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Abstract The lethal chronic airway infection of the cystic fibrosis (CF) patients is predisposed by

colonization of specific CF-philic pathogens or the CF microbiomes, but key processes and reasons

of the microbiome settlement in the patients are yet to be fully understood, especially their survival

and metabolic dynamics from normal to diseased status under treatment. Here, we report our

meta-analysis results on CF airway microbiomes based on metabolic networks reconstructed from

genome information at species level. The microbiomes of CF patients appear to engage much more

redox-related activities than those of controls, and by constructing a large dataset of anti-oxidative
.
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stress (anti-OS) genes, our quantitative evaluation of the anti-OS capacity of each bacterial species

in the CF microbiomes confirms strong conservation of the anti-OS responses within genera and

also shows that the CF pathogens have significantly higher anti-OS capacity than commensals

and other typical respiratory pathogens. In addition, the anti-OS capacity of a relevant species cor-

relates with its relative fitness for the airways of CF patients over that for the airways of controls.

Moreover, the total anti-OS capacity of the respiratory microbiome of CF patients is collectively

higher than that of controls, which increases with disease progression, especially after episodes of

acute exacerbation and antibiotic treatment. According to these results, we propose that the

increased OS in the airways of CF patients may play an important role in reshaping airway micro-

biomes to a more resistant status that favors the pre-infection colonization of the CF pathogens for

a higher anti-OS capacity.
Introduction

Cystic fibrosis (CF) is a genetic disorder due to dysfunctional

mutations of CFTR, a gene that encodes the cystic fibrosis
transmembrane conductance regulator, an ion channel protein
transporting chloride, bicarbonate, and thiocyanate ions

across epithelial cell membranes [1,2]. CFTR mutations in
the airway epithelium cells lead to a reduced volume of the air-
way surface liquid (ASL), which is composed of thick mucus,

decreased muco-ciliary clearance, and increased ASL acidity,
and altogether, they compromise local physical anti-bacterial
defenses [3]. Meanwhile, immune response to pathogen infec-
tions in CF patients is also defective as previously reviewed

[4]. Therefore, the CF-associated pulmonary environment con-
stitutes an allowed habitat for microorganisms that are able to
colonize in the thickened mucus and cannot be effectively

cleared, eventually leading to recurrent and chronic pulmonary
infections — the major cause of CF morbidity [3]. A number of
specific pathogens, such as Pseudomonas aeruginosa, and

Burkholderia cepacia complex have much higher frequency of
causing chronic infections in patients with CF than healthy
individuals and other patient groups [5–7]. Mechanisms under-
lying this close association between CF and the CF-philic

pathogens or the CF pathogens are not yet fully understood
except the discovery of predisposed colonization of CF patho-
gens in airways of CF patients before they cause chronic infec-

tions [8]. In fact, there are complex and diverse microbial
floras, or microbiomes, in the airway of CF patients [9], and
such multispecies communities often exhibit apparently dis-

torted species composition, i.e., dysbiosis, when compared
with those of healthy individuals [10]. Obviously, dysbiosis
of the microbiome is critical for CF pathogen colonization,

and investigations on the microbiome dysbiosis will help in
elucidating the pathogenesis of chronic infections in CF
patients and in finding effective treatment strategies.

The CF airway microbiomes face quite complex milieu dif-

ferent from that of normal individuals. In addition to the
thickened mucus, sputa of CF patients are also featured
increased acidity and abundant nutrients, such as iron [11],

small organic acid [12], amino acid [13], and nuclear acid [14]
which are always undetectable in healthy lungs. Furthermore,
hyper-inflammation is another primary feature of CF airways

that is heavily infiltrated with neutrophils and other immune
cells [15]. Neutrophils are engaged in non-specific defending
against bacterial invasion by releasing a large amount of reac-

tive oxygen species (ROS), and thus elevate local oxidative
stress (OS) [16]. Studies have shown that pro-inflammation
cytokines production, neutrophil infiltration, and increased
OS are already observed even in new born CF patients before
bacterial colonization [5]. Furthermore, this neutrophil domi-
nant inflammation is perpetually exaggerated by recurrent

infections of CF pathogens during the progression of the dis-
ease in a lifetime of CF patients [4]. Therefore, CF airways
provide a unique trophic and stress milieu for microbes inhab-

iting there, and have important effects on their metabolic
activities for the sake of fitness. In this way, the dysbiosis
can be dissected by elaborative analysis on the metabolic activ-

ities and stress response of each component species of the
microbiomes in the milieu, which, however, have not yet been
systemically investigated. Another feature of respiratory
microbiome is obvious diversity among individuals [17,18],

for which large sample size is demanded for sufficient statisti-
cal power.

Toward this end, we perform meta-analysis using high-

quality data selected from previous studies to investigate mech-
anisms of the CF pathogen colonization and microbiome dys-
biosis in CF patients based on the metabolic activity of airway

microbiomes. The limitation of such a function analysis is that
the data sources are all 16S-based, and ideally, a thorough
functional analysis prefers comparative datasets where high-

quality shotgun-sequencing-based and 16S-based data from
adequate sampling of respiratory microbiomes are both avail-
able. Nevertheless, the current data are all 16S-sequence-
based, albeit often questioned for reliability in metabolic

reconstruction and analysis, and it is what we have available
for examination at this time point. Furthermore, metabolic
processes among human microbiomes are usually very stable

and may not lethally affected by occasional quantitative
differences of individual genes within a complex pathways
and networks. The key often lies in the conservation of such

metabolic processes within lineage levels, such as within the
scope of genus where resolution can be reached based on
16S rDNA sequencing data, and we are extremely cautious
and always ask the question as to in what extent a variable

metabolic process is conserved.
Results and discussion

Our meta-analysis confirms the microbiome dysbiosis in CF

airways

Following the preferred reporting items for systematic reviews
and meta-analyses (PRISMA) guidelines [19], we select previ-

ous published studies and datasets in public resource for anal-
ysis, and a detailed description of our selection process can be
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found in Materials and methods section. Since we are yet to
find a high-quality shotgun sequencing-based research report,
let alone a qualified dataset, for respiratory microbiomes, we

only include 16S rDNA sequencing-based studies. Our selec-
tion for high-quality data finally results in seven studies from
149 original studies (Figure 1), and of them, five are published

studies [20–24] on healthy controls, early-stage and adult
patients, and the other two are unpublished datasets of con-
trols and early-stage patients (Table 1, Table S1). In total, this

meta-analysis contains 298 CF patients and 54 healthy
controls (Table S2). The average read mapping rates at various
lineage levels reach 97.78%, and 91.27% of the reads are
assignable to known genera alone (Figure S1).

Our meta-analysis confirms the observations of microbiome
dysbiosis in CF patients described in previous studies [25–27].
Although there are some batch-based variations among differ-

ent studies, we find that microbiome dysbiosis in adult CF
patients becomes apparent after re-grouping the samples.
Our nonmetric multidimensional scaling (NMDS) result shows

that samples from adult CF patients are quite different in term
of species profile from those of healthy controls, while samples
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Table 1 Studies used in the current meta-analysis

SRA

accession No.

Clinical

status

No. of

samples

No. of

qualified reads

Mapping

rate of re

SRP050998 Healthy 49 172,970 94.48%

SRP059068 Healthy 5 39,678 94.68%

SRP045593 Children 19 530,830 96.39%

SRP038106 Children 13 188,181 93.22%

SRP051730 B \ E 95 564,087 97.25%

SRP025173 B \ E \ T \ R 45 884,898 90.16%

SRP011201 B \ E \ T \ R 126 731,453 98.69%

Note: SRA, Sequence Read Archive; OTU, operational taxonomic unit; B,

recovery stage.
of early-stage CF patients lie between the two groups
(Figure 2A). A typical sample from the adult CF patient
mainly manifests dysbiosis in two aspects: a pathogen species,

especially Pseudomonas, dominates the microbiome while com-
mensal species appear diminishing. Both of the changes reduce
diversity of the CF microbiomes, leading to a significant

decrease of Shannon index which is commonly used to charac-
terize species diversity in a community (Figure 2B). For the 12
major components at the genus level in the airway micro-

biome, which are present in >60% CF or control samples with
their reads abundance >1% in at least one sample, the Spear-
man’s rank correlation coefficient between each pair of species
indicates that Pseudomonas is negatively correlated with the

five commensal species, while these commensals and four other
species are positively correlated if we set a loose cut-off of cor-
relation coefficient |q| > 0.4 (Figure 2C).

When taken in a longitudinal view, the microbiome dysbio-
sis aggravates with the disease progression as the abundance of
Pseudomonas gradually increases, whereas the abundance of

the commensals, as well as the Shannon index, decrease simul-
taneously. An example of a CF patient with decade-long
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Ref.

98.38% 350 312 89 [20]

95.47% 171 160 54 NA

96.65% 227 197 63 NA

93.92% 156 140 43 [24]

97.40% 95 85 35 [21]

96.42% 369 272 68 [22]

98.83% 194 168 59 [23]

baseline; E, acute exacerbation stage; T, after antibiotic treatment; R,
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Figure 2 Dysbiosis of airway microbiomes in CF patients

A. NMDS ordination of species profile of samples from healthy controls, early-stage and adult patients. B. The Shannon index of samples

in each group. P values were calculated using Wilcoxon’s test. **, P < 0.01; ***, P < 0.001. C. The 12 top-ranking genera in the

Spearman’s rank correlation network. The red node indicates CF pathogen Pseudomonas, whereas other species are indicated using green

nodes. The red and blue lines indicate the negative and positive correlations, respectively, with their thickness in proportion to coefficient

(q) value, which indicates correlation strength. D. Shannon index, abundance of Pseudomonas, and abundance of the negatively-correlated

commensals of longitudinally collected samples in patient P2. Samples were arranged based on the collection time from early to late in the

10-year period. B, E, T, and R indicate the time points of sample collection at the baseline, acute exacerbation stage, after antibiotic

treatment, and recovery stage, respectively, and the numbers after B, E, T, R represent the numbers of occurrence at the respective stages.

CF, cystic fibrosis; NMDS, nonmetric multidimensional scaling.
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collected samples in a longitudinal study is showcased here
(Figure 2D). These observations feature the microbiome dys-
biosis in CF airways, where a rather loose negative correlation

is seen between Pseudomonas and commensals.
CF microbiomes are highly-engaged in redox activity

In the interrogation of nutrient metabolism, we first look at
direct interactions, i.e., competition or co-operation between
the major species. Here, we follow the method, proposed by
Zelezniak et al to in silico predict nutrition consumption and

metabolite generation for each species [28]. Our results show
that all major component species compete with each other
for common nutrition resources such as saccharides and amino

acids, and the value of metabolic resource overlap (MRO),
which quantitatively represents competition between species
pairs, does not have significant difference between the groups

of negatively-correlated (Pseudomonas-commensal pairs with
q < �0.4), positively-correlated (commensal-commensal pairs
with q > 0.4), and uncorrelated (pairs with |q| < 0.4) species
pairs (Figure S2A). Similarly, the value of metabolic interac-
tion potential (MIP), which quantitatively represents meta-

bolic co-operation between species pairs, does not show
apparent association with the Spearman’s correlation coeffi-
cient as well (Figure S2B). Therefore, our analysis indicates
that the major component species in the airway microbiomes

are largely independent from nutrient metabolism, and such
a fact is very different from the gut microbiomes, and the latter
exhibit intensive interspecies interactions [29]. Such a differ-

ence may be due to the fact that an airway microbiome harbors
much less bacterial species both in species number and total
biomass and whose poor biodiversity offers very little chance

for the establishment of interspecies interaction.
The metabolic independence among the airways major

component species indicates that they may confront the CF

airway milieu independently, and the dysbiosis of the CF
microbiomes may be a result of the specific CF airway environ-
ment that is highly selective for adaption of the CF pathogens
that out-compete the commensals. Therefore, we try to identify
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metabolic differences between the CF and normal airway
microbiomes, which should offer some clues on the selective
forces. Therefore, we use a constrained metabolic analysis

method, BiomeNet [30] to interrogate details where reactions
are limited by the abundance of corresponding enzymes and
substances. The inferred discriminatory metabolic subnet-

works involve 312 enzymes, which can be used to make distinc-
tions between the CF and control samples (Figure S3). These
enzymes are functionally classified to be those that increase fit-

ness for resident species in changing environments, and the
exercise yields a major top-ranking CF-enriched enzymes:
oxidoreductases. These enzymes are carried mainly by CF
pathogens, whereas none of the control-enriched enzymes par-

ticipate in any redox reactions (Figure 3). The functions of
these oxidoreductases are not in a single category but include
electron transport (rubredoxin reductase), H2O2 degradation

(glutathione peroxidase), glutathione (GSH) synthesis
(glutathione reductase), and NADPH (nicotinamide adenine
dinucleotide phosphate) generation, and all of them appear

to share protective functions in alleviating ROS damage. For
example, the rubredoxin system in Pseudomonas conveys effi-
cient defense during infection, and its high electron transfer

efficiency keeps the iron center in a reduced state that mini-
mizes OS-damage after phagocytosis in neutrophils [31].
Another example is a pair of detoxification enzymes found in
Pseudomonas, glutathione peroxidase and reductase, and both

are upregulated in response to H2O2 stress [32].
Figure 3 Differential distribution of enzymes in discriminatory

metabolic subnetworks between CF and normal microbiomes

Triangles indicate the enzymes that compose the discriminatory

metabolic subnetworks (refer to Figure S3). The Y-axis shows

average enzyme abundance in all samples, and the X-axis shows

differential abundance distribution between CF and control

samples, which is calculated by dividing the difference between

enzyme abundances in CF and control by their sum (refer to

Materials and methods). Red and blue triangles indicate enzymes

enriched in CF (more than 0) and control samples (less than 0),

respectively. Solid triangles indicate oxidoreductases. Enzymes

that are well-known to function in anti–OS response are indicated

with solid triangles marked by circled numbers: ①, alkane

hydroxylase; ②, rubredoxin reductase; ③, aldehyde dehydroge-

nase; ④, glutathione reductase; ⑤, alcohol dehydrogenase; and

⑥, glutathione peroxidase.
The intensively increased redox-related activities in the CF
microbiomes provide evidence for hypothesizing on the mech-
anism of dysbiosis in CF, where increased OS in CF airways

selects for CF pathogens that are more resistant to OS than
commensals. There have been sufficient documentations on
the increased ROS level or OS in CF airways, which is one

of its most apparent pathological features and correlates to
the disease progression [33–35]. Some underlying mechanisms
leading to high OS in CF are well-documented, including (i)

malfunction of CFTR gene disables the transport of antioxi-
dant thiocyanate (SCN) [36] and glutathione (GSH) [37,38]
across airway epithelial cell membrane, which may be a pri-
mary factor that decreases SCN/GSH concentration and

increase OS in the CF airways [39–41]; and (ii) recurrent and
chronic infections caused by CF pathogens induce infiltration
of neutrophils and macrophages, which usually release large

amount of ROS [4]. To check if a microbiome component is
associated with increasing OS, we must evaluate anti-OS
capacity quantitatively at genome level for species. Even at

such a level, sometimes we can start with a single strain but
other time may use the concept of pangenome for a species
or even pangenome of species for a genus.

Anti-OS capacity can be quantitatively evaluated at species level

Oxidative stress (OS) is almost ubiquitous for all microbes,
which originates from both intrinsic redox reactions and

extrinsic conditions, such as toxic chemicals, ultraviolet light,
and immune attacks from hosts. Therefore, all microbial spe-
cies bear a set of mechanisms encoded by their genome to con-

front OS. Molecular studies have been clarifying genes that
participate in OS-response for both model bacteria such as
S. aureus and P. aeruginosa or pathogenic species of a micro-

biome. Unfortunately, only a small portion of the anti-OS
genes pool has been classified from the entire microbial world
[42,43]. Some known common OS-response genes shared

among species, especially those closely related, can be currently
used to predict anti-OS capacities [44], but the strategy some-
times may actually fail when remote relatives bearing different
anti-OS mechanisms and genes are put together [42,45]. It is

fortunate that transcriptional responses to OS has been exper-
imentally studied in various species across phyla, and the data
can be used to predict anti-OS capacity for a given genome.

These studies also indicate that OS-response is a complex pro-
cess involving genes in many function categories, such as
repair, escape, defense, and metabolic shift to anaerobic gly-

colysis, which are synchronized in the response to help survival
of host bacteria and should be together considered for evaluat-
ing anti-OS capacity.

To systemically evaluate anti-OS capacity of a given

species, we need datasets composed of genes that are
experimentally confirmed to participate in OS-response as well
as functional categories. By systemically searching primary

experimental studies with gene expression information in
response to ROS (Table S3), we construct an anti-OS gene
dataset containing 504 anti-OS genes (protein families,

Table S4). These genes are clustered into five functional cate-
gories according to the eggNOG database [46], i.e., Signal,
Repair, Cell Wall, Regulation, and Metabolism (Figure 4).

The Signal category includes classical OS sensors, such as
phoP, and other signal sensors, such as irlR for heavy metal
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and cheY for chemotaxis. The Regulation category includes
regulators, such as gapR, rpoS, rpoE, chrR, and hslO in the
OS-response regulons. The Repair category is composed of

proteins related to damage-repairing of DNA and other
macro-molecules, such as recA, radC, uvrA, dnaE, and rtcB.
Flagellar proteins such as flhF, flgE, fliC, as well as efflux

pumps and transporters, are assigned in the Cell Wall cate-
gory. The Metabolism category contains genes in glycolysis
and pentose phosphate pathways to reduce aerobic respiration

or genes participating in NADPH synthesis, such as zwf and
pgm, and some detoxification proteins, such as katA and sodA.
Accuracy of the collection depends largely on accuracy of gene
function annotation, and can be further improved by intensive
Figure 4 Anti-OS capacity of species in airway

We manually curated 44 common respiratory bacteria from articles

capacity (proportion of anti-OS genes in the genome of each species) a

each anti-OS gene. NOG, non-supervised orthologous groups.
literature-based confirmation or database reference, such as
more experimental evidence on broader taxa or uncharacter-
ized genes becoming known in function.

For each species, we select a representative genome (often a
strain not a pangenome) and infer the presence of each anti-OS
gene by a thorough search for protein families in the

Pathosystems Resource Integration Center (PATRIC) based
on a Markov clustering algorithm for cross taxa orthologs
identification. An anti-OS capacity is subsequently quantita-

tively assessed as proportion of anti-OS genes over total
protein-coding genes in a genome. Similarly, anti-OS capacity
of a microbiome is evaluated as an average anti-OS capacity
(proportion of anti-OS genes) of each species constituents
and books; for each bacteria, the right panel indicates anti-OS

nd the left panel displays a heatmap for copy number count from
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and weighted by their abundance. As microbial genomes of a
species also vary greatly, we have to check if a pangenome
and the contributing strain genomes are conserved and anti-

OS capacity within genus can be resolved based on 16S
sequences. For each genus, we first select at least one
representative genome for each species and subsequently calcu-

late anti-OS capacity for each representative genome. Our
results indicate that anti-OS capacity at species level for each
genus vary in a very limited way (Figure S4), and the limited

variation is possibly due to the fact that anti-OS response
mechanisms among closely-related species are highly con-
served, and so do their gene contents relevant to the OS
response. Since 16S sequences are more readily available than

those from shotgun sequencing, our conservation analysis pro-
vides a simple way to evaluate anti-OS capacity, which adds
more assurance to the datasets. In addition, increased OS is

commonly observed in pathogenesis of many other diseases,
such as opportunistic infection in patients with COPD (chronic
obstructive pulmonary disease) [47], diabetes mellitus [48], and

empyrosis [49].

CF airway microbiomes are potentially reshaped by gradual

increase of oxidative stresses

We first assess the number of species that have been reported
to be frequently detected in human airways in current litera-
tures; the key words include but not limited to CF pathogens

(such as P. aeruginosa, Staphylococcus aureus, and
Figure 5 Comparative fitness analysis of species with different anti-O

The central Y-axis shows average anti-OS capacity of each genus. Th

species in CF and control samples, respectively. For each species, the re

samples, respectively. The error bar indicates the upper limit of 95%

species in CF (red) and control (blue) microbiomes are labeled. The lo

with average anti-OS capacity of major genera in microbiomes of C

percentile of the relative abundance of each species.
Burkholderia cepacia), typical pulmonary pathogens (such as
Streptococcus pneumonia, Klebsiella pneumonia), and commen-
sals (such as Prevotella melaninogenica). The proportion of

anti-OS genes are all above 0.1 among CF pathogens, but
below 0.1 in some typical pathogens and aerobic commensals,
and even below 0.05 in some anaerobic commensals (Figure 4).

Collectively, the proportion of anti-OS genes of CF pathogens
are significantly higher than other groups (P < 0.001 in
Wilcoxon test, Figure S5), which is in accordance with exper-

imental comparison [50]. Therefore, CF pathogens may have
stronger resistance to high-OS environments in CF airways
and have greater potential to colonize and even to dominate
the microbiomes. Meanwhile, high-OS in CF airways makes

the microenvironment inhospitable for most OS-sensitive com-
mensals especially anaerobic species that have much less anti-
OS genes. Along with disease progression, ROS level gradually

elevates, and eventually leads to chronic dominance of CF
pathogens and diminishment of commensals, i.e., the state of
dysbiosis.

We further interrogate anti-OS capacity at genus level
based on fitness between CF and normal airways. For species
in our data, we evaluate their average relative abundance in

CF patients and controls separately for comparative fitness.
We observe that species with high proportions of anti-OS
genes are more abundant in the CF than in the control sam-
ples, whereas those with low proportions prefer normal airway

environment. When sorted by anti-OS capacity, comparative
abundance of species suggests that CF airways are more
S capacity in microbiomes of CF patients and controls

e right and left X-axes show average relative abundance of each

d and blue bars show average relative abundance in CF and control

confidence interval. Adaptive ranges of anti-OS capacity for the

wer right inlet shows the correlation of 95% maximum abundance

F patients, where 95% maximum abundance refers to the 95th
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suitable for species with anti-OS capacity of 0.09–0.13, as com-
pared to normal airways that are suitable for species with anti-
OS capacity of 0.05–0.1 (Figure 5). In addition to average

abundance, we also investigate maximum relative abundance,
95%, of species in the CF samples, which represents the ability
of dominating the microbiomes or causing infections there,

and find that it positively correlates to anti-OS capacity as well
(Figure 5). Such positive correlations indicate that species anti-
OS capacity may play an important role in pathogenicity, and

such correlations are in accordance with previous reports on
the role of anti-OS genes in infections [51–54].

As for anti-OS capacity of microbiomes, we observe a sig-
nificant increase in adult CF samples when compared to

early-stage patients and healthy controls. The difference is still
significant even after removing the two most dominant CF
pathogens in our samples, Pseudomonas and Burkholderia

(Figure 6A). The result suggests that increased OS in CF not
only selects for CF pathogens that dominate the microbiome
but also has effects on the minor species constituents. Interest-

ingly, antibiotics treatment increases anti-OS capacity of the
CF microbiomes regardless if Pseudomonas and Burkholderia
Figure 6 Increased OS forces the airway microbiome to achieve highe

A. Anti-OS capacity in various patient groups. B. Anti-OS capacity in

total microbiomes, and the lower panels display that of minor spec

differences between various groups were calculated using Wilcoxon’s te

capacity of samples collected along the time course of patient P2 in

treatment are indicated using the red circles.
are included or not in the analysis (Figure 6B). Our observa-
tion agrees with previous studies where intensive antibiotics
treatment often exaggerates microbiome dysbiosis as recently

reviewed [10]. One possible reason is that a considerable por-
tion of anti-OS genes is attributable in general to various stres-
ses, such as genes in SOS response and toxic-antitoxic (T-AT)

two-component system, which force the bacteria into the per-
sister status and becoming resistant to most stresses [55,56].
Antibiotics treatment is a severe stress, together with the OS,

selects species with higher resistant to global stresses. Acute
exacerbation of infection has been known to be a major factor
for disease progression [4], which is always followed by
increased neutrophils infiltration, ROS release, and antibiotics

treatment; all factors forcing microbiomes to be more resistant
to OS make infection more refractory. When we examine time
courses of a single patient (the patient in Figure 2C), the anti-

OS capacity of his microbiome appears increasing gradually
and is accompanied by deteriorating dysbiosis, especially after
episodes of acute exacerbation (Figure 6C).

Our results strongly support the hypothesis that CF patho-
gen domination and dysbiosis in CF airways may potentially
r anti-OS capacity

various disease stages. The upper panels show anti-OS capacity of

ies after excluding Pseudomomas and Burkholderia. P values for

st. NS, non-significant; **, P < 0.01; ***, P < 0.001. C. Anti-OS

a longitudinal study. Samples collected after intensive antibiotics
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be affected by increased OS. As the disease progresses in CF
patients since birth, OS of their airway microbiomes gradually
increases and eventually leads to a synchronous pathogen shift

or multiple shifts with increasing anti-OS capacity. Therefore,
we have observed that the low anti-OS capacity species
H. influenza (0.085) is more prevalent at early stages, whereas

the high anti-OS capacity species P. aeruginosa and B. cepacia
(0.12–0.13) are more prevalent at late stages [57]. As OS
becomes a potential reason promoting colonization of CF

pathogens, anti-oxidative therapy may provide promising ways
to control CF progression. In fact, incipient animal experiment
and clinical trials have proven effective by inhaling GSH in
reducing P. aeruginosa abundance and even in improving pul-

monary functions [58,59]. Other studies have shown increased
OS and dysbiosis [60] and effects of oral anti-oxidants in cor-
recting dysbiosis in CF gut microbiomes [61]. Although GSH

effect in general is still controversial [62], and varies among
patients with gamma-glutamyltransferase (GGT, a GSH
degrader) activity [63], anti-OS treatment, targeting one of

the critical mechanisms in CF pathogen colonization, deserves
further investigation, maybe in some larger trials and better
formulation designs.
Conclusions

Although the studies we have collected for the current analysis

are carried out before September 2015, the species profiles of
the CF microbiome remain consistent thereafter. Furthermore,
the anti-OS geneset we have curated has been constantly

renewed according to the up-to-date literature and PATRIC
database, and we are quite sure about its reliability for anti-
OS capacity calculation. 16S data are known to have limita-

tions for metabolic analysis, especially in the case of poor spe-
cies assignment. However, 16S data are still useful for inferring
metagenome features by the application of some sophisticated
tools, such as PICRUSt [64], Tax4Fun [65], and Piphillin [66],

coupled with in-house approaches [67,68]. In our case, the res-
piratory microbiome is rather simple as compared to the com-
plicated intestinal microbiomes. Over 90% 16S reads are

mapped to known genera, and 34 genera (take up to 90.6% rel-
ative abundance) are detectable in >10% samples with rela-
tive abundance >1% in at least one sample, and 14 genera

(taking up to 80.4% relative abundance) are well-known
human respiratory bacteria based on high-quality reference
genomes. Furthermore, the anti-OS genes are very conserved

within genus as shown in Figure S4, so that analysis based
on 16S data, albeit not always credible, is still deemed reliable.

By carrying out meta-analysis on high-quality studies of CF
airway microbiomes based on anti-OS genes across various

functional categories and species, we are able to quantitatively
evaluate anti-OS capacity for any single species or micro-
biome, and based on such data, we verify the conservation

of OS-response within genus and propose the greatly increased
OS as a potential but important force that reshapes CF airway
microbiomes to a more resistant status. The increased OS is a

potential predisposition of the colonization and domination of
CF pathogens, which points to the importance of monitoring
airway OS level and developing antioxidants, especially in
inhaled formulation, as a promising treatment strategy to con-

trol lethal infections. Moreover, a similar mechanism in other
high-OS situations, such as some other opportunistic infec-
tions in patients with primary diseases, also deserves similar
in-depth investigations.

Materials and methods

Collection of studies and the associated data

We searched literatures in the Web of Science with the follow-

ing criteria: ‘‘Title: (cystic fibrosis OR healthy) AND Topic:
(microbiome OR microbiota) AND Topic: (lung OR airway
OR respiratory)”. And we also searched the NCBI SRA
records with the same keywords. We checked the reference list

of existing reviews and meta-analysis articles for additional
studies. Unpublished sources of data are also included. All
these papers and records are restricted to the time period from

January 2006 to September 2015. We restricted our search to
English literature only.

The following types of studies were included: (1) partici-

pants: adult or pediatric healthy individuals, and patients with
CF in baseline, exacerbation, treatment, and recovery clinical
state; (2) sample collection: bronchoalveolar lavage (BAL)

fluid from healthy individuals and sputum from patients; (3)
methods: target-amplicon sequencing of 16S rDNA hypervari-
able region; (4) long-read sequencing platform: 454 GS FLX
titanium platform; (5) sequencing data availability: raw data

could be downloaded from the NCBI SRA system or other
websites. Two authors independently performed text mining
in the titles and abstracts of these publications for eligible stud-

ies. Full-text articles were retrieved after text mining, and
reviewed by the same two authors to make decision for inclu-
sion. Confused inclusions were resolved based on thorough

discussion.

OTU picking and taxonomic assignment

There have been several tools available for handling 16S data,

such as UPARSE, QIIME, and Parellel-META [69–71]. We
chose a combination of UPARSE and QIIME for this study.
We removed the adapter and primer and filtered the reads with

parameters (250 bp � length � 1000 bp, average quality score
�25, no ambiguous base in first 250 bp). Then, we pooled
the reads from the same study, trimmed them to 250 bp in

length, and reduced the cleaned reads to unique sequences,
and clustered the final reads to OTUs (operational taxonomic
units) with 97% minimum pair-wise sequence identity by using

UPARSE (USEARCH v8.1.1861) [69]. We also removed chi-
meric reads and singletons. As the reads in this work are from
different variable regions of 16S rDNA, we clustered OTU for
different studies. After OTUs clustering, the reads from each

study were mapped to OTUs with 97% identity for building
OTU tables. Finally, the representative OTUs were assigned
to appropriate taxonomy by using UCLUST algorithm [72]

and Greengenes database (version 13_8) [73] with a 97% min-
imum percent similarity in QIIME (v1.8.0) [70]. We further
pooled the OTUs assigned to the same taxonomy across the

studies and summarized all OTUs from the same genus (in-
cluding all species it contains) to construct a genus-level table,
which was further rarefied by vegan (v2.4.2). All the down-

stream analyses were based on this rarefied genus-level table.
Samples with <1000 reads included in OTUs assigned to
known taxonomy were removed, and studies with <80%
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eligible samples were further excluded. All eligible samples
were pooled and regrouped into six groups of healthy control,
early-stage patient, and four stages of adult patients, i.e., base-

line, exacerbation, treatment, and recovery.

Microbiome diversity and species correlation

To compare community diversity for each sample group, we
calculated the Shannon index and the Bray-Curtis distance
as showcased in the NMDS plot, using vegan (version 2.4–2)

[74]. We further calculated the Spearman’s rank correlation
coefficient (q) using R scripts [75] and set cutoffs of positive
and negative correlations as |q| > 0.4 (P < 0.01).

Selection of representative genomes for genus and metabolic

analysis

For each genus, we selected one representative genome from

the PATRIC database. Complete genomes were given priority
over drafts; poorly assembled genomes (>100 scaffolds) were
not included for the current study. The criteria for genome

selection were: (i) strains reported in the human respiratory
system; (ii) strains reported in human but not respiratory;
and (iii) strains reported in non-human animals and environ-

mental. The representative genomes were annotated according
to the PATRIC Bioinformatics Resource Center (https://
www.patricbrc.org) [76]. We reconstructed genome-scale meta-
bolic models to predict in silico nutrition requirement and

metabolite generation for each representative genome and cal-
culated the value of MIP and MRO for each genome pair
according to method as described [28]. For each species pair,

an MIP value is the number of metabolites, which they can
provide for each other, and an MRO value is the overlap ratio
of resource requirements.

Inference of metabolic diversity between CF and control

microbiomes

We used BiomeNet [30] to infer compositional metabolic sub-
networks of CF and healthy control samples quantitatively by
limiting reactions with enzyme abundance, including sub-
strates and products of the enzymes. The method for selecting

representative genomes is as described above. Enzyme abun-
dance of each sample was normalized according to the number
of rDNA clusters and calculated as the sum of isoenzymes in

representative genomes. Multiple subunits of a given enzyme
were merged. From the BiomeNet results, we listed all enzymes
in the discriminative subnetworks and calculated their differ-

ential distribution between CF and control samples as:

D ¼ ACF � ANð Þ= ACF þ ANð Þ
Here, D is the differential distribution of an enzyme

between CF and control samples. ACF is the enzyme’s average

abundance in the CF samples, and AN is that of the controls.

Anti-OS gene curation and anti-OS capacity calculation

To construct anti-OS gene database, we first used the criteria

‘‘Topic: (peroxide transcriptome bacteria)” to search articles
in Web of Science, and manually curated all primary experi-
mental studies that supply the transcriptome or expression
profile of specific species in response to in vitro treatment of
peroxides including H2O2, paraquat, diamide, and sodium
hypochlorite, based on RNA-Seq or microarray experiments

by Jan 2017. We recruited 34 studies from 54 experiments,
which involve 24 bacterial species. Genes whose expression
was upregulated over two-fold in response to peroxide treat-

ment in at least two experiments were collected as candidates.
All candidate genes were annotated and clustered by using
PATRIC, which uses PATtyFams to group genes into protein

families across species [76]. The clustered protein families were
further assigned to function categories by mapping to the egg-
NOG database with HMMER, and those without function
annotation or not relevant to OS-response, which includes sig-

nal transduction, regulation, protective reaction, repair pro-
cess, or conversion to anaerobic metabolic, were removed
from the final database. Species belonging to CF pathogens,

typical pathogens, and commensals were manually curated
from review articles, books, and our studies. Representative
genomes were also annotated by using PATRIC and their gene

hits to our database were classified as anti-OS genes. Anti-OS
capacity of a species is defined as proportion of anti-OS genes
in all protein-coding genes of the species, and anti-OS capacity

of a genus is an average of collective anti-OS capacity from all
representative species genomes:

Ps ¼ Na=Nc

Here, Ps is anti-OS capacity of a species, Na is the number
of anti-OS genes of the species genome, and Nc is the number

of all coding genes of a species genome.
Anti-OS capacity of a sample or microbiome is calculated

as abundance weighted average proportion of anti-OS genes

of all component genera of the microbiome:

Pm ¼
Xn

i¼1
Psi �Aið Þ=

Xn

i¼1
Ai

Here, Pm is anti-OS capacity of a microbiome, n is the
number of component genera in the microbiome, Ps is anti-

OS capacity of each genus, and A is genus abundance. In
our case, only genera detectable in >10% samples with abun-
dance >1% in at least one sample are accounted for.

Data availability

The clean sequence data used in this study have been deposited

in the Genome Sequence Archive [77] in BIG Data Center [78],
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Sciences (GSA: CRA000583), which are publicly accessible at

http://bigd.big.ac.cn/gsa.

Authors’ contributions

JY and YK conceived the project and led the writing; XS and
ZG collected studies; XS, QL, LZ, and QM analyzed the data.
All authors contributed to the writing and/or intellectual

development of the manuscript, read and approved the final
manuscript.

Competing interests

The authors have declared no competing interests.

https://www.patricbrc.org
https://www.patricbrc.org
https://bigd.big.ac.cn/gsa/browse/CRA00583
http://bigd.big.ac.cn/gsa


600 Genomics Proteomics Bioinformatics 17 (2019) 590–602
Acknowledgments

The work is supported by the National Key R&D Program of

China (Grant No. 2016YFC0903800) and the National Natu-
ral Scientific Foundation of China (Grant Nos. 31470180,
31471237, and 31671350). This work was also supported by

the National Science Foundation/Established Program to
Stimulate Competitive Research (EPSCoR) (Grant No. IIA-
1355423), the State of South Dakota Research Innovation
Center, the Agriculture Experiment Station of South Dakota

State University, and Sanford Health – South Dakota State
University Collaborative Research Seed Grant Program, Uni-
ted States. The funding bodies have no roles in the design of

the study, as well as collection, analysis, and interpretation
of data and in writing the manuscript.
Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gpb.2018.03.009.

References

[1] Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R,

GrzelczakZ, et al. Identificationof the cystic fibrosis gene: cloningand

characterization of complementary DNA. Science 1989;245:1066–73.

[2] Collins FS. Cystic fibrosis: molecular biology and therapeutic

implications. Science 1992;256:774–9.

[3] Ratjen F, Bell SC, Rowe SM, Goss CH, Quittner AL, Bush A.

Cystic fibrosis. Nat Rev Dis Primers 2015;1:15010.

[4] Rottner M, Freyssinet JM, Martinez MC. Mechanisms of the

noxious inflammatory cycle in cystic fibrosis. Respir Res

2009;10:23.

[5] Koch C. Early infection and progression of cystic fibrosis lung

disease. Pediatr Pulmonol 2002;34:232–6.

[6] Govan JR, Nelson JW. Microbiology of lung infection in cystic

fibrosis. Br Med Bull 1992;48:912–30.

[7] Bhagirath AY, Li Y, Somayajula D, Dadashi M, Badr S, Duan K.

Cystic fibrosis lung environment and Pseudomonas aeruginosa

infection. BMC Pulm Med 2016;16:174.

[8] Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Hoiby

N, et al. Adaptation of Pseudomonas aeruginosa to the cystic

fibrosis airway: an evolutionary perspective. Nat Rev Microbiol

2012;10:841–51.

[9] Harrison F. Microbial ecology of the cystic fibrosis lung.

Microbiology 2007;153:917–23.

[10] de Koff EM, de Winter - de Groot KM, Bogaert D. Development

of the respiratory tract microbiota in cystic fibrosis. Curr Opin

Pulm Med 2016;22:623–8.

[11] Moreau-Marquis S, Bomberger JM, Anderson GG, Swiatecka-

Urban A, Ye S, O’Toole GA, et al. The DF508-CFTR mutation

results in increased biofilm formation by Pseudomonas aeruginosa

by increasing iron availability. Am J Physiol Lung Cell Mol

Physiol 2008;295:L25–37.

[12] Bensel T, Stotz M, Borneff-Lipp M, Wollschlager B, Wienke A,

Taccetti G, et al. Lactate in cystic fibrosis sputum. J Cyst Fibros

2011;10:37–44.

[13] Barth AL, Pitt TL. The high amino-acid content of sputum from

cystic fibrosis patients promotes growth of auxotrophic Pseu-

domonas aeruginosa. J Med Microbiol 1996;45:110–9.

[14] Kirchner KK, Wagener JS, Khan TZ, Copenhaver SC, Accurso

FJ. Increased DNA levels in bronchoalveolar lavage fluid

obtained from infants with cystic fibrosis. Am J Respir Crit Care

Med 1996;154:1426–9.
[15] Verhaeghe C, Delbecque K, de Leval L, Oury C, Bours V. Early

inflammation in the airways of a cystic fibrosis foetus. J Cyst

Fibros 2007;6:304–8.

[16] Delgado-Rizo V, Martinez-Guzman MA, Iniguez-Gutierrez L,

Garcia-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neu-

trophil extracellular traps and its implications in inflammation: an

overview. Front Immunol 2017;8:81.

[17] Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L,

Falkowski NR, Huffnagle GB, et al. Bacterial topography of the

healthy human lower respiratory tract. mBio 2017;8:e02287–16.

[18] Botterel F, Angebault C, Cabaret O, Stressmann FA, Costa JM,

Wallet F, et al. Fungal and bacterial diversity of airway

microbiota in adults with cystic fibrosis: concordance between

conventional methods and ultra-deep sequencing, and their

practical use in the clinical laboratory. Mycopathologia

2018;183:171–83.

[19] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting

items for systematic reviews and meta-analyses: the PRISMA

statement. Int J Surg 2010;8:336–41.

[20] Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM,

Schmidt TM, Young VB, et al. Analysis of the upper respiratory

tract microbiotas as the source of the lung and gastric microbiotas

in healthy individuals. mBio 2015;6:e00037.

[21] La Carmody, Zhao J, Kalikin LM, LeBar W, Simon RH,

Venkataraman A, et al. The daily dynamics of cystic fibrosis

airway microbiota during clinical stability and at exacerbation.

Microbiome 2015;3:12.

[22] Price KE, Hampton TH, Gifford AH, Dolben EL, Hogan DA,

Morrison HG, et al. Unique microbial communities persist in

individual cystic fibrosis patients throughout a clinical exacerba-

tion. Microbiome 2013;1:27.

[23] Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK,

Petrosino JF, et al. Decade-long bacterial community dynamics in

cystic fibrosis airways. Proc Natl Acad Sci U S A

2012;109:5809–14.

[24] Hampton TH, Green DM, Cutting GR, Morrison HG, Sogin

ML, Gifford AH, et al. The microbiome in pediatric cystic fibrosis

patients: the role of shared environment suggests a window of

intervention. Microbiome 2014;2:14.

[25] Boutin S, Dalpke AH. Acquisition and adaptation of the airway

microbiota in the early life of cystic fibrosis patients. Mol Cell

Pediatr 2017;4:1.

[26] Frayman KB, Armstrong DS, Carzino R, Ferkol TW, Grimwood

K, Storch GA, et al. The lower airway microbiota in early cystic

fibrosis lung disease: a longitudinal analysis. Thorax

2017;72:1104–12.

[27] de Koff EM, Groot KM, Bogaert D. Development of the

respiratory tract microbiota in cystic fibrosis. Curr Opin Pulm

Med 2016;22:623–8.

[28] Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P,

Patil KR. Metabolic dependencies drive species co-occurrence in

diverse microbial communities. Proc Natl Acad Sci U S A

2015;112:6449–54.

[29] Fischbach MA, Sonnenburg JL. Eating for two: how metabolism

establishes interspecies interactions in the gut. Cell Host Microbe

2011;10:336–47.

[30] Shafiei M, Dunn KA, Chipman H, Gu H, Bielawski JP.

BiomeNet: A bayesian model for inference of metabolic diver-

gence among microbial communities. PLoS Comput Biol 2014;10:

e1003918.

[31] Wiehlmann L, Urbanke C, Adams T, Munder A, Tümmler B. The
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