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Abstract

In many important cellular processes, including mRNA translation, gene transcription, phos-

photransfer, and intracellular transport, biological “particles” move along some kind of

“tracks”. The motion of these particles can be modeled as a one-dimensional movement

along an ordered sequence of sites. The biological particles (e.g., ribosomes or RNAPs)

have volume and cannot surpass one another. In some cases, there is a preferred direction

of movement along the track, but in general the movement may be bidirectional, and further-

more the particles may attach or detach from various regions along the tracks. We derive a

new deterministic mathematical model for such transport phenomena that may be inter-

preted as a dynamic mean-field approximation of an important model from mechanical sta-

tistics called the asymmetric simple exclusion process (ASEP) with Langmuir kinetics.

Using tools from the theory of monotone dynamical systems and contraction theory we

show that the model admits a unique steady-state, and that every solution converges to this

steady-state. Furthermore, we show that the model entrains (or phase locks) to periodic

excitations in any of its forward, backward, attachment, or detachment rates. We demon-

strate an application of this phenomenological transport model for analyzing ribosome drop

off in mRNA translation.

Introduction

Movement is essential for cell function. Cargoes like organelles and vesicles must be carried

between different locations in the cells. The information encoded in DNA and mRNA mole-

cules must be decoded by “biological machines” (RNA polymerases and ribosomes) that move

along these molecules sequentially.

Many of these important biological transport processes are modeled as the movement of

particles along an ordered chain of sites. In the context of intracellular transport, the particles

are motor proteins and the chain models actin filaments or microtubules. In transcription, the
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particles are RNAPs moving along the DNA molecule, and in translation the particles are ribo-

somes moving along the mRNA molecule (see Fig 1).

The movement in such processes may be unidirectional, as in mRNA translation elonga-

tion, or bidirectional, as in transcription or translation initiation. Indeed, the normal forward

flow of the RNAP may be interrupted, due to transcription errors and various obstacles such

as nucleosomes, in which case the RNAP tracks back a few nucleotides and then resumes its

normal forward flow [1–4]. Translation initiation in eukaryotes usually includes diffusion

from the 5’end of the transcript towards the start codon [5]. This diffusion process is believed

Fig 1. Biological processes that can be studied using the model derived in this paper. A—transcription

of a DNA gene into messenger RNA (mRNA) by RNA polymerase. B—mRNA translation by macromolecules

called ribosomes. C—intracellular transport by motor proteins.

https://doi.org/10.1371/journal.pone.0182178.g001
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to be bidirectional, but with a preference to the 5’!3’ direction. The movement of motor pro-

teins like kinesin and dynein along microtubules is typically unidirectional, but can be bidirec-

tional as well [5].

To increase efficiency, many particles may move simultaneously along the same track thus

pipelining the production process. For example, to increase translation yield, a number of

ribosomes may act simultaneously as polymerases on the same mRNA molecule [6, 7].

The moving biological particles have volume and usually cannot overtake a particle in front

of them. This means that a slowly moving particle may lead to the formation of a traffic jam

behind it. For example, Leduc et al. [8] have studied Kip3, a yeast kinesin-8 family motor, and

demonstrated that motor protein traffic jams can exist, given the right conditions. Other stud-

ies have suggested that traffic jams of RNAP [ribosomes] may evolve during transcription

[translation] [7, 9, 10].

In some of these biological transport processes the biological machines may either attach or

detach at various sites along the tracks. For example, ribosomes may detach from the mRNA

molecule before reaching the stop codon due to traffic jams and ribosome-ribosome interac-

tions or due to depletion in the concentration of tRNAs [11–13]. Also, it is known that

kinesin-family motor proteins are more susceptible to dissociation when their path is blocked

[14, 15]. Defects in these transport processes may lead to severe diseases or may even be lethal.

For example, [16] lists the implications of malfunctions of protein motors in disease and devel-

opmental defects.

Developing a better understanding of these dynamical biological processes by combining

mathematical modeling and biological experiments will have far reaching implications to basic

science in fields such as molecular evolution and functional genomics, as well as applications

in synthetic biology, biotechnology, human health, and more. Mathematical or computational

modeling is especially important in developing approaches for manipulating and controlling

these processes, e.g. in order to optimize various goals in biotechnology.

A standard model for such transport processes is the asymmetric simple exclusion process
(ASEP) [17, 18]. This is a stochastic model describing particles that hop along an ordered lat-

tice of sites. Each site can be either empty or occupied by a single particle, and a particle can

only hop to an empty site. This simple exclusion principle represents the fact that the particles

have volume and cannot overtake one another. Simple exclusion generates an indirect cou-

pling between the particles. In particular, traffic jams may develop behind a slow-moving

particle.

The motion is bidirectional i.e. a particle may hop to any of the two neighboring sites (but

only if they are free) and asymmetric, that is, there may be a preferred direction of motion.

Typically, a particle can attach to the lattice in one of its ends and detach from the other end.

When particles can also attach or detach at internal sites along the lattice, the model is referred

to as ASEP with Langmuir kinetics. In the special case where the hops are unidirectional, ASEP

is sometimes referred to as the totally asymmetric simple exclusion process (TASEP). A TASEP-

like system with Langmuir kinetics has been used to model limit order markets in [19], and is

often used in modeling molecular motor traffic [20–24]. For TASEP with open boundary con-

ditions (i.e. when the two sides of the lattice are connected to two particle reservoirs, as

assumed in this paper) and with Langmuir kinetics, no exact solutions are known. The phase

diagram and the shock formation of the homogeneous TASEP (i.e. where all the internal hop-

ping rates are assumed to be equal) with Langmuir kinetics in the thermodynamical limit, that

is as the number of lattice sites goes to infinity, was analyzed in [20, 21, 25] using a mean-field

approximation. It was shown that the phase diagram is much richer than that of TASEP

because phase coexistence becomes possible due to the Langmuir kinetics. Homogeneous
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TASEP with periodic boundary conditions (i.e. when the lattice forms a ring) and with Lang-

muir kinetics was analyzed in [24–26].

More generally, ASEP has become a fundamental model in non-equilibrium statistical

mechanics, and has been applied to model numerous natural and artificial processes including

traffic and pedestrian flow, the movement of ants, evacuation dynamics, and more [27].

In this paper, we introduce a deterministic mathematical model that may be interpreted as

a dynamic mean-field approximation of ASEP with Langmuir kinetics (MFALK) [25]. We ana-

lyze the MFALK using tools from systems and control theory. In particular, we apply some

recent developments in contraction theory to prove that the model is globally asymptotically

stable, and that it entrains to periodic excitations in the transition/attachment/detachment

rates. In other words, if these rates change periodically in time with some common period T
then all the state-variables in the MFALK converge to a periodic solution with period T. This is

important because many biological processes are excited by periodic signals (e.g. the 24h solar

day or the periodic cell-division process), and proper functioning requires phase-locking or

entrainment to these excitations.

Our work is motivated by the analysis of a model for mRNA translation called the ribosome
flowmodel (RFM) [28]. This is a mean-field approximation of the unidirectional TASEP with-
out Langmuir kinetics (see, e.g., section 4.9.7 in [27] and p. R345 in [29]). Recently, the RFM

has been studied extensively using tools from systems and control theory [30–40]. The analysis

is motivated by implications to many important biological questions. For example, the sensi-

tivity of the protein production rate to the initiation and elongation rates along the mRNA

molecule [36], maximization of protein production rate [35], the effect of ribosome recycling

[33, 37], and the consequences of competition for ribosomes on large-scale simultaneous

mRNA translation in the cell [41] (see also [42, 43] for some related models).

The MFALK presented here is much more general than the RFM, and can thus be used to

model and analyze many transport phenomena, including all the biological processes men-

tioned above, that cannot be captured using the RFM. We demonstrate this by using the

MFALK to model and analyze mRNA translation with ribosome drop off—an important fea-

ture that cannot be modeled using the RFM.

Ribosome drop off is a fundamental phenomena that has received considerable attention

(see, e.g., [12, 13, 44–51]). In many cases, ribosome drop off is deleterious to the cell since

translation is the most energetically consuming process in the cell and, furthermore, drop off

yields truncated, non-functional proteins. Thus, transcripts undergo selection to minimize

drop off or its energetic cost [12, 48, 49, 51–53]. There are various hypotheses on the biological

advantages of ribosome drop off. For example, Zaher and Green [54] have suggested that ribo-

some drop off is related to proof reading. One may perhaps expect that another advantage is

that drop off from a jammed site may increase the total flow by reducing congestion. Our anal-

ysis of the MFALK shows that this is not true. Drop off has a substantial effect on the flow, yet

it always leads to a reduction in the steady-state protein production rate.

The remainder of this paper is organized as follows. The next section describes the new

mathematical model. Section 2 presents our main analysis results. Section 3 describes the

application of the MFALK to model mRNA translation with ribosome drop off. The final sec-

tion concludes and describes possible directions for further research. To streamline the presen-

tation, all the proofs are placed in the S1 File.

1 The model

The MFALK is a set of n first-order nonlinear differential equations, where n denotes the

number of compartments or sites along the track. Each site is associated with a state variable
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xi(t) 2 [0, 1] describing the normalized “level of occupancy” (or density) at site i at time t, with

xi(t) = 0 [xi(t) = 1] representing that site i is completely free [full] at time t. Since xi(t) 2 [0, 1]

for all t, it may also be interpreted as the probability that site i is occupied at time t.
The MFALK contains four sets of non-negative parameters:

• λi, i = 0, . . ., n, controls the forward transition rate from site i to site i + 1,

• γi, i = 0, . . ., n, controls the backward transition rate from site i + 1 to site i,

• βi, i = 1, . . ., n, controls the attachment rate to site i,

• αi, i = 1, . . ., n, controls the detachment rate from site i,

where we arbitrarily refer to left-to-right flow along the chain as forward flow, and to flow in

the other direction as backward flow. Each parameter λi, γi, αi and βi has units of 1/time.

The dynamical equations describing the MFALK are:

_x1 ¼ l0ð1 � x1Þ þ g1x2ð1 � x1Þ þ b1ð1 � x1Þ � l1x1ð1 � x2Þ � g0x1 � a1x1;

_x2 ¼ l1x1ð1 � x2Þ þ g2x3ð1 � x2Þ þ b2ð1 � x2Þ� l2x2ð1 � x3Þ � g1x2ð1 � x1Þ � a2x2;

..

.

_xn� 1 ¼ ln� 2xn� 2ð1 � xn� 1Þ þ gn� 1xnð1 � xn� 1Þ þ bn� 1ð1 � xn� 1Þ � ln� 1xn� 1ð1 � xnÞ

� gn� 2xn� 1ð1 � xn� 2Þ � an� 1xn� 1;

_xn ¼ ln� 1xn� 1ð1 � xnÞ þ gnð1 � xnÞ þ bnð1 � xnÞ � lnxn � gn� 1xnð1 � xn� 1Þ � anxn:

ð1Þ

To explain these equations, consider for example the equation for the change in the occu-

pancy in site 2, namely,

_x2 ¼ l1x1ð1 � x2Þ þ g2x3ð1 � x2Þ þ b2ð1 � x2Þ � l2x2ð1 � x3Þ � g1x2ð1 � x1Þ � a2x2:

The term λ1x1(1 − x2) represents the flow from site 1 to site 2. This increases with the occu-

pancy in site 1, and decreases with the occupancy in site 2. In particular, this term becomes

zero when x2 = 1, i.e. when site 2 is completely full. This is a “soft” version of the hard exclusion

principle in ASEP: the effective entry rate into a site decreases as it becomes fuller. Note that

the constant λ1� 0 describes the maximal possible transition rate from site 1 to site 2. Simi-

larly, the term λ2x2(1 − x3) represents the flow from site 2 to site 3. The term γ2x3(1 − x2)

[γ1x2(1 − x1)] represents the backward flow from site 3 to site 2 [site 2 to site 1]. Note that these

terms also model soft exclusion. The term β2(1 − x2) represents attachment of particles from

the environment to site 2, whereas α2x2 represents detachment of particles from site 2 to the

environment (see Fig 2). The other equations can be explained similarly.

The MFALK is a compartmental model [55, 56], as every state-variable describes the occu-

pancy in a compartment (e.g., a site along the mRNA, gene, microtubule), and the dynamical

equations describe the flow between these compartments and also with the environment.

Compartmental models play an important role in pharmacokinetics, enzyme kinetics, basic

nutritional processes, cellular growth, and pathological processes, such as tumourigenesis and

atherosclerosis (see, e.g., [55, 57] and the references therein). More specifically, the MFALK is

a nonlinear tridiagonal compartmental model, as every _xi directly depends on xi−1, xi, and xi+1

only.
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Note also that

Xn

i¼1

_xi ¼ l0ð1 � x1Þ � g0x1 þ b1ð1 � x1Þ � a1x1

þgnð1 � xnÞ � lnxn þ bnð1 � xnÞ � anxn

þ
Xn� 1

i¼2

ðbið1 � xiÞ � aixiÞ:

ð2Þ

The term on the right-hand side of the first [second] line here represents the change in x0 [xn]

due to the flow between the environment and site 1 [site n], whereas the term on the third line

represents the flow between internal sites and the environment.

The output rate from site n at time t is the total flow from this site to the environment:

RðtÞ ≔ ðln þ anÞxnðtÞ � ðgn þ bnÞð1 � xnðtÞÞ: ð3Þ

Note that R(t) may be positive, zero, or negative.

In the particular case where αi = βi = γi = 0 for all i the MFALK becomes the RFM, i.e. a

dynamic mean-field approximation of the unidirectional TASEP with open boundary condi-

tions and without Langmuir kinetics.

Let x(t, a) denote the solution of Eq (1) at time t� 0 for the initial condition x(0) = a. Since

the state-variables correspond to normalized occupancy levels, we always assume that a
belongs to the closed n-dimensional unit cube:

Cn ≔ fx 2 Rn : xi 2 ½0; 1�; i ¼ 1; . . . ; ng:

Let int(Cn) denote the interior of Cn, and let @Cn denote the boundary of Cn. The next section

analyzes the MFALK defined in Eq (1).

2 Main results

For notational convenience, let α0 ≔ 0, γ0 ≔ 0, αn+1 ≔ 0, and βn+1 ≔ 0. Recall that all the

proofs are placed in S1 File.

Fig 2. Topology of the MFALK. The state variable xi(t) 2 [0, 1] describes the density of site i at time t. The parameter λi [γi] controls the

transition rate from site i [i + 1] to site i + 1 [i]. The parameter αi [βi] controls the detachment [attachment] rate from [to] site i. R(t) denotes the

output rate at time t.

https://doi.org/10.1371/journal.pone.0182178.g002
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2.1 Invariance and persistence

It is straightforward to show that Cn is an invariant set for the dynamics of the MFALK, that is,

if a 2 Cn then x(t, a) 2 Cn for all t� 0. The following result shows that a stronger property

holds.

Proposition 1 Suppose that at least one of the following two conditions holds:

li þ biþ1 > 0; for all i 2 f0; . . . ; ng; ð4Þ

or

gi þ aiþ1 > 0; for all i 2 f0; . . . ; ng: ð5Þ

Then for any τ> 0 there exists d = d(τ) 2 (0, 1/2] such that

d � xiðt þ t; aÞ � 1 � d; ð6Þ

for all a 2 Cn, all i 2 {1, . . ., n}, and all t� 0.

This means in particular that trajectories that emanate from the boundary of Cn “immedi-

ately” enter Cn, and also that every occupancy is “immediately” uniformly separated from zero

and from one. This result is useful because as we will see below on the boundary of Cn the

MFALK loses some important properties. For example, the Jacobian matrix of the dynamics

Eq (1) is irreducible on int(Cn), but becomes reducible at some points on the boundary of Cn.

2.2 Contraction

Differential analysis and in particular contraction theory proved to be a powerful tool for ana-

lyzing nonlinear dynamical systems. In a contractive system, trajectories that emanate from

different initial conditions contract to each other at an exponential rate [58–60]. Let j � j1 :

Rn ! Rþ denote the L1 norm, i.e. for z 2 Rn, |z|1 = |z1| + � � � + |zn|.

Proposition 2 Let

Z≔ maxf� l0 � g0 � a1 � b1; � a2 � b2; . . . ; � an� 1 � bn� 1; � ln � gn � an � bng:

Note that η� 0. For any a, b 2 Cn and any t� 0,

jxðt; aÞ � xðt; bÞj1 � exp ðZtÞja � bj1: ð7Þ

This means the following. Consider two ribosomal densities a, b 2 Cn. Define the distance

between densities using the L1 distance: |a − b|1 = |a1 − b1| + � � � + |an − bn|, i.e. the sum of

the absolute differences at each site. Consider two time evolutions of the MFALK x(t, a) and

x(t, b), i.e. the solution at time t when initialized with x(0) = a and with x(0) = b. Then the dif-

ference between x(t, a) and x(t, b) decreases with time with an exponential rate η. Thus, as

time progresses the MFALK “quickly forgets” the initial condition and, as we will see below,

the density always converges to the same steady-state density.

The value η depends on the MFALK parameters and increasing all the sums αi + βi,
i = 1, . . ., n, makes the system “more contractive”. Indeed, these parameters have a direct stabi-

lizing effect on the dynamics of site i, whereas the other parameters affect the site indirectly via

the coupling to the two adjacent sites.

When η = 0, Eq (7) only implies that the L1 distance between trajectories does not increase.

This is not strong enough to prove the asymptotic properties described in the subsections

below. Indeed, in this case it is possible that the MFALK will not be contractive with respect to

any fixed norm. Fortunately, a certain generalization of contraction turns out to hold in this

case.
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Consider the time-varying dynamical system

_xðtÞ ¼ f ðt; xðtÞÞ; ð8Þ

whose trajectories evolve on a compact and convex set O � Rn. Let x(t, t0, a) denote the solu-

tion of Eq (8) at time t for the initial condition x(t0) = a. System (8) is said to be contractive
after a small overshoot (SO) [61] on O with respect to (w.r.t.) a norm j � j : Rn ! Rþ if for any

ε> 0 there exists ℓ = ℓ(ε)> 0 such that

jxðt; t0; aÞ � xðt; t0; bÞj � ð1þ εÞ exp ð� ‘tÞja � bj;

for all a, b 2O and all t� t0� 0. Intuitively speaking, this means contraction with an exponen-

tial rate, but with an arbitrarily small overshoot of 1 + ε. The next result shows that the

MFALK satisfies this generalization of contraction.

Proposition 3 Suppose that

li þ gi > 0; for all i 2 f1; . . . ; n � 1g; ð9Þ

and that at least one of the two conditions (4) and (5) holds. Then the MFALK is SO on Cn w.r.t.
the L1 norm, that is, for any ε> 0 there exists ℓ = ℓ(ε)> 0 such that

jxðt; aÞ � xðt; bÞj
1
� ð1þ εÞ exp ð� ‘tÞja � bj

1
; ð10Þ

for all a, b 2 Cn and all t� 0.

Note that if λi + γi = 0 for some i 2 {1, . . ., n − 1}, that is λi = γi = 0, then the MFALK decou-

ples into two separate MFALKs: one containing sites 1, . . ., i, and the other containing sites

i+1, . . ., n. Thus, assuming Eq (9) incurs no loss of generality.

There is an important difference between Propositions 2 and 3. If η< 0 then Proposition 2

provides an explicit exponential contraction rate. If η = 0 then Proposition 3 can be used to

deduce SO, but in this result the contraction rate ℓ depends on ε and is not given explicitly.

The contraction results above imply that the MFALK satisfies several important and useful

asymptotic properties. These are described in the following subsections.

2.3 Global asymptotic stability

Since the compact and convex set Cn is an invariant set of the dynamics, it contains a steady-

state point e. By Proposition 1, e 2 int(Cn). Applying Eq (10) with b = e yields the following

result.

Corollary 1 Suppose that the conditions in Proposition 3 hold. Then the MFALK admits a
unique steady-state e 2 int(Cn) that is globally asymptotically stable, i.e. limt!1 x(t, a) = e, for
all a 2 Cn.

This means that the rates determine a unique density profile along the lattice, and that all

trajectories emanating from different initial conditions in Cn asymptotically converge to this

density. Thus, any set of rate values λi, γi, αi, and βi is associated with a unique steady-state den-

sity and any solution of the MFALK converges to this density, regardless of the initial density.

In addition, perturbations in the occupancy levels along the sites will not change this asymp-

totic behavior of the dynamics. This also means that various numerical solvers of ODEs will

work well for the MFALK (see e.g. [62]).

Example 1 Fig 3 depicts the trajectories of a MFALK with n = 3, λ0 = 1.0, λ1 = 1.2, λ2 = 0.8,

λ3 = 0.9, γi = λi − 0.3, i = 0, . . ., 3, α1 = 0, α2 = 0.1, α3 = 0, β1 = 0, β2 = 0.2, β3 = 0, for six

initial conditions in Cn. It may be seen that all trajectories converge to the same steady-state

e 2 int(C3).
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The MFALK Eq (1) can be written as

_xi ¼ fi� 1ðxÞ � fiðxÞ þ giðxiÞ; i ¼ 1; . . . ; n; ð11Þ

where

f0ðxÞ ≔ l0ð1 � x1Þ � g0x1;

fiðxÞ ≔ lixið1 � xiþ1Þ � gixiþ1ð1 � xiÞ; i ¼ 1; . . . ; n � 1;

fnðxÞ ≔ lnxn � gnð1 � xnÞ;

giðxiÞ≔ bið1 � xiÞ � aixi; i ¼ 1; . . . ; n:

ð12Þ

At steady-state, i.e. for x = e, the left-hand side of all the equations in Eq (11) is zero, so

fi� 1ðeÞ ¼ fiðeÞ � giðeiÞ; i ¼ 1; . . . ; n: ð13Þ

Let v≔ ½ a1; . . . ; an; b1; . . . ; bn; g0; . . . ; gn; l0; . . . ; ln �
0
2 R4nþ2

þ
denote the vector of parameters

of the MFALK. It follows from Eq (13) that if we multiply all these parameters by c> 0 then

e will not change, that is, e(cv) = e(v). Let

R≔ ðln þ anÞen � ðgn þ bnÞð1 � enÞ; ð14Þ

denote the steady-state output rate. Then R(cv) = cR(v), for all c> 0, that is, the steady-state

Fig 3. Trajectories of the MFALK in Example 1 for six initial conditions in C3.

https://doi.org/10.1371/journal.pone.0182178.g003
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production rate is homogeneous of order one w.r.t. the parameters. By Eq (13),

R ¼ fnðeÞ � gnðenÞ

¼ fiðeÞ þ
Xn� 1

j¼iþ1

gjðejÞ; i ¼ 0; . . . ; n � 1:
ð15Þ

This yields the following set of recursive equations relating the steady-state occupancy levels

and output rate in the MFALK:

en ¼
Rþ gn þ bn

ln þ gn þ bn þ an
;

ei ¼
Rþ gieiþ1 �

Xn� 1

j¼iþ1
gjðejÞ

lið1 � eiþ1Þ þ gieiþ1

; i ¼ n � 1; . . . ; 1;

and also

e1 ¼
l0 þ b1 � Rþ

Xn� 1

j¼2
gjðejÞ

l0 þ g0 þ b1 þ a1

:

ð16Þ

For a given v, this is a set of n + 1 equations in the n + 1 unknowns: e1, . . ., en, R.

Example 2 Consider the MFALK with dimension n = 2. Then Eq (16) becomes

e2 ¼
Rþ g2 þ b2

l2 þ g2 þ a2 þ b2

;

e1 ¼
Rþ g1e2

l1ð1 � e2Þ þ g1e2

;

and also

e1 ¼
l0 þ b1 � R

l0 þ g0 þ b1 þ a1

:

ð17Þ

This yields the polynomial equation a2R2 + a1R + a0 = 0, where

a2 ≔ l1 � g1;

a1 ≔ ðl1 � g1Þðg2 þ b2 � l0 � b1Þ � l1z2 � z1z2 � z1g1;

a0 ≔ ðl0 þ b1Þl1ðl2 þ a2Þ � ðg0 þ a1Þg1ðg2 þ b2Þ;

with z1 ≔ λ0 + γ0 + α1 + β1 and z2 ≔ λ2 + γ2 + α2 + β2.

The polynomial equation admits several solutions for R, but only one solution corresponds to

the unique steady-state e 2 C2. For example, for λi = 1, γi = 2, βi = 3, and αi = 4 for all i the poly-

nomial equation becomes −R2 − 131R − 40 = 0. This admits two solutions R1 ≔ (−3s − 131)/2

and R2 ≔ (3s − 131)/2, with s≔
ffiffiffiffiffiffiffiffiffiffi
1889
p

. Substituting R1 in Eq (17) yields e = [e1 e2]0, with

e2 < 0, so this is not a feasible solution. Substituting R2 in Eq (17) yields (all numbers are to

four digit accuracy) e = [0.4305 0.4695]0 2 C2, which is the unique feasible solution. Thus, the

steady-state output rate is R2 = −0.3046.

In general, Eq (16) can be transformed into a polynomial equation for R. The next result

shows that the degree of this polynomial equation grows quickly with n.

Proposition 4 Consider the MFALK with dimension n and with λi 6¼ γi, αi 6¼ 0, βi 6¼ 0, for all
i. Then generically Eq (16) may be written as w(R) = 0, where w is a polynomial of degree
1þ b2

n

3
c, and with coefficients that are algebraic functions of the rates.
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We note that this exponential increase in the degree of the polynomial equation is a feature

of the MFALK that does not take place in the RFM. Indeed, in the RFM the degree of the poly-

nomial equation for the steady-state production rate grows linearly with n.

Let sgn ð�Þ : R! f� 1; 0; 1g denote the sign function, i.e.

sgn ðyÞ ¼

(
1; y > 0;

0; y ¼ 0;

� 1; y < 0:

An interesting question is how does sgn(R) depend on the parameters. Indeed, if R> 0

[R< 0] then there is a net steady-state flow from left to right [right to left]. The next subsection

describes a special case where this question can be answered rigorously.

2.3.1 Bidirectional flow with no Langmuir kinetics. When βi = αi = 0, i = 1, . . ., n, i.e. a

system with no internal attachments and detachments, Eq (15) becomes

R ¼ fiðeÞ; i ¼ 0; . . . ; n: ð18Þ

Proposition 5 Consider the case where αi = βi = 0, i = 1, . . ., n, and suppose that Eq (9) holds.
Then

sgn ðRÞ ¼ sgn
Yn

i¼0

li �
Yn

i¼0

gi

 !

: ð19Þ

In particular, if
Qn

i¼0
li ¼

Qn
i¼0

gi then R = 0, and for any i,

ei ¼

Yi� 1

j¼0
lj

Yi� 1

j¼0
lj þ

Yi� 1

j¼0
gj

¼

Yn

j¼i
gj

Yn

j¼i
gj þ

Yn

j¼i
lj

:

ð20Þ

Eq (19) means that in the case of no Langmuir kinetics the steady-state output from the

right hand-side of the chain will be positive [negative] if the product of the forward rates is

larger [smaller] than the product of the backward rates. In transcription and translation the

steady-state flow from the right hand-side of the chain should always be positive, but in other

cases, e.g. transport along microtubules, the steady state flow may be either positive or

negative.

Eq (20) is also quite intuitive. It considers the case of no Langmuir kinetics and when the prod-

uct of all the forward rates equals the product of all the backward rates, i.e.
Qn

i¼0
li ¼

Qn
i¼0

gi.

In this case the steady-state flow is zero, and the steady-state density at site i is the product of

all the forward rates up to i, that is, λ0λ1 . . . λi−1 normalized by the sum of two terms: the prod-

uct of all the forward rates up to i and the product of all the backward rates up to i.

2.4 Entrainment

Assume now that some or all the rates are time-varying periodic functions with the same

period T. This may be interpreted as a periodic excitation feeding the MFALK. Many biologi-

cal processes are affected by such excitations due for example to the periodic 24h solar day or

the periodic cell-cycle division process. For example, translation elongation factors, tRNAs,
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translation and transcription initiation factors, ATP levels, and more may change in a periodic

manner and this may be modeled using periodic rates in the MFALK.

A natural question is: will the state-variables of the MFALK converge to a periodic pattern

with period T? We will show that this is indeed so, i.e. the MFALK entrains to a periodic exci-

tation in the rates. In order to understand what this means, consider a different setting,

namely, using the MFALK to model traffic flow. Then the rates may correspond to traffic

lights, changing in a periodic manner, and the state-variables are the density of the moving

particles (cars) along different sections of the road, so entrainment corresponds to what is

known as the “green wave” (see e.g. [63] and the references therein).

We say that a function f is T-periodic if f(t + T) = f(t) for all t. Assume that the λis, γis, αis
and βis are uniformly bounded, non-negative, time-varying functions satisfying:

• there exists a (minimal) T> 0 such that all the λi(t)s, γi(t)s, αi(t)s, and βi(t)s are T-periodic.

• there exist c1, c2 > 0 such that at least one of the following two conditions holds for all time t

liðtÞ þ biþ1ðtÞ > c1; i ¼ 0; . . . ; n; ð21Þ

giðtÞ þ aiþ1ðtÞ > c2; i ¼ 0; . . . ; n: ð22Þ

• there exists c3 > 0 such that

liðtÞ þ giþ1ðtÞ > c3; i ¼ 0; . . . ; n: ð23Þ

We refer to this model as the Periodic MFALK (PMFALK).
Theorem 1 Consider the PMFALK with dimension n. There exists a unique function

�ð�Þ : Rþ ! int ðCnÞ, that is T-periodic, and for any a 2 Cn the trajectory x(t, a) converges to
ϕ as t!1.

Thus, the PMFALK entrains (or phase-locks) to the periodic excitation in the parameters.

In particular, this means that the output rate R(t) in Eq (3) converges to the unique T-periodic

function:

ðlnðtÞ þ gnðtÞ þ bnðtÞ þ anðtÞÞ�nðtÞ � gnðtÞ � bnðtÞ:

Note that since a constant function is a periodic function for all T� 0, Theorem 1 implies that

entrainment holds also in the particular case where a single parameter is oscillating (with

period T> 0), while all other parameters are constant. Note also that Corollary 1 follows from

Theorem 1.

Example 3 Consider the MFALK with dimension n = 3, parameters: λ0(t)� 1.0, λ1(t)� 1.2,

λ2(t) = 1 + 0.5sin(πt/4), λ3(t)� 0.9, γ0(t)� 0.4, γ1(t) = 0.4(1 + sin((πt/4) + 1/2)), γ2(t)� 0.25,

γ3(t)� 0.45, α1(t)� 0, α2(t)� 0.05, α3(t)� 0, β1(t)� 0, β2(t) = 0.05(1 + sin((πt/2) + 1/4)),

β3(t)� 0, and initial condition x(0) = [0.8 0.8 0.8]0. Note that all the rates here are periodic,

with a minimal common period T = 8. Fig 4 depicts xi(t), i = 1, 2, 3, as a function of t. It may be

seen that each state variable converges to a periodic function with period T = 8.

Since the MFALK is a mean-field approximation of ASEP with Langmuir kinetics, a natural

question is does ASEP with Langmuir kinetics entrains as well (in some stochastic manner)?

The following example addresses this question using Monte Carlo simulations.

Example 4 Consider ASEP with Langmuir kinetics with N = 8 sites and hopping rates:

• l1ðtÞ ¼ 1
2
þ 1

4
sin 2pt

T

� �
, and liðtÞ � 1

2
, for all i 6¼ 1,
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• γi(t)�0, i = 0, . . ., 8,

• αi(t)�0, i = 1, . . ., 8,

• b6ðtÞ ¼ 1
5
þ 1

10
cos 2pt

T

� �
, and βi(t)� 0, i 6¼ 6,

where T = 1E7. Note that all these rates are periodic with a common minimal period T. When

simulating ASEP with Langmuir kinetics, these rates are used to determine the next event time

(i.e., in this example, the next forward hopping event or the next attachment event). Given a

corresponding rate r(t) at time t, the next event time is t + p(r(t)), where p(r(t)) is a random

variable drawn from the exponential distribution with mean r(t).
We ran MATLAB simulations of this process for 1E8 time ticks. Fig 5 depicts the average

occupancies per site. Each data point in the figure (i.e. each segment) is the average over 1E6

consecutive occupancies (here of course the occupancies are either 0 or 1). For example, the

value depicted at time segment 1 is the average occupancy in the time interval [0, 999999].

Note that since T = 1E7 time ticks, the period T is equal to 10 segments. It may be seen that all

the average occupancies indeed entrain to the periodic excitation. In particular, they are peri-

odic (up to the noise induced by the stochastic process) with a period of 10 segments. Thus,

our simulations do suggest that some form of entrainment also takes place in ASEP with Lang-

muir Kinetics.

Fig 4. State variables x1(t) [solid line]; x2(t) [dashed line]; and x3(t) [dotted line] as a function of t in Example

3. Note that each state variable converges to a periodic function with a period T = 8.

https://doi.org/10.1371/journal.pone.0182178.g004
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2.5 Strong monotonicity

Recall that a proper cone K � Rn defines a partial ordering in Rn as follows. For two vectors

a; b 2 Rn, we write a� b if (b − a) 2 K; a< b if a� b and a 6¼ b; and a� b if (b − a) 2 int(K).

The system _y ¼ f ðyÞ is called monotone if a� b implies that y(t, a)� y(t, b) for all t� 0. In

other words, the flow preserves the partial ordering [64]. It is called strongly monotone if a< b
implies that y(t, a)� y(t, b) for all t> 0.

From here on we consider the particular case where the cone is K≔Rn
þ

. Then a� b if

ai� bi for all i, and a� b if ai< bi for all i. A system that is monotone with respect to this par-

tial ordering is called cooperative.
Proposition 6 For any a, b 2 Cn, with a� b, the solutions of the MFALK satisfy

xðt; aÞ � xðt; bÞ; for all t � 0: ð24Þ

Furthermore, if Eq (9) holds then for any a< b

xðt; aÞ � xðt; bÞ; for all t > 0: ð25Þ

To explain this, consider two initial densities a and b with ai� bi for all i, that is, b corre-

sponds to a larger or equal density at each site. Then the trajectories x(t, a) and x(t, b)

Fig 5. The average occupancies of ASEP with Langmuir kinetics in Example 4. Note that each average

occupancy converges to a periodic function with a period T = 10 segments.

https://doi.org/10.1371/journal.pone.0182178.g005
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emanating from these initial conditions continue to satisfy the same relationship between the

densities, namely, xi(t, a)� xi(t, b), for all i and for all time t� 0.

The MFALK is thus a strongly cooperative tridiagonal system (SCTS) on int(Cn). Some of the

properties deduced above using contraction theory can also be deduced using this property

[65].

Remark 1 Suppose that we augment the MFALK into a model of n + 1 ODEs in n + 1 state-
variables by adding to it the equation:

_xnþ1 ¼ � l0ð1 � x1Þ � g0x1 � b1ð1 � x1Þ þ a1x1

� gnð1 � xnÞ þ lnxn � bnð1 � xnÞ þ anxn

�
Xn� 1

i¼2

ðbið1 � xiÞ � aixiÞ:

that is, _xnþ1 ¼ �
Pn

i¼1
_xi (see Eq (2) ). Let ~x denote the vector of the n + 1 state-variables. Clearly,

this augmented model admits a first integral Hð~xðtÞÞ≔
Pnþ1

i¼1
~xiðtÞ, i.e. a property that is pre-

served for all t� 0. Also, for any initial condition in ~xð0Þ 2 Cn � Rþ, all the state-variables
remain bounded, as the first n state-variables remain in Cn and ~xnþ1ðtÞ ¼ Hð~xð0ÞÞ �

Pn
i¼1

~xiðtÞ
for all t� 0. It is straightforward to verify that the augmented system is a cooperative system, and
that if Eq (9) holds then it is a SCTS. SCTSs that admit a non-trivial first integral have many
desirable properties (see, e.g. [66]).

2.6 Effect of attachment and detachment

One may perhaps expect that detachment from a jammed site may increase the total flow by

reducing congestion. The next result shows that this is not so. Detachment always decreases

the steady-state output rate R. Similarly, attachment always increases R.

Proposition 7 Consider a MFALK with dimension n. Suppose that the conditions in Proposi-
tion 3 hold. Then @ei

@aj
< 0, and @ei

@bj
> 0, for all i, j. Also, @R

@aj
< 0, and @R

@bj
> 0 for all j = 0, 1, . . .,

n − 1.

This means that an increase in any of the detachment [attachment] rates decreases

[increases] the steady-state density in all the sites. Also, an increase in any of the internal

detachment [attachment] rates decreases [increases] the steady-state output rate. The next

example demonstrates this.

Example 5 Consider the MFALK with n = 3, λi = 1, γi = 0, i = 0, 1, 2, 3, βi = α3 = 0, i = 1, 2,

3. Fig 6 depicts R as a function of α1 2 [0, 1] and α2 2 [0, 1]. It may be seen that R decreases

with both α1 and α2.

We note that the analytical results in Proposition 7 agree well with the simulation results

obtained using a TASEP model for translation that included alternative initiation along the

mRNA and ribosome drop-off [67].

The next section describes an application of the MFALK to a biological process.

3 An application: Modeling mRNA translation with ribosome drop

off

It is believed that during mRNA translation ribosome movement is unidirectional from the 5’

end to the 3’ end, and that ribosomes do not enter in the middle of the coding regions. How-

ever, ribosomes can detach from various sites along the mRNA molecule due to collisions

between ribosomes, for example. This is known as ribosome drop off.
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As mentioned in the introduction, ribosome drop off has been the topic of numerous stud-

ies [12, 13, 44–51, 68]. It was suggested that in some cases ribosome drop off is important for

proof reading [54], and also that ribosome stalling/abortion plays a role in translational regula-

tion (e.g. see [67, 69]).

It is clear that ribosome abortion has drawbacks. Indeed, translation is the most energeti-

cally consuming process in the cell, and abortion results in truncated, non-functional and pos-

sibly deleterious proteins. It is believed that transcripts undergo evolutionary selection to

minimize abortion and/or its energetic cost [12, 48, 49, 51–53]. Nevertheless, there seems to be

a certain minimal abortion rate even in non-stressed conditions [13, 68]. This basal value was

estimated (see more details below) to be of the order or 10−4 − 10−3 abortion events per codon

in E. coli. In other words, at each codon one out of 1,000–10,000 decoding ribosomes aborts.

Fig 6. R as a function of α1 2 [0, 1] and α2 2 [0, 1] for the MFALK in Example 5. It may be seen that R decreases with both α1 and α2.

https://doi.org/10.1371/journal.pone.0182178.g006
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This value is non-negligible. If we consider a drop-off rate of 4 × 10−4 per codon along a coding

region of 300 codons (approximately the average coding region length in E. coli) then on aver-

age, around 10 out of every 100 ribosomes will fail to complete translation of the mRNA.

To model translation with ribosome drop off, we use the MFALK with γi = 0 (i.e. no back-

wards motion) and βi = 0 (i.e. no attachment to internal sites along the chain) for all i. Chang-

ing the values of the αis allows to model and analyze the effect of ribosome drop off at different

sites along the mRNA molecule. We assume that

li > 0; for all i; ð26Þ

as otherwise the chain decouples into two smaller, disconnected chains. Note that Eq (26)

implies that the conditions in Proposition 3 hold, so the model is SO on Cn w.r.t. the L1 norm,

and thus admits a unique globally asymptotically stable steady-state e 2 int(Cn).

We study the effect of ribosome drop off on the steady-state protein production rate and

the steady-state ribosome density using real biological data. To this end, we first considered

10 S. cerevisiae genes (see Figs 7 and 8) with various mRNA levels (all genes were sorted

according to their mRNA levels and 10 genes were uniformly sampled from the list). Similarly

to the approach used in [28], we divided the mRNAs related to these genes to non-overlapping

pieces. The first piece includes the first 9 codons that are related to various stages of initiation

[53]. The other pieces include 10 non-overlapping codons each, except for the last one that

includes between 5 and 15 codons.

To model translation dynamics in these mRNAs using MFALK, we model every piece of

mRNA as a site. We estimated the elongation rates λi at each site using ribo-seq data for the

codon decoding rates [70], normalized so that the median elongation rate of all S. cerevisiae
mRNAs becomes 6.4 codons per second [71]. We first applied a filter that considers the biases

and traffic jams in ribo-seq to infer for each of the 61 codons a typical decoding time; these

times are normalized to get an elongation rate of 6.4 codons/sec [71]. The site rate is (site

time)−1, where site time is the sum over the decoding times of all the codons in the piece of

mRNA corresponding to this site. These rates thus depend on various factors including avail-

ability of tRNA molecules, amino acids, Aminoacyl tRNA synthetase activity and concentra-

tion, and local mRNA folding [5, 53, 70].

The initiation rate λ0 (corresponding to the first piece) was inferred based on the fact that

the ribosome density (and the translation rate) is proportional to the initiation rate when it is

rate limiting [28, 30]. Thus, since in endogenous genes initiation is typically rate limiting the

ribosome density should roughly be proportional to the initiation rate. We then normalized

the initiation rates such that their mean match the measured/known initiation rate (0.8 initia-

tions per second) [10].

We analyzed the effect of uniform ribosome drop off with a rate in the range of 10−5 to 10−3

per codon. This corresponds to α1 = � � � = αn≔ αc, i.e., all the αis are equal, and αc denotes

their common value. Since we assumed 10 codons per site, αc values range from 10−4 to 10−2

(ten times the rate associated with a single codon). This makes sense as in the MFALK the

level of occupancy in a site may also be interpreted as the probability to see a ribosome in this

site.

Let

r≔
Pn

i¼1
ei

n
;

denote the steady-state mean ribosomal density. Figs 7 and 8 depict the reduction in percent-

age in ρ and R, respectively, as a function of αc 2 [10−4, 10−2]. In these figures the genes in the
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legends are sorted according to their expression levels: the gene at the top (YGR192C) has the

highest mRNA levels while the gene at the bottom (YER106W) has the lowest levels. It may be

seen that as the drop off (detachment) rate αc increases from 10−4 to 10−2, ρ decreases by about

30%, and R decreases by about 50%. This demonstrates the significant ramifications that ribo-

somal drop off is expected to have on translation and the importance of modeling drop off. It

may also be observed that in general for mRNAs with higher expression levels (i.e. mRNAs

with higher copy number in the cell) the reduction in both the steady-state production rate

and mean density due to drop off is lower as compared to the reduction for mRNAs with low

copy number.

We next evaluated the reduction due to drop off over: 1) all 6310 protein-encoding S. cerevi-
siae genes; 2) most expressed S. cerevisiae genes (top 20%); and 3) least expressed S. cerevisiae
genes (bottom 20%). The average reduction in R and ρ over these three sets of genes are

depicted in Figs 9 and 10, respectively. It may be noticed that the average reduction over the

highly expressed genes is lower than the average reduction over the lowly expressed genes. It is

possible that this is related to stronger evolutionary selection for lower drop off rates in genes

with higher mRNA levels. Indeed, highly expressed genes “consume” more ribosomes (due to

higher mRNA levels), so a given (per-mRNA) drop off rate is expected to be more deleterious

to the cell, and a mutation which decreases the drop off rate in such genes has a higher proba-

bility of fixation.

Fig 7. Reduction in percent in the steady-state mean density ρ as a function of αc 2 [10−4, 10−2] for 10 S.

cerevisiae genes.

https://doi.org/10.1371/journal.pone.0182178.g007
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4 Discussion

In many important processes biological “particles” move along some kind of a one-dimen-

sional “track”. Examples include gene transcription and translation, cellular transport, and

more. The flow can be either bidirectional (as in the case of transcription) or unidirectional (as

in the case of translation elongation), with the possibility of both attachment and detachment

of particles at different sites along the track. For example, motor proteins like kinesin and

dynein that move along a certain microtubule may detach and attach to an overlapping

microtubule.

To rigorously model and analyze such processes, we introduced a new deterministic mathe-

matical model that can be derived as a dynamic mean-field approximation of ASEP with Lang-

muir kinetics, called the MFALK. Our main results show that the MFALK is a monotone and

contractive dynamical system. This implies that it admits a globally asymptotically unique

steady-state, and that it entrains to periodic excitations (with a common period T> 0) in any

of its rates, i.e. the densities along the chain, as well as the output rate, converge to a unique

period solutions with period T.

It is important to note that several known models are special cases of the MFALK. These

include for example the RFM [28], the model used in [72] for DNA transcription, the model

used in [73] for the various hydrolysis products of a molecular motor, and the model of

Fig 8. Reduction in percent in the steady-state output rate (production rate) R as a function of αc 2 [10−4,

10−2] for 10 S. cerevisiae genes.

https://doi.org/10.1371/journal.pone.0182178.g008
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phosphorelays in [74] (although in the latter model the occupancy levels are normalized

differently).

Topics for further research include the following. In the RFM, it has been shown that the

steady-state production rate is related to the maximal eigenvalue of a certain non-negative,

symmetric tridiagonal matrix with elements that are functions of the RFM rates, i.e. the λis
[35]. This implies that the mapping (λ0, . . ., λn)! R is strictly concave, and that sensitivity

analysis of R is an eigenvalue sensitivity problem [36]. Similar results have also been derived

for the ribosome flow model on a ring (RFMR) [75] which is a mean-field approximation

of TASEP with periodic boundary conditions. An interesting research topic is whether

R = R(λ0, . . ., λn, γ0, . . ., γn, α1, . . ., αn, β1, . . ., βn) in the MFALK can also be described using

such a linear-algebraic approach.

The application of the MFALK to model ribosome drop off suggests an interesting direction

for further study, namely, how to design genes that minimize the drop off rate.

Fig 9. Average reduction in percent in the steady-state output rate (production rate) R as a function of αc 2 [10−4, 10−2]. Upper

figure: reduction over most expressed (top 20%) S. cerevisiae genes (solid-line), and over least expressed (bottom 20%) S. cerevisiae

genes (dashed-line). Lower figure: reduction over all S. cerevisiae genes. Also shown are the variances as error bars.

https://doi.org/10.1371/journal.pone.0182178.g009
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Another research direction is motivated by the fact that many of the transport phenomena

that can be modeled using the MFALK do not take place in isolation. For example, many

mRNA molecules are translated in parallel in the cell. Thus, a natural next step is to study net-

works of interconnected MFALKs. In this context, ribosome drop off may perhaps increase

the total production rate in the entire system, as it allows ribosomes to detach from slow sites,

enter the pool of free ribosomes, and then attach to the initiation sites of other, less crowded,

mRNA molecules. However, drop off still incurs the biological “cost” associated with the syn-

thesis of a chain of amino-acids that is only a part of the desired protein. The fact that the

MFALK is contractive may prove useful in analyzing networks of MFALKs, as there exist

interesting results proving the overall contractivity of a network based on contractivity of the

subsystems and their couplings (see, e.g. [76, 77]).

Fig 10. Average reduction in percent in the steady-state mean density ρ as a function of αc 2 [10−4, 10−2]. Upper figure: reduction

over most expressed (top 20%) S. cerevisiae genes (solid-line), and over least expressed (bottom 20%) S. cerevisiae genes (dashed-line).

Lower figure: reduction over all S. cerevisiae genes. Also shown are the variances as error bars.

https://doi.org/10.1371/journal.pone.0182178.g010
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Finally, another interesting topic for further research is studying the effect of controlled

detachment rates on the formation of traffic jams. Indeed, it is known that kinesin-family

motor proteins are more susceptible to dissociation when their path is blocked [14, 15].
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