all Y (dnew, tnew) , only the evaluation criteria of TWSNI is output, as the 
result could be mainly determined by TWLNI, which could overwhelm the improvement for 
TWSNI. To more easily describe the processing, the pseudo code of TWSNI classifier and 
evaluator is shown in the Algorithm 3. It can be seen from the Algorithm 3 that the process-
ing is not divided into training processing and testing processing, as the training processing 
and testing processing of the similar based method are processed in the same time.

(1)Y (:, tnew) = St(tnew, tnearest)Y (:, tnearest)

(2)Y (dnew, :) = Sd(dnew, dnearest)Y (dnearest, :)
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Results
To verify the effectiveness of our proposed multiple classification strategies, our method 
are compared with the following methods, such as decision tree (DT)[36], random for-
est (RF) [36], nearest profile (NP) [31], weighted profile (WP) [31], network-based infer-
ence (NBI) [37], regularized least squares-avg (RLS) [38], regularized least squares-kron 
(RK) [9], ensemble decision tree (EDT) [19], ensemble kernel ridge regression ensemble 
(EKRR) [19] and so on.

Experimental setting

A standard fivefold cross validation is performed and the AUC for each method (i.e. the 
area under the receiver operating characteristic curve) is computed. More precisely, the 
drugs are divided into 5 parts, where one part is used for testing and other parts are used 
for training. For each of the methods being compared, 5 AUC scores were computed 
(one for each fold) and then averaged to give the final overall AUC score. The AUC score 
can be biased when the data is imbalanced. However, in this paper, TWLNI and TWSNI 
are evaluated independently, which means that only targets with similar imbalance are 
evaluated together. And then imbalance does not affect the effectiveness of AUC for 
each method. Furthermore, AUC is a good performance evaluation metric for binary 
classification problem. As a result, AUC is used as the evaluation metrics in this paper.

Many parameters should be set for the compared methods. Parameters of DT, RF, 
EDT and EKRR used in this paper are the same as that used in the Ref. [19]. Default 
parameter values were used for DT and MCSDTI as defined in MATLAB’s fitctree. The 
number of trees should be set for RF, which is set to 50. The dimensionality reduction 
parameter and the number of subspaces should be set for EDT, which are set to 0.8 and 
50. The dimensionality reduction parameter, the number of subspaces, the decay term, 
the Tikhonov regularization parameter, and an adjustable parameter should be set for 
EKRR, which are set to 0.2, 20, 0.7, 1 and 0.5. The decay term, the Tikhonov regulariza-
tion parameter, and an adjustable parameter should be set for RLS and RK, which are set 
to 0.7, 1 and 0.5. NP, WP and NBI do not need to set parameters.

All methods need to extract the drugs features D and targets features T, which can 
be extracted by the methods described in the subsection “Feature vector extraction”. 
For our method, the experiments results can be obtained by Algorithm 1, Algorithm 2 
and Algorithm  3. For the other compared methods, the Y (dnew, tnew) for all test-
ing drugs is firstly calculated by these methods. And then the experiment results for 
TWLNI are calculated by removing TWSNI and the experiment results for TWSNI 
are calculated by removing TWLNI.

The experiments for TWLNI

The experiment results are presented in Table 3. These experiments would be used to 
answer the following questions:

(1) Which threshold τ should be set for our method?
(2) Is our method better than the compared methods?
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As to the first problem, we compare AUCs of the compared methods when the thresh-
old τ is set to 1, 3 and 5, which is given in 3–5 columns in Table 3. Setting τ to different 
values can show the adaptability of our algorithm. It can be seen from Table 3 that the 
AUCs of our method are all the best. Specifically, AUCs of our method are respectively 
2.47%, 0%, 1.49%, 0.83% and 1.38% higher than that of the second best method when 
τ = 1 , where the second best method are EDT, WP, EDT, WP and EKRR on NR, IC, 
GPCR, E and DB. AUCs of our method are respectively 2.32%, 1.48%, 2.41%, 2.65% and 
0.87% higher than that of the second best method when τ = 3 , where the second best 
method are RK, WP, EKRR, WP and EKRR on NR, IC, GPCR, E and DB. AUCs of our 
method are respectively 1.84%, 2.31%, 2.05%, 2.60% and 0.85% higher than that of the 
second best method when τ = 5 , where the second best method are EKRR, WP, EDT, 
WP and EKRR on NR, IC, GPCR, E and DB. It can be seen from the above results that 
our method is obviously better than the compared methods regardless which value is set 
to τ and much better than the compared methods when τ is set to 3 and 5.

Furthermore, to better show the results of methods with different τ , the histogram 
form of Table 3 is given in Fig. 4. It can be seen form Fig. 4 that our method is obvi-
ously increased with the increase of τ on NR, IC, E and DB, but most of the com-
pared algorithms have no similar phenomena. The reason may be that more positive 
samples will be generated with the increase of τ for a target, and then there would be 
enough positive samples to predict the interactions of this target. As a result, adding 
samples of neighbors may be worsening for predicting the DTI of this target.

As to the second problem, we will answer it from three aspects. Firstly, it can be seen 
from Table 3 and Fig. 4 that our method is the best regardless which value is set to τ on 
all datasets. Specifically, it can be seen from the last column in Table 3 that our method 
is the best method on all 5 datasets, and the AUCs of our method are respectively 3.31%, 
1.27%, 2.02%, 2.02% and 1.04% higher than the second best methods on NR, IC, GPCR, 
E and DB, where the second best methods are respectively RK, WP, EDT, WP and EKRR. 
They prove that our method owns the best effect for DTI predicting. Secondly, it can be 
seen from Table 3 and Fig. 4 that the second best methods are very different on different 
datasets or by setting different value for τ . It proves that our method is more stable than 
the compared methods. Thirdly, it can be seen from Fig. 4 that our method is obviously 
increased with the increase of τ on most datasets, which provides a very good guide to 
the scope of application of our algorithm. As a result, our method is much better than 
the compared methods.

The experiments for TWSNI

The experiment results are presented in Table 4. These experiments would be used to 
answer the following questions:

(1) Which threshold τ should be set for our method?
(2) Is our method better than the compared methods?

As to the first problem, we compare the AUCs of the compared methods when the 
threshold τ is set to 1, 3 and 5, which is given in 3–5 columns in Table 4. It can be seen 
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Table 3 AUCs for TWLNI, where τ used in Algorithm 1 are respectively set to 1, 3 and 5

Dataset τ 1 3 5 Mean

NR DT 51.90 ± 0.19 47.30 ± 0.23 47.30 ± 0.23 48.83

RF 76.10 ± 0.40 77.30 ± 0.30 67.80 ± 0.36 73.73

NP 69.50 ± 2.00 74.90 ± 0.37 73.90 ± 0.70 72.77

WP 72.80 ± 0.22 80.60 ± 0.80 75.40 ± 0.10 76.27

NBI 72.40 ± 0.30 79.70 ± 0.80 73.80 ± 0.20 75.30

RLS 77.00 ± 0.32 87.10 ± 0.40 88.20 ± 0.49 84.10

RK 78.60 ± 0.30 87.80 ± 0.37 88.50 ± 0.40 84.97

EDT 81.70 ± 0.42 86.10 ± 0.10 81.20 ± 0.35 83.00

EKRR 76.40 ± 0.35 87.40 ± 0.29 88.70 ± 0.39 84.17

ours 84.17 ± 0.48 90.12 ± 0.46 90.54 ± 0.56 88.28

IC DT 51.30 ± 0.18 53.30 ± 0.33 54.30 ± 0.34 52.97

RF 67.70 ± 0.27 72.10 ± 0.12 72.90 ± 0.11 70.90

NP 62.60 ± 0.10 64.30 ± 0.40 66.10 ± 0.60 64.33

WP 72.50 ± 0.54 76.60 ± 0.50 77.40 ± 0.13 75.50

NBI 72.30 ± 0.54 76.40 ± 0.40 77.20 ± 0.13 75.30

RLS 68.30 ± 0.67 70.60 ± 0.45 71.40 ± 0.42 70.10

RK 68.40 ± 0.57 70.50 ± 0.36 71.00 ± 0.31 69.97

EDT 71.50 ± 0.24 76.00 ± 0.18 77.20 ± 0.35 74.90

EKRR 69.50 ± 0.64 71.60 ± 0.38 72.50 ± 0.33 71.20

ours 72.50 ± 0.43 78.08 ± 0.54 79.71 ± 0.54 76.77

GPCR DT 59.90 ± 0.20 62.60 ± 0.80 62.70 ± 0.13 61.73

RF 78.00 ± 0.18 77.60 ± 1.90 77.80 ± 0.19 77.80

NP 67.80 ± 0.10 69.30 ± 0.40 70.30 ± 0.20 69.13

WP 81.90 ± 0.11 80.40 ± 0.22 80.70 ± 0.20 81.00

NBI 81.80 ± 0.11 80.40 ± 0.22 80.60 ± 0.19 80.93

RLS 81.50 ± 0.11 81.20 ± 0.14 81.00 ± 0.15 81.23

RK 82.00 ± 0.40 81.00 ± 0.11 80.90 ± 0.13 82.30

EDT 82.70 ± 0.12 82.20 ± 0.21 83.00 ± 0.15 82.63

EKRR 82.50 ± 0.09 82.30 ± 0.12 82.30 ± 0.14 82.37

Ours 84.19 ± 0.96 84.71 ± 0.38 85.05 ± 0.56 84.65

E DT 61.60 ± 0.25 63.00 ± 0.45 63.40 ± 0.56 62.67

RF 76.90 ± 0.80 80.70 ± 0.10 81.10 ± 0.06 79.57

NP 74.80 ± 0.30 71.90 ± 0.80 72.00 ± 0.80 72.90

WP 85.00 ± 0.30 85.30 ± 0.70 85.50 ± 0.12 85.27

NBI 84.90 ± 0.30 85.20 ± 0.70 85.40 ± 0.12 85.17

RLS 76.70 ± 0.40 74.30 ± 0.10 74.40 ± 0.21 75.13

RK 77.40 ± 0.13 75.90 ± 0.40 76.20 ± 0.17 76.50

EDT 82.20 ± 0.20 84.50 ± 0.30 84.70 ± 0.80 83.80

EKRR 77.30 ± 0.50 75.30 ± 0.24 75.80 ± 0.38 76.13

Ours 85.83 ± 0.47 87.95 ± 0.36 88.10 ± 0.53 87.29

DB DT 65.70 ± 0.48 69.30 ± 0.64 70.30 ± 0.58 68.43

RF 82.50 ± 0.60 85.30 ± 0.56 86.50 ± 0.76 84.77

NP 69.70 ± 0.78 72.50 ± 0.46 72.90 ± 0.80 71.70

WP 84.20 ± 0.64 78.20 ± 0.62 73.30 ± 0.48 78.57

NBI 64.40 ± 0.93 58.90 ± 0.79 55.90 ± 0.53 59.73

RLS 88.10 ± 0.75 87.70 ± 0.39 87.30 ± 0.35 87.70

RK 88.30 ± 0.66 89.00 ± 0.60 88.70 ± 0.65 88.67

EDT 87.50 ± 0.58 88.32 ± 0.62 88.89 ± 0.49 88.24

EKRR 91.00 ± 0.68 92.10 ± 0.86 92.40 ± 0.57 91.83

Ours 92.38 ± 0.58 92.97 ± 0.72 93.25 ± 0.66 92.87

The maximum and second maximum AUC are shown in bold and italics
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from Table 4 that the AUCs of our method are the best on NR, IC, E, and the second 
best on DB when τ is set to 1. However, the AUCs of our method are worse than that of 
the most compared methods when τ is set to 3 and 5. Specifically, our method is much 
worse than compared methods when τ is set to 5.

Furthermore, to better show the results of algorithms with different τ , the histogram 
form of Table 4 is given in Fig. 5. It can be seen from Fig. 5 that AUCs of almost all meth-
ods are obviously increased with the increase of τ on almost all datasets. However, the 
increase speed of our method is less than that of other methods. The reason may be that 
nearest profile is used to improve the DTI effect for TWSNI in this paper and nearest 
profile could be not very good for targets with a larger number of interactions.

As a result, τ should be set to 1 for our method. Although τ only can be set to 1, 
TWSNI classifier and TWSNI evaluator are also very useful and important. Firstly, the 
interaction of targets with a larger number of interactions can be predicted by TWLNI 
classifier and TWLNI evaluator. It can be seen from Table 3 that TWLNI classifier and 
TWLNI evaluator can obtain good results when τ is set to 3 and 5. Secondly, TWSNI 
classifier and TWSNI evaluator own good results when τ is set to 1. It can be seen from 
Table 4 that our method is the best on NR, IC, E, and the second best on DB when τ 
is set to 1. Thirdly, the best compared method for TWLNI and TWSNI are not the 
same, which prove that using different classifier strategies for different targets may be 
necessary. And then separately designed the TWSNI classifier and TWSNI evaluator 
for TWSNI is important. It can be seen from Tables 3 and 4 that the best method for 
TWSNI is RLS, but RLS is not the best method for TWLNI.

As to the second problem, we compare the AUCs of the compared methods when 
τ is set to 1, as TWSNI classifier and TWSNI evaluator are only used to improve the 
DTI effect for the targets with smaller numbers of interactions. It can be seen from 
the second column in Table 4 that our method is the best method on NR, IC and E, 
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Table 4 AUCs for TWSNI, where τ used in Algorithm 1 are respectively set to 1, 3 and 5

The maximum and second maximum AUC are shown in bold and italics

Dataset τ 1 3 5 Mean

NR DT 49.90 ± 0.54 54.30 ± 0.32 53.20 ± 0.31 52.47

RF 51.10 ± 0.61 63.90 ± 0.51 66.40 ± 0.44 60.47

WP 32.30 ± 0.64 53.90 ± 0.58 58.30 ± 0.44 48.17

NBI 40.20 ± 0.54 54.80 ± 0.60 58.60 ± 0.44 51.20

RLS 52.90 ± 0.65 66.20 ± 0.49 69.90 ± 0.48 63.00
RK 49.10 ± 0.63 66.00 ± 0.51 69.40 ± 0.48 61.50

EDT 44.70 ± 0.73 63.00 ± 0.70 66.70 ± 0.51 58.13

EKRR 51.00 ± 0.59 66.20 ± 0.52 69.60 ± 0.45 62.67

ours 53.90 ± 0.47 65.30 ± 0.52 67.90 ± 0.33 62.37

IC DT 46.70 ± 0.70 48.70 ± 0.41 50.30 ± 0.43 48.57

RF 41.90 ± 0.48 54.60 ± 0.34 61.50 ± 0.33 52.67

WP 37.40 ± 0.59 50.80 ± 0.55 60.70 ± 0.45 49.63

NBI 32.40 ± 0.69 50.40 ± 0.57 60.20 ± 0.44 47.67

RLS 51.30 ± 0.73 58.80 ± 0.41 63.00 ± 0.32 57.70

RK 46.40 ± 0.91 60.50 ± 0.40 65.30 ± 0.32 57.40

EDT 34.10 ± 0.58 54.60 ± 0.49 62.90 ± 0.39 50.53

EKRR 50.90 ± 0.76 60.10 ± 0.53 65.50 ± 0.42 58.83
ours 54.50 ± 0.51 54.40 ± 0.34 57.20 ± 0.36 55.37

GPCR DT 50.50 ± 0.58 53.10 ± 0.37 57.30 ± 0.28 53.63

RF 56.80 ± 0.68 69.40 ± 0.32 73.50 ± 0.26 66.57

WP 40.80 ± 0.68 58.40 ± 0.30 64.10 ± 0.21 54.43

NBI 40.80 ± 0.65 58.00 ± 0.29 64.10 ± 0.20 54.30

RLS 71.90 ± 0.53 80.40 ± 0.30 81.50 ± 0.23 77.93

RK 71.80 ± 0.56 79.20 ± 0.32 80.40 ± 0.25 77.13

EDT 55.80 ± 0.52 70.00 ± 0.30 74.80 ± 0.23 66.87

EKRR 72.50 ± 0.48 80.80 ± 0.26 82.00 ± 0.20 78.43

ours 51.70 ± 0.28 59.60 ± 0.21 63.00 ± 0.13 58.10

E DT 58.90 ± 0.18 61.40 ± 0.14 61.00 ± 0.21 60.43

RF 58.90 ± 0.27 64.10 ± 0.17 67.90 ± 0.18 63.63

WP 44.20 ± 0.21 47.40 ± 0.22 56.90 ± 0.29 49.50

NBI 44.70 ± 0.28 47.60 ± 0.16 57.10 ± 0.32 49.80

RLS 67.50 ± 0.22 68.30 ± 0.22 72.60 ± 0.24 69.47

RK 67.00 ± 0.27 70.30 ± 0.27 72.90 ± 0.29 70.07

EDT 58.00 ± 0.28 63.10 ± 0.19 68.30 ± 0.23 63.13

EKRR 64.20 ± 0.22 65.70 ± 0.22 71.20 ± 0.25 67.03

ours 70.20 ± 0.19 71.70 ± 0.12 69.70 ± 0.40 70.53

DB DT 51.20 ± 0.52 57.30 ± 0.37 58.80 ± 0.39 55.77

RF 54.40 ± 0.65 58.60 ± 0.68 62.20 ± 0.75 58.40

WP 56.70 ± 0.37 45.10 ± 0.46 53.00 ± 0.38 51.60

NBI 60.80 ± 0.45 60.20 ± 0.57 59.80 ± 0.57 60.27

RLS 43.50 ± 0.76 51.60 ± 0.62 65.80 ± 0.63 53.63

RK 65.40 ± 0.59 70.50 ± 0.65 73.70 ± 0.68 69.87

EDT 52.39 ± 0.62 55.60 ± 0.49 63.30 ± 0.54 57.10

EKRR 39.90 ± 0.38 53.30 ± 0.38 60.5. ± 0.38 51.23

ours 62.50 ± 0.62 63.70 ± 0.67 64.50 ± 0.57 63.57
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and the AUCs of our method are respectively 1.00%, 3.20% and 2.70% higher than 
that of the second best methods on NR, IC, and E, where the second best methods 
are RLS. It shows that our method is better than the compared methods on most 
datasets.

Furthermore, it can be seen from Table 4 that our method is worse than the most 
of the compared methods on GPCR, the reason may be that NP is used in our 
TWSNI classifier. NP can consider the problem that the similarity between drugs 
and the similarity between targets are not very precise, as only the nearest neigh-
borhood is used to predict the DTI. However, this character also makes NP a lit-
tle sensitive to the nearest neighborhood. As a result, our method can own good 
results on most datasets but owns bad result on GPCR. So if using our method 
to predict the DTI for TWSNI, many cross validation on training data should be 
firstly performance. Actually, most comparison algorithms are prone to the above 
phenomenon for TWSNI, as the positive samples are not enough for TWSNI. For 
example, RF is good on NR but bad on other three datasets. EKRR is the best on 
GPCR but not very good on other three datasets. RK is good on GPCR but not very 
good on NR and IC. As a result, our method can be also a good method to predict 
the DTI for targets with a small number of interactions in real applications.

Discussion
Different targets are with very different numbers of interactions and most of the inter-
actions focus on only a few targets. And then some targets could own enough positive 
samples to predict their interactions but other targets cannot just use their own positive 
samples to predict their interactions. As a result, for targets that own enough positive 
samples, the effect of predicting DTI could be worse by adding samples of neighbors, as 
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neighbors could own much more negative samples than positive samples. However, for 
targets that do not have enough positive samples, many other positive samples should be 
utilized to improve the effect of DTI prediction. Obviously, the interactions of different 
targets should be predicted by different methods.

Furthermore, another problem is also existed in that different targets are with very dif-
ferent numbers of interactions. If TWSNI and TWLNI are evaluated together, the result 
could be mainly determined by TWLNI, as most of the interactions focus on only a few 
targets. However, finding new interactions for TWSNI could be more important than 
finding new interactions for TWLNI in the real application of the DTI prediction. Obvi-
ously, new evaluators should be designed to increase the influence of TWSNI on the 
results of the experiment.

In this study, MCSDTI is designed according above analyses, which owns following 
advantages: firstly, interactions of TWLNI and TWSNI are predicted by different clas-
sification strategies, which can make better use of the advantages of these classification 
strategies in different situations, and the information contained in different targets can 
be more fully utilized. Secondly, TWLNI and TWSNI are evaluated independently, and 
then the DTI prediction effect of TWSNI can be fairly presented, which provides a new 
research goal for DTI prediction. It can be seen from Tables 3 and 4 that MCSDTI is 
much better than the compared methods on most datasets. Specifically, most compari-
son methods cannot obtain good results for TWLNI and TWSNI in the same and many 
methods can own a good result for TWSNI but not for TWLNI. They prove that interac-
tions for different targets should be predicted by different methods and all targets can-
not be evaluated together.

There are several interesting problems to be investigated in our future work. Firstly, in 
this paper, an existed method is used to improve the DTI effect for TWSNI. Although 
this method can play its advantages under our framework, the DTI prediction result is 
also not very good, and then a better method can be designed for TWSNI in the future. 
Secondly, a new adaptively MCSDTI framework can be designed, where the number of 
parts can be adaptively chosen and the threshold used to divide the part can be adap-
tively set.

Conclusions
This paper presents  multiple classification strategies based drug-target interaction 
(MCSDTI) prediction method. In MCSDTI, targets are firstly divided into TWLNI and 
TWSNI; and then two classifiers and evaluators are respectively designed for TWLNI 
and TWSNI to predict the corresponding DTI. As a result, information of different tar-
get sets can be better used by different classification strategies; and the evaluation results 
obtained by different evaluation methods can fairer and more useful. The conducted 
experiments validate that MCSDTI is a competitive method compared to the previ-
ous ones. Most of methods cannot own both good DTI prediction results for TWLNI 
and TWSNI, but MCSDTI can be much better than the compared methods for both 
TWLNI and TWSNI on most datasets, which shows that designing different classifica-
tion strategies for different targets is an effective way to improve the effectiveness of DTI 
prediction.
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