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Abstract

Power laws are of interest to several scientific disciplines because they can provide impor-

tant information about the underlying dynamics (e.g. scale invariance and self-similarity) of

a given system. Because power laws are of increasing interest to the cardiac sciences as

potential indicators of cardiac dysfunction, it is essential that rigorous, standardized analyti-

cal methods are employed in the evaluation of power laws. This study compares the meth-

ods currently used in the fields of condensed matter physics, geoscience, neuroscience,

and cardiology in order to provide a robust analytical framework for evaluating power laws in

stem cell-derived cardiomyocyte cultures. One potential power law-obeying phenomenon

observed in these cultures is pacemaker translocations, or the spatial and temporal instabil-

ity of the pacemaker region, in a 2D cell culture. Power law analysis of translocation data

was performed using increasingly rigorous methods in order to illustrate how differences in

analytical robustness can result in misleading power law interpretations. Non-robust meth-

ods concluded that pacemaker translocations adhere to a power law while robust methods

convincingly demonstrated that they obey a doubly truncated power law. The results of this

study highlight the importance of employing comprehensive methods during power law anal-

ysis of cardiomyocyte cultures.

Introduction

Recent investigations of human induced pluripotent and embryonic stem cell-derived cardio-

myocytes (hiPSC-CM and hESC-CM, respectively) have shone significant light on numerous

factors contributing to the development of the heart [1–6]. However, the mechanisms

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0263976 March 14, 2022 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dunham CS, Mackenzie ME, Nakano H,

Kim AR, Juda MB, Nakano A, et al. (2022)

Pacemaker translocations and power laws in 2D

stem cell-derived cardiomyocyte cultures. PLoS

ONE 17(3): e0263976. https://doi.org/10.1371/

journal.pone.0263976

Editor: Xiaoping Bao, Purdue University, UNITED

STATES

Received: December 28, 2021

Accepted: February 1, 2022

Published: March 14, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0263976

Copyright: © 2022 Dunham et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data is available

through Dryad at this doi: (https://doi.org/10.5068/

D1PD72).

https://orcid.org/0000-0001-9547-0053
https://orcid.org/0000-0002-9830-7312
https://doi.org/10.1371/journal.pone.0263976
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263976&domain=pdf&date_stamp=2022-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263976&domain=pdf&date_stamp=2022-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263976&domain=pdf&date_stamp=2022-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263976&domain=pdf&date_stamp=2022-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263976&domain=pdf&date_stamp=2022-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263976&domain=pdf&date_stamp=2022-03-14
https://doi.org/10.1371/journal.pone.0263976
https://doi.org/10.1371/journal.pone.0263976
https://doi.org/10.1371/journal.pone.0263976
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5068/D1PD72
https://doi.org/10.5068/D1PD72


underlying the full maturation of cardiomyocytes to robust adult phenotypes remain unknown

[1, 7, 8]. Phenotypic traits which have thus far failed to match those in adult cardiomyocytes

include electrical impulse propagation, mechanical properties including sarcomere length and

contractility, cell morphology, and gene expression [1, 9–11]. Additionally, some studies have

suggested that defective cardiomyocyte development may play a role in a number of disease

states such as cardiomyopathy and late myocardial dysfunction [2, 12, 13]. The inability to

mature beyond the late fetal phenotype stage considerably limits applications for stem cell-

derived cardiomyocytes in drug screening, disease modeling, and regenerative medicine [1, 2,

7, 14, 15].

Among the mechanisms which must be understood in the context of cardiomyocyte devel-

opment is the establishment of pacemaker cells. These pacemaker cells are responsible for

maintaining the rhythmic beating of all cells in the cardiomyocyte syncytium by means of

action potential generation [16, 17]. The heart has a dedicated region of pacemaker cells,

known as the sinoatrial node (SAN), that is responsible for maintaining a consistent beat

rhythm throughout the lifetime of the organism [1, 18]. Many types of arrhythmias result from

the disruption of rhythm-maintaining electrical impulses in the SAN, throwing the system

into disarray [2, 19]. Although SAN is responsible for initiating heartbeat in the postnatal

heart in physiological condition, all cardiomyocytes in the early embryonic heart are capable

of generating autonomic beats. The pacemaker cells are specialized during mid-gestational

stages. In vitro differentiation of hESC-CMs/hiPSC-CMs recapitulates this process [20].

Understanding how pacemaker regions arise and the role of pacemaker instability during car-

diomyocyte maturation could provide insight into the development of the SAN and would

help in furthering the current understanding of arrhythmias.

Difficulty in elucidating the mechanisms responsible for pacemaker development may be

partially attributed to gaps in knowledge about the underlying interactions between cells in the

cardiomyocyte culture (i.e. interactions within the cardiomyocyte network). Information in

the form of environmental, physical, genomic, and chemical cues concerning the establish-

ment of specialized cellular structures (e.g. intercalated discs) and functional roles (e.g. pace-

maker cells, late fetal proliferating cells, ventricular conduction system-like cells) needs to be

transmitted to the cardiomyocytes within the network [2, 21–24]. Insight into cardiomyocyte

network dynamics and the processes responsible for information transfer may be attainable

through the analysis of observable network characteristics (e.g. beat rate, pacemaker behavior,

and biomechanical properties) for adherence to power laws.

Power laws—probability distributions of the form p(x)/ x-α –are of interest to several sci-

entific fields because they provide important information about the dynamics of the system,

e.g. long-range correlations, scale invariance, and self-similarity [25–27]. Several studies have

explored whether power laws apply to cardiac systems, particularly in the context of tissue or

cellular dysfunction, e.g. mitochondrial oxidative stress and arrhythmias [28–32]. Prior studies

demonstrated power law behavior in investigations of heart (beat) rate variability, calcium

load, and contractile stress in cardiomyocytes [33–37]. Studies have shown that aberrant car-

diac systems exhibit a discernible change in the exponent of the power law measured for heart

rate variability, which describes small variations in the interval between heart beats, in patients

with myocardial infarction and coronary heart disease, and in heart transplant patients [29,

38–41]. Other studies focused on power laws as they relate to the mitochondrial network and

the effect of oxidative stress on both the network and the dependent cardiac myocytes.

While intriguing, the applied methodologies in these studies fail to meet the standards

defined in other fields, including: condensed matter physics, geology, and neuroscience, where

power law analysis is more established [42–45]. In these fields, power laws are typically evalu-

ated through a combination of methods, including: 1) calculation of the power law exponent,
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α, via maximum likelihood estimation (MLE), 2) statistical assessments of how well the data fit

to a proposed distribution using the Kolmogorov-Smirnov goodness-of-fit test, 3) log-likeli-

hood ratio tests between power law (Eq 1), exponential (Eq 2), and other heavy-tailed distribu-

tions (i.e. distributions in which the tail probability decays polynomially rather than

exponentially), including log-normal (Eq 3), Weibull (stretched exponential, Eq 4), doubly

truncated power law (Eq 5), and other candidate distributions to determine which one demon-

strates a superior fit to the data [42, 46–48].

f xð Þ ¼ x� a ð1Þ

f xð Þ ¼ e� lx ð2Þ

f xð Þ ¼
1

x
? exp

ln xð Þ � mð Þ
2

2s2

� �

ð3Þ

f xð Þ ¼ xlð Þb� 1
? e� lxð Þb ð4Þ

f xð Þ ¼ x� a ? e� lx ð5Þ

For the power law distribution (Eq 1), ɑ represents the power law exponent. In the expo-

nential distribution (Eq 2), λ represents the rate parameter and is used to indicate the rate of

decay. For the log-normal distribution (Eq 3), μ represents the expected value (i.e. mean) and

σ represents the standard deviation of the natural logarithm of the variable, x. In the Weibull,

or stretched exponential, distribution (Eq 4), λ again represents the rate parameter and β rep-

resents the stretching parameter. Finally, for the case of the doubly truncated power law distri-

bution (Eq 5), ɑ and λ are as previously defined in the power law and exponential functions.

In contrast, most, if not all, power law assessments performed in the cardiac science com-

munity employed relatively straightforward logarithmic plots of two parameters, e.g. size x

and number of events of size x, against each other (i.e. log10(y) vs log10(x)), accompanied by

linear regression of the data. The underlying logic of this method is that if the data fit well to a

line on a log-log plot, then the data must obey a power law, because a power law produces a

straight line on logarithmic axes [49–51]. However, this is not always true and there could be

other, superior descriptors of the data, e.g. exponential distributions or one of the aforemen-

tioned heavy-tailed distributions, that this method seldom considers. Consequently, this meth-

odology must be considered incomplete.

This study seeks to demonstrate how analysis conducted using the incomplete methods

described above can lead to misleading or contradictory interpretations for a system that dem-

onstrates heavy-tailed, potentially power law behavior. A thorough comparison is made using

more robust, established techniques, including: MLE to calculate the (suspected) power law’s

exponent and log-likelihood ratio tests to engage in comparisons between alternative distribu-

tions to which the data could belong [42, 52]. This analysis is applied to the quiescent (stable)

period between pacemaker translocations, defined here as the spatial instability and subse-

quent relocation of the pacemaker region across consecutive beats, as observed in stem cell-

derived cardiomyocyte cultures. Pacemaker translocations were observed previously but were

not examined in detail [8]. The quiescent periods between pacemaker translocations are sus-

pected to obey a power law due to their superficial similarity to a known power law-obeying

system: the inter-burst (or inter-event) interval between neuronal action potential spiking

events observed in neuronal cultures [53, 54]. Pacemaker translocation quiescent periods are

investigated electrophysiologically using two-dimensional monolayers of stem cell-derived
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cardiomyocytes plated onto microelectrode arrays (MEAs). This experimental design provides

the requisite spatiotemporal information essential for the analysis of pacemaker translocation

quiescent periods in order to determine whether they constitute a power law-adhering

phenomenon.

Materials and methods

Cell cultures & microelectrode array measurements

Human ESCs were grown and differentiated in a chemically defined condition as previously

described [8, 55, 56]. Usage of all the human embryonic stem cell lines is approved by the

UCLA Embryonic Stem Cell Research Oversight (ESCRO) Committee and the Institutional

Review Boards (IRB) (approval #2009-006-04). Differentiation efficiency is checked periodi-

cally by flow cytometry and maintained around 80–90%. Thus, the contamination of non-

cardiomyocytes is minimal with these differentiation methods. Two weeks after differentia-

tion, cardiomyocytes were plated, without performing any extra purification step, as two-

dimensional monolayers on matrigel-coated (Corning #354277), commercially available

microelectrode arrays (MEAs) containing 120 integrated TiN electrodes. All electrodes

were 30 μm in diameter with an interelectrode spacing of 200 μm (Multichannel Systems,

Reutlingen, Germany). The MEAs were placed in an incubator set to a temperature of 37 ˚C

and gas flow of 5% CO2. The cell cultures were given a minimum of 24 hours to ensure the

cardiomyocytes were well-attached to each MEA. Local field potentials at each electrode

were recorded over an average period of 19.5 minutes, up to twice daily, with a sampling

rate of 1 KHz using the MEA2100-HS120 system (Multichannel Systems, Reutlingen, Ger-

many). The full data acquisition yielded 30 MEA recordings across 3 distinct cardiomyocyte

cell cultures.

Computational tools

A custom developed, graphical user interface-based (GUI) Python program, in combination

with the powerlaw Python library, was used to conduct the analysis [48]. The program is writ-

ten for Python 3.8 or above and utilizes a variety of freely available Python libraries, including

NumPy, SciPy, Pandas, Matplotlib, Seaborn, Numba, and Statsmodels, among others. The

GUI was constructed using PyQt5. The complete code of the GUI program will be made avail-

able in a publicly accessible repository.

Beat detection & pacemaker determination

Beat detection was achieved using the findpeaks function in the SciPy signal processing (scipy.

signal) Python library. The key parameters used to identify the peak corresponding to the R-

wave in the field potential signal were minimum peak height (electrical amplitude) and mini-

mum peak distance (the allowed spacing between peaks, represented in this case as some time

interval). A signal-to-noise ratio in excess of 3:1 was enforced for all potential signals. Further-

more, the detected beats were manually inspected to ensure that the data set parameters cor-

rectly identified the R-wave peak for each beat recorded by each electrode. This was done to

ensure that the findpeaks function worked as expected.

The pacemaker region of each beat was calculated by identifying the time associated with

each R-wave peak recorded for each electrode. Time points were then scaled on a per-beat

basis by subtracting the minimum raw time from each time point across all viable electrodes

in the beat window. This was done to ensure each beat had a true “zero” value across the

array and thereby standardize the data for visualization via heatmap. Therefore, being the
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progenitor of the electrical impulse directing a rhythmic beat across a culture, the pacemaker

region, or closest proxy for the region, in the array corresponds to the “zero” time point of

the given beat.

Pacemaker translocation algorithm

Pacemaker translocations were detected by monitoring the movement of the pacemaker

region across subsequent beats. If the pacemaker region, while moving from one location to

another, exceeds a distance threshold (500 μm), then a ‘clock’ is engaged that counts the num-

ber of beats and the duration that the pacemaker region remains in this new location. If the

location changes again, the ‘clock’ is stopped, the number of beats and duration are stored in a

list, and the ‘clock’ is reset for the new position. This process is repeated for each detected pace-

maker region of each beat over the full length of the MEA recording. At the end of the calcula-

tion, the first recorded event is dropped from the list due to uncertainty regarding how long

the pacemaker was in the region prior to the start of the recording. Likewise, the end of the

recording does not contribute to an event designation and is similarly not considered. The

algorithm was applied both manually through visual inspection and computationally in

Python in order to ensure agreement of results.

Power law analysis & distribution comparisons

Simple or incomplete power law analysis consisted of log-log plots of one variable, X, corre-

sponding to the quiescent period length (the number of beats between translocation events),

and Y, corresponding to the number of translocation events (events with a quiescent period

of size X). Only events whose quiescent period length occurred more than once (Y > 1)

were considered for analysis. This was done in part to eliminate potential outliers within a

limited data set. The data were then evaluated using either linear regression or nonlinear

least squares fitting of the data to a power law function of the form F(x) = Ax-α, where A is a

normalization constant and α is the power law exponent. Statistical assessment of the resul-

tant fit, e.g. correlation coefficients and goodness-of-fit metrics, were generated program-

matically using established statistical methods in combination with the statsmodels Python

library.

Robust power law analysis was performed in accordance with previously described meth-

ods and the powerlaw Python library [42, 48]. Visualization was achieved using histograms

of pacemaker translocation data and fitting multiple heavy-tailed probability density func-

tions (PDFs), including exponential, power law, log-normal, and Weibull distributions, to

the data. Calculation of the power law exponent was achieved using the MLE approach

implemented in powerlaw’s Fit method with the optional method argument ‘discrete’ set to

‘True’. Log-log plots of both PDFs and complementary cumulative distribution functions

(CCDFs) were produced using two methods within the powerlaw library (denoted as object.

distribution.plot_pdf() and object.distribution.plot_ccdf() in the library’s code) for qualita-

tive comparisons of empirical data-to-distribution fitting. Finally, comparisons between

these probability distributions, as well as the doubly truncated power law distribution, were

performed using powerlaw’s distribution comparison method (denoted as distribution_-

compare() in the library’s code) with the optional method argument normalized ratio

(denoted as normalized_ratio in the powerlaw documentation) set to ‘True’. The doubly

truncated power law distribution uses an optional argument, xmax, to define the exponential

cutoff. For this experiment, xmax = 150.
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Results

Assessment of cardiomyocyte culture viability on MEAs

Microelectrode arrays were used to record cardiomyocyte local field potentials (hereafter

called field potentials), which are extracellular electrical signals generated in part by transient

imbalances in ion concentrations in the intercellular space [57–59]. These field potentials

resemble, but are not equivalent to, electrocardiogram recordings, preventing analysis of P, Q,

and S waves. The field potentials were analyzed for each channel (electrode) of each 120 elec-

trode MEA, shown in Fig 1A, across all recordings. These data represent 3 unique cultures of

two-dimensional (2D) stem cell-derived cardiomyocyte monolayers, as shown in Fig 1B. The

use of 2D monolayers allows for the acquisition of spatially defined information and is further

complemented by the precisely manufactured electrode configuration of the recording field of

the MEA. Each recording was visually inspected to validate the peak detection methodology

for their respective peak amplitude and distance parameters. Except in cases of extreme noise

or faulty channels (e.g. due to poor cell-electrode contact, heterogeneous composition of the

adhesion layer (Matrigel), or physical degradation of the electrode), peak detection performed

as expected. Some representative field potential examples with annotated beat amplitudes (ver-

tical arrow line, gray) and R-wave-like peaks (red x) are shown in Fig 1C and 1D. The average

beat rate (beats per minute, bpm) across all datasets was 36.64 bpm with a standard deviation

of 14.48 bpm.

Detection of pacemaker translocations

Beat occurrence times were calculated, normalized to a global maximum, and examined for

each beat. These calculations yielded values for the time lag, tlag, which is the time taken from

when a beat is first detected (pacemaker region, tlag = 0 ms) until the last detected peak of the

beat (tlag = t). Time lag values were assessed for each beat in each recording via heatmap in

Fig 1. Representative MEA device, culture and field potential signals. A) 120 electrode MEA with TiN electrodes. B) Cardiomyocyte culture on a

120 electrode MEA. C) Field potential showing three beats. Beat amplitude is indicated with a vertical arrow line in red. D) Extended view of field

potentials for one electrode across a 45 second interval. In both C and D, R-wave-like field potential peaks, as detected by the findpeaks algorithm,

are marked with a red X.

https://doi.org/10.1371/journal.pone.0263976.g001
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order to view pacemaker regions within the electrode array, as shown in Fig 2. Comparisons

between the field potentials and heatmap were consistent: as tlag increased from the minimum

(dark blue) to maximum (dark red), there was an observable shift in the field potential relative

to tlag = 0 ms. Electrodes which did not exhibit detectable beat activity or experienced excessive

noise were omitted and colored white. Cursory examinations of field potentials across elec-

trodes failed to reveal any noteworthy changes in signal morphology. Pacemaker regions were

observed as frequently lacking a fixed location. The pacemaker region demonstrated instability

and moved at least twice in 21 of 30 recordings, while the remaining 9 recordings did not. The

movement of the pacemaker region from one location to another is referred to as a pacemaker

translocation. Examples of two such translocations are illustrated in Fig 3.

Fig 3A shows the pacemaker region situated closest to the upper left quadrant (dark blue)

of the MEA during beat 244. The next beat, 245, is shown in Fig 3B and was observed in a state

of flux as the pacemaker region translocated, or moved, from the upper left quadrant to the

lower right quadrant (dark blue regions in each respective quadrant, lighter blue in between).

The pacemaker region subsequently settled in the lower right quadrant in beat 246, as shown

in Fig 3C. This region remained in a stable location from beat 247 to beat 249, which strongly

indicated that the translocation phenomenon was due to conditions in the culture (i.e. caused

by the cells) and not due to the equipment or analysis program. A second translocation with a

clear transitional state is shown from the same recording approximately 308 beats later in Fig

Fig 2. Field potentials of electrodes in four different regions of the pacemaker map. The pacemaker region is near

electrode D1, which has a recorded normalized time lag of tlag = 0 ms. Electrodes further from the pacemaker exhibit a shift

to the right of the tlag = 0 ms time point (dashed, vertical line) and show how the time at which the signal is detected

increases with increasing distance away from the pacemaker region. This shift is correlated with the heatmap time lag

values. White squares indicate electrodes that were excluded from analysis due to insufficient signal.

https://doi.org/10.1371/journal.pone.0263976.g002
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3D–3F. Additional translocations were detected between the translocations depicted in Fig 3,

although they are not shown here.

Non-robust power law analysis of pacemaker translocation quiescent

periods

The quiescent period, or the time (measured in beats) between pacemaker translocation events,

was calculated using the pacemaker translocation algorithm described earlier. The number of

occurrences of a given quiescent period (referred to here as the number of events) were subse-

quently calculated. The plots shown in Fig 4 constitute the non-robust or “incomplete” analysis

of the data. First, a log-log plot of the number of events (y) vs the quiescent period (x) was gen-

erated from the data. Linear regression was then applied to the data to produce the plot shown

in Fig 4A. On logarithmic axes, the fitted line (black) represents a power law with calculated

values for the power law exponent, α = -1.539, and goodness-of-fit, R2 = 0.955. Additional anal-

ysis was performed using nonlinear least squares to fit the data to a power law function, as

shown in Fig 4B. Here, the calculations yielded α = -1.951 and R2 = 0.995. Finally, the nonlinear

least squares fit was plotted on logarithmic axes to produce the plot shown in Fig 4C.

Robust power law analysis of pacemaker translocation quiescent periods

A robust approach to power law analysis is demonstrated in Fig 5. Fig 5A provides a qualitative

assessment using a histogram of the data and probability distribution curves (blue: power law,

Fig 3. Example pacemaker translocations observed in one recording of a 120 electrode MEA. Color bar is normalized from the lowest time lag (0

milliseconds, dark blue) to highest time lag (35 milliseconds, dark red) in the full recording. Top row: the pacemaker region translocates from the

top-left corner of the array (A) to a temporary regime positioned simultaneously in the top-left and bottom-right corners (B) before stabilizing in

the bottom-right corner of the array (C). Bottom row: another translocation event observed in the same recording over 300 beats later that follows a

similar pattern as A-C. The pacemaker is stable in the bottom-right (D) until translocating to a temporary regime positioned simultaneously in the

top-left and bottom-right corners (E) before settling in the top-left corner of the array (F).

https://doi.org/10.1371/journal.pone.0263976.g003
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red: exponential, yellow: log-normal, green: Weibull) to demonstrate how well the data adhere

to each distribution. Here, it is observed that the power law is an inferior fit to the data com-

pared to the Weibull distribution, as judged by the distance between the data and distribution

curve. Next, log-log plots of the PDF vs quiescent period and the complementary cumulative

distribution function (CCDF) vs quiescent period for each distribution were generated. The

interpretation is relatively straightforward: the closer a distribution curve is to the empirical

curve, the better the fit between data and distribution. Fig 5B shows the log-log plot of the PDF

vs quiescent period for the empirical data (black) and all candidate distributions: power law

(blue), log-normal (yellow), exponential (red), and Weibull (green). Table 1 summarizes the

parameters calculated for each distribution. The minimum cutoff value, xmin, was calculated

by the powerlaw library (xmin = 1) as the value which yields an optimal power law fit and is

Fig 4. Non-robust power law analysis. A) Log10(y) vs log10(x) (scatterplot, blue), where y is the number of events and x is the quiescent

period between translocations as measured in the number of beats between. Linear regression of the data (solid line, black) yielded α = -1.539

and R2 = 0.955. The confidence interval (0.95) of the linear regression fit is shown in gray shading. Number of unique data points, N: 30. B)

Nonlinear least squares fit to a power law function (dashed, black) with the calculated α = -1.951 and R2 = 0.995. C) Log-log axis visualization

of B.

https://doi.org/10.1371/journal.pone.0263976.g004

Fig 5. Comparisons between heavy-tailed probability distributions. A) Histograms and fitted PDFs of power law (blue, solid), log-normal

(yellow, dashed line), exponential (red, dashed line), and Weibull (green, dashed line) probability distributions for all quiescent periods. B)

Empirical data (black, solid line) plot overlaid with PDFs of power law (blue, dashed line), log-normal (yellow, dashed line), exponential (red,

dashed line) and Weibull (green, dashed line) distributions. C) Empirical data plot overlaid with complementary cumulative distribution

functions (CCDFs) of power law, log-normal, exponential, and Weibull distributions. The empirical xmin, or minimum cutoff value, value was

determined algorithmically by the powerlaw library. Calculated parameters for each distribution are summarized in Table 1. Residual plots for

the data from B and C are shown in S1 Fig.

https://doi.org/10.1371/journal.pone.0263976.g005
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required in order to avoid undefined behavior in power law analysis. Through the first decade,

the data adhere reasonably well to power law, log-normal, and Weibull distributions but do

not follow the exponential distribution. Between the first and second decades, the tail of the

data appears to deviate from a power law and instead demonstrates a closer fit to either a log-

normal or Weibull distribution. Similarly, Fig 5C shows the CCDF vs quiescent period for the

empirical data and all candidate distributions. Here, the deviation of the data from power law

behavior is made more explicit as judged by the growing distance between the empirical curve

and the power law fit as they diverge at the tail. Notably, the empirical data approaches a verti-

cal limit or asymptote in a manner similar to the exponential distribution as it terminates. A

vertical asymptote can be an indication of an exponentially truncated, or doubly truncated,

power law. This distribution is evaluated later in the final phase of analysis.

The final phase of analysis engaged in comparisons between candidate distributions using

the powerlaw library’s distribution comparison function (distribution_compare()). In each

comparison, either a power law or doubly truncated power law distribution was selected as the

first distribution (numerator) and the alternative heavy-tailed distribution (log-normal, expo-

nential, Weibull) was used for the second distribution (denominator). Log-likelihood ratios

(LLRs) and p-values to assess significance of the ratio’s sign were calculated by the powerlaw

library. If the sign is positive, the first distribution is the more likely fit, and if the sign is nega-

tive, the second distribution is the more likely fit. All p-values were compared to the 0.05 sig-

nificance level (p� 0.05). A complete summary of the distribution comparison outputs are

shown in Table 2.

Discussion

Power laws in cardiological systems

One can intuitively surmise that as cardiomyocytes mature, they would exhibit less pacemaker

region volatility and more consistent beating. These attributes would be congruous with the

establishment of a stable or even permanent pacemaker region such as the sinoatrial node in

the heart. Pacemaker instability is already known to be detrimental to heart function: severe

abnormalities in pacemaker function necessitate the surgical implantation of electrical devices

to maintain heart rhythm [60–62]. Thus, identifying the mechanisms for and improving

understanding of pacemaker abnormalities in cardiomyocytes could provide insight into prob-

lems afflicting the sinoatrial node of the heart.

Previous studies have shown that there is significant diagnostic power to be found in power

law exponents. Investigations of heart rate variability (HRV, also referred to as beat rate vari-

ability or BRV), defined as small variations in the interval between heart beats, reported

Table 1. Summary of calculated parameters for each distribution.

Parameter Distribution

Power Law Doubly Truncated Power Law Log-Normal Exponential Weibull

α 1.814a 1.583a N/A N/A N/A

xmin 1.0 1.0 1.0 1.0 1.0

μ N/A N/A 2.363a N/A N/A

σ N/A N/A 2.252 N/A N/A

λ N/A 0.032 N/A 0.315 83.884

β N/A N/A N/A N/A 0.238

aValue represents the magnitude and omits the sign (which is negative).

https://doi.org/10.1371/journal.pone.0263976.t001
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differences in power law exponents between healthy, functional tissue and abnormal tissues,

e.g. following myocardial infarction or heart transplantation [28, 38–41]. These studies suggest

that power law exponents may hold strong predictive power in diagnosing heart abnormalities.

However, the use of power laws as diagnostic tools can only be effective if optimal, comprehen-

sive methodologies are applied.

Suboptimal or incomplete methods lead to misleading interpretations of

power law behavior

Suboptimal and optimal power law analysis were performed as shown in Figs 4 and 5, respec-

tively. Fig 4 utilized linear regression of log(y) vs log(x) (Fig 4A) and nonlinear least squares of

y vs x on regular (Fig 4B) and logarithmic (Fig 4C) axes. While these methods demonstrated

good fits to the data (R2 = 0.955 and 0.995), they were problematic for two key reasons: 1) they

did not adequately consider power laws as probability distributions of the form p(x)/x-α [63,

64] and 2) they lacked consideration for power law alternatives, e.g. exponential, log-normal

and Weibull distributions. These deficiencies were rectified using the methods in Fig 5. Here,

qualitative assessments of the fit between data and distributions were conducted using three

methods: 1) histogram and PDF curve fits of the quiescent period (Fig 5A), 2) log-log plot of

the PDF (Fig 5B) vs quiescent period, and 3) log-log plot of the CCDF (Fig 5C) vs quiescent

period.

Fig 5A shows that there is a large gap between the data and the power law fit (blue curve),

contradicting the results of Fig 4. Rather, the Weibull distribution (green curve) is, qualita-

tively, a far better candidate than any of the distributions considered to this point. Thus, the

histogram serves as an effective estimation, but is not the preferred qualitative method.

Instead, the preferred qualitative assessment for power laws is the log-log plot of the PDF (or,

better still, the CCDF) vs event size, as in Fig 5B and 5C. Fig 5B shows that the PDF of the

empirical data fits poorly to the power law PDF for most values. The CCDF in Fig 5C shows

that the empirical data adhere better to a Weibull distribution (in agreement with Fig 5A) than

power law after the first decade. Finally, the gradual decay of the CCDF tail suggests that the

data approach a vertical limit or asymptote which could correspond to a maximum cutoff

value for the system [48]. Together, these results: 1) thoroughly contradict the interpretation

Table 2. Log-likelihood ratio (LLR) comparisons between distributions.

Parameter Distribution

Power Law Doubly Truncated Power Law

vs. Log-Normal

LLR -4.043 3.806

p-value� 5.271x10-5 1.412x10-4

vs. Exponential

LLR 8.888 10.544

p-value� 6.194x10-19 5.422x10-26

vs. Weibull

LLR -3.909 3.881

p-value� 9.268x10-5 1.041x10-4

vs. Doubly Truncated Power Law vs. Power Law

LLR -4.049 4.049

p-value� 4.720x10-8 4.720x10-8

�p-values denote the statistical significance of the sign of the LLR. Significance level: 0.05.

https://doi.org/10.1371/journal.pone.0263976.t002

PLOS ONE Pacemaker translocations and power laws in cardiomyocyte cultures

PLOS ONE | https://doi.org/10.1371/journal.pone.0263976 March 14, 2022 11 / 18

https://doi.org/10.1371/journal.pone.0263976.t002
https://doi.org/10.1371/journal.pone.0263976


from Fig 4 that the data obey a power law and 2) indicate the data may fit to another power

law alternative: the doubly truncated power law distribution, which is discussed next.

Pacemaker translocations obey a doubly truncated power law

All power laws are at a minimum singularly truncated, i.e. there is always a minimum value,

xmin (xmin > 0), for which power law distributions are valid and, at worst, values below xmin

could produce undefined behavior. Here, xmin was determined algorithmically by the power-

law library as previously described [48]. In addition to the lower bound, systems may possess

an upper bound, xmax. The upper bound reflects some natural limitation(s) of the system, e.g.

the number of available nodes within a network that is confined to a specific geometric size.

This upper bound must be given unique consideration for each system. For a cardiac system, a

plausible upper bound is the maximum capacity for the number of beats that a heart (or cardi-

omyocyte culture) will beat in its lifetime. This is a logical suspicion: because the cardiomyo-

cyte culture cannot beat indefinitely, there could never be a pacemaker translocation quiescent

period of infinite length. Under these conditions, it is reasonable to consider truncating the

power law at a maximum value using an exponential cutoff. This gives rise to the doubly trun-

cated power law distribution [48, 65, 66]. Evidence to support this interpretation in this experi-

ment was provided by the asymptotic tail observed in Fig 5C. Furthermore, many of the power

laws observed in nature are in fact doubly, rather than singularly, truncated [43, 67]. Thus,

consideration of a doubly truncated power law distribution is quite reasonable.

Comparisons between power law, doubly truncated power law, exponential, log-normal, and

Weibull distributions using log-likelihood ratio (LLR) tests (Table 2) reveal that a power law is

disfavored for all cases except the exponential distribution (exponential: LLR = 8.888, log-nor-

mal: LLR = -4.043, Weibull: LLR = -3.909, doubly truncated power law: LLR = -4.049; p< 0.05).

This result is in agreement with the qualitative assessment from Fig 5 that the power law is a

poor descriptor of the data. Equivalent comparisons between doubly truncated power law and

alternative distributions favors the doubly truncated power law in all cases (exponential:

LLR = 10.544, log-normal: LLR = 3.806, Weibull: LLR = 3.881). Overall, both the robust qualita-

tive and quantitative methods provide strong evidence that pacemaker translocations adhere bet-

ter to a doubly truncated power law than any of the heavy-tailed distributions considered here.

Doubly truncated power law exponent indicates potential for a critical

system

The doubly truncated power law exponent (α = -1.583), calculated using MLE methods, from

Table 2 presents a particularly intriguing possibility: that pacemaker translocations could rep-

resent a critical system. Critical systems are systems that demonstrate scale invariant spatio-

temporal dynamics, long-range correlations, self-similarity (fractal structures), and power

laws, among other features [45, 68–73]. These systems operate at or near a critical point

between subcritical (“ordered”) and supercritical (“disordered”) configurations, analogous to

the critical point separating phases of matter in a phase diagram. At the critical point, the sys-

tem dynamics are markedly different from either the subcritical or supercritical states, leading

to the emergence of new properties [72]. Critical dynamics have been observed in both abiotic

systems, (e.g. word frequency, earthquake intensity and wildfire frequency) and biotic systems

(e.g. animal migration patterns, neurons and the brain) [45, 70, 72, 73]. Importantly, many of

these critical systems demonstrated a power law exponent of α = -1.5, which differs by only

~5.5% from the α calculated in this study.

If pacemaker translocations constitute a critical system, then critical dynamics would repre-

sent one potential mechanism underpinning the stabilization of the pacemaker region.
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Suspected critical systems, e.g. neuronal cultures, have demonstrated optimal information

exchange between cooperative units when operating at or near criticality [66, 69, 74–79]. Car-

diomyocyte cultures could utilize critical dynamics to determine the optimal location for the

pacemaker region to reside. In the cardiomyocyte network, information concerning which

cells will become pacemaker cells needs to be conveyed throughout the network across great

distances. Operating at or near a critical regime could enable the cardiomyocyte network to

maximize signal transduction (i.e. communication of information regarding cellular condi-

tions), ensuring that all cardiomyocytes in the network are in active contact with one another

[79–81]. Maximized communication between cardiomyocytes could allow the cells to share

structural, local environmental, and genetic information across the entire culture at great dis-

tances and speed, which could help determine an optimal region in the culture for the estab-

lishment of pacemaker cells. Thus, critical dynamics may play a crucial role in determining the

ideal pacemaker region in the cardiomyocyte culture.

Conclusion

Pacemaker translocations were observed in 21 of 30 cardiomyocyte MEA recordings. A cur-

sory analysis of these translocations using non-robust methods revealed a potential power law

relationship between the quiescent period and the number of quiescent periods of a given

length. Unfortunately, these techniques are insufficient for assessing power law behavior,

partly because they do not represent power laws accurately as probability distributions. More

robust methods were subsequently employed to evaluate the data against several probability

distributions, including power law, doubly truncated power law, exponential, log-normal, and

Weibull. Application of these methods failed to support the interpretation that the data

uniquely obey a power law distribution. However, the evidence shows that the data exhibit

superior fit to a doubly truncated power law with α = -1.583. These findings demonstrate that

1) misleading conclusions are likely if less robust or incomplete methods are applied to power

law analysis of cardiological phenomena, 2) pacemaker translocations obey a doubly truncated

power law distribution, and 3) indicate the potential for critical dynamics in the establishment

of the pacemaker region in cardiomyocyte cultures.

Supporting information

S1 Fig. Residual plots calculated for the distribution data depicted in Fig 5B and 5C. Each

residual plot shows the difference between the real data values (empirical PDF or CCDF) and

the model values (distribution PDF or CCDF). These residual values are plotted against the

quiescent period as measured in beats.
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