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Abstract

Rabies is an ancient viral disease that significantly impacts human and animal health

throughout the world. In the developing parts of the world, dog bites represent the highest

risk of rabies infection to people, livestock, and other animals. However, in North America,

where several rabies virus variants currently circulate in wildlife, human contact with the rac-

coon rabies variant leads to the highest per capita population administration of post-expo-

sure prophylaxis (PEP) annually. Previous rabies variant elimination in raccoons (Canada),

foxes (Europe), and dogs and coyotes (United States) demonstrates that elimination of the

raccoon variant from the eastern US is feasible, given an understanding of rabies control

costs and benefits and the availability of proper tools. Also critical is a cooperatively pro-

duced strategic plan that emphasizes collaborative rabies management among agencies

and organizations at the landscape scale. Common management strategies, alone or as

part of an integrated approach, include the following: oral rabies vaccination (ORV), trap-

vaccinate-release (TVR), and local population reduction. As a complement, mathematical

and statistical modeling approaches can guide intervention planning, such as through con-

tact networks, circuit theory, individual-based modeling, and others, which can be used to

better understand and predict rabies dynamics through simulated interactions among the

host, virus, environment, and control strategy. Strategies derived from this ecological lens

can then be optimized to produce a management plan that balances the ecological needs

and program financial resources. This paper discusses the management and modeling

strategies that are currently used, or have been used in the past, and provides a platform of

options for consideration while developing raccoon rabies virus elimination strategies in the

US.
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Introduction

Rabies is an ancient viral disease that is still a global concern in both humans and animals [1,

2]. Rabies virus (RABV) is transmitted primarily through bite contact with reservoir species,

and the disease is usually fatal once clinical signs appear [1]. An estimated 59,000 people die of

rabies every year, mostly due to bites from domestic dogs (Canis familiaris) in developing

parts of the world [3, 4]. In the US and Canada, wildlife species are the primary reservoirs of

rabies because of successful control and elimination of rabies in dogs through widespread

availability and use of parenteral vaccines, restricted animal movements, as well as public

awareness and responsible pet ownership [5, 6, 7]. In relation to other wildlife diseases, rabies

maintains a relatively high profile because it is zoonotic, has one of the highest case fatality

rates of any infectious disease, and because of ongoing management of the disease in reservoir

populations. In a broader public health perspective, however, rabies remains neglected and

subject to political will and available resources, which fluctuate in response to disease burden

and surveillance activities [8, 9].

In the US, about 34,000 courses of post-exposure prophylaxis (PEP) are administered per

annum [10]; the per capita rate of PEP administration is almost twice as high in the states

where the raccoon (Procyon lotor) variant of RABV circulates than in states with skunk vari-

ants and three and six times as high compared to where arctic fox and bat variants circulate,

respectively [10]. Furthermore, an average of 6,000 cases of animal rabies are reported in the

US each year, and the majority of these cases are diagnosed from the area where the raccoon

variant of RABV is enzootic, a trend that is partly associated with elevated rates of spillover of

raccoon variants into other animals [11]. Beyond the public health risk, the circulation of

RABV in wildlife results in other human–wildlife conflicts, such as spillover transmission to

livestock [12] or endangered species [13, 14]. Additionally, there is an intrinsic human desire

for healthy wildlife populations and concern for the reservoir species impacted by rabies [15].

Although rabies is a vaccine-preventable disease, a rich history of folklore, high case fatality

rate, and anxiety surrounding the unknown enables an innate fear of rabies to persist, even

among health care workers [16, 17]. This fear might drive unnecessary precaution and lead to

an over-administration of PEP, adding to the overall cost of disease mitigation [10, 17, 18].

In response to threats to public health, agriculture, and free-ranging wildlife populations

posed by RABV, several methods of rabies control targeting animal populations have been

implemented worldwide, including local population reduction, parenteral vaccination, oral vac-

cination, or combinations of these methods. In this paper, we review the management strategies

traditionally used to control rabies in wildlife, highlighting both successes and challenges, with

special consideration for application to raccoons. We also discuss the modeling approaches that

have been used to better understand rabies ecology in wildlife, with the intention of translating

these strategies to enhance raccoon rabies management to achieve elimination in North

America.

Background

In the continental US, seven distinct RABV variants circulate in four terrestrial wildlife species:

raccoons, skunks (principally Mephitis mephitis), and foxes (arctic fox: Vulpes lagopus and gray

fox: Urocyon cinereoargenteus). These variants are maintained within specific reservoirs and

have recognized geographic distributions (Fig 1) [8]. The RABV variants in the US and Canada

evolved from two major lineages: dog RABV (California skunk, north-central skunk, Arizona

gray fox, Texas gray fox, and Arctic fox variants) or bat RABV (raccoon and south-central

skunk variants) [5]. Raccoon rabies cases have been reported annually in Florida since 1953

[19]. In the 1960s and 1970s, a northward range expansion brought raccoon rabies into
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neighboring states at a rate of 40 km/year by 1977 [20]. In 1977, a translocation of raccoons

from Florida to West Virginia initiated an epizootic event that progressively spread through-

out the eastern US and into eastern Canada [21, 20]. The development of monoclonal antibody

typing methods in the mid to late 1970s [22] allowed for the identification of RABV variants

adapted to specific wildlife hosts. By 1999, the raccoon variant was responsible for the highest

number of rabid companion animals reported in the US [23]. While raccoons might become

infected with other RABV variants through spillover [11], in this paper all references to rac-

coon rabies is related to the specific RABV variant that is adapted to and circulates in raccoons

in the eastern US [11].

Due to the occurrence of raccoon rabies over a wide geographic range, management efforts

are highly collaborative and demand intersectoral cooperation from diverse domestic and

international partners and stakeholders. The implementation of the US Department of Agri-

culture (USDA), Animal and Plant Health Inspection Service (APHIS), Wildlife Services,

National Rabies Management Program (NRMP) in 1999, and the signing of the North Ameri-

can Rabies Management Plan (NARMP) in 2008, have helped to provide focus, leadership,

and partnerships within and across the US, Canada, and Mexico, thus enhancing the collabo-

rative nature of rabies management [24].

A major focus of NRMP activities and the NARMP is the management and elimination of

raccoon rabies from the eastern US and Canada. As demonstrated by campaigns targeting fox

rabies in Europe [25], the goal of elimination over large landscapes is attainable. The US and

Canada also must consider host species differences (e.g., density and behavior), diverse and

fragmented landscapes with extensive rural–suburban interface, and generally ubiquitous rac-

coon populations. These factors present additional challenges above those encountered in

Fig 1. Current geographic distribution of rabies virus variants in the continental US and Canada.

https://doi.org/10.1371/journal.pntd.0005249.g001
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admittedly complex fox rabies control programs in Europe. Common areas of uncertainty and

complexity that raccoon rabies management programs must navigate include, but are not lim-

ited to, environmental and climatic changes, sustainable long-term funding, spillover of rac-

coon RABV into sympatric skunk (i.e., M. mephitis) populations [26, 8], and translocation of

reservoir animals [27].

Raccoons seem to thrive in almost any part of the urban–rural gradient, occurring at espe-

cially high densities in suburban areas where their tolerance of humans and flexible diet allow

them to find food and shelter from both anthropogenic and natural sources [28, 29]. Raccoon

densities and home range sizes can vary greatly across habitat types [30, 31, 32]. Details regard-

ing habitat-dependent movement and contact structure of infected raccoons are important to

learn, especially for identification of ecological corridors [33] that might be good locations to

employ targeted management activities. Due to their peridomestic habits, importance as a

rabies reservoir, and the critical nature of host movement to understand disease spread, under-

standing raccoon movement remains an active area of study [33, 34, 35]. The emergence of

network analysis approaches, and technological advances in tracking marked animals includ-

ing GPS and proximity collars, has offered new insight into raccoon social behavior and ecol-

ogy [29, 36, 37, 38, 39].

Translocation (both purposeful and involuntary) is commonly associated with raccoons

and can jeopardize rabies management efforts if an infected raccoon is introduced to a naïve

or previously managed area [21, 27]. Raccoons and other wildlife species that scavenge human

refuse can be accidentally transported over potentially large distances by garbage trucks or

other vehicles [27]. Also, raccoons are involved in a high volume of wildlife damage or “nui-

sance” complaints and are likely to be trapped in urban or suburban areas by the public, wild-

life rehabilitators, or wildlife control personnel and might subsequently be released elsewhere

(legally or illegally), thereby enhancing the potential geographic spread of RABV and other

pathogens [28].

The design and success of rabies control strategies is influenced by viral transmission

dynamics within the target species population, which is a product of the host and pathogen

relationship. Pathogen transmission is often characterized as density-dependent or indepen-

dent (frequency dependent), but a combination of the two can also occur. The dominance of

one transmission type over another might be a scale-dependent question or might be related

to whether the current infection dynamics are acute (epizootic) or enzootic [14]. If virus trans-

mission within a target population is not density-dependent or if the movement, foraging,

mating, or other pertinent behaviors of host species are not well understood, then disease-con-

trol strategies such as local population reduction can be ineffective [14, 40]. However, deter-

mining the role of population density in rabies transmission is not trivial, especially for

wildlife, for which field data on many behavioral and population processes remain largely

unobserved [41]. Also, it is difficult to generalize regarding RABV transmission dynamics

because of the ecological diversity of genetic variants, reservoir hosts, and habitats. As such, it

is not surprising to find varying and sometimes conflicting descriptions of rabies transmission

dynamics in wildlife [14, 41].

Rabies management strategies

Oral rabies vaccination

One of the most successful methods of RABV control has been through landscape-scale oral

rabies vaccination (ORV) programs. Since 1978, ORV has been used to eliminate the virus

from red foxes in western Europe and reduced the disease incidence in central Europe [42]. In

Ontario, Canada, aerially distributed Evelyn-Rokitnicki-Abelseth (ERA) vaccine baits
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eliminated an arctic RABV variant from red foxes during the 1990s, although persistence of

this variant in skunks led to additional baiting with a then-novel ORV product, ONRAB

(Ontario Rabies Vaccine Bait, Artemis Technologies, Guelph, Ontario, Canada) [43]. ORV

programs, in conjunction with parenteral vaccination of domestic dogs in the US have been

successful in controlling canine rabies in coyotes (Canis latrans) in south Texas, leading to the

declaration of the US as canine rabies–free in 2007 [44, 45, 46]. Currently, the primary focus of

ORV occurs in the eastern US, where coordinated raccoon rabies management programs led

by the USDA, APHIS, Wildlife Services and a coalition of other federal, state, county, and

municipal agencies, non-governmental organizations (NGOs), and universities are in place to

control and eliminate raccoon rabies [10, 47].

Attenuated derivatives of the Street-Alabama-Dufferin (SAD) strain of RABV were used in

a variety of baits to eliminate fox rabies from western Europe [25, 48]. In the US, however,

only Raboral V-RG (V-RG; Merial Inc., Athens, GA, US), a live recombinant vaccinia virus–

vectored vaccine, was available for use from the mid-1990s until 2011, when the experimental

use of ONRAB, a live recombinant human adenovirus–vectored vaccine, began. ONRAB is

licensed for use in Canada [49], but is still under experimental use in the US, although field tri-

als are nearing completion [50]. The results, in combination with other data requirements, will

be used to aid evaluation for licensure in the US. The raccoon variant ORV zone in the eastern

US is maintained principally by aerial distribution of baits from fixed-wing aircraft (89% of

total baiting activities), although hand-baiting (5%), targeted distribution by helicopter (5%),

and bait stations (1%) are also used in some suburban and urban areas [24]. In two compari-

son studies with V-RG along the US/Canada border, the proportion of antibody-positive rac-

coons was higher in the ONRAB-baited areas [51, 52]. These data suggested that ONRAB

could be a useful addition to ORV programs in the US [51] and served as one underlying basis

to begin the US field trials.

Bait distribution (over space and time) and uptake are key variables impacting vaccine

responses in target animal populations and vary with ecosystem characteristics and manage-

ment goals (Table 1). The density of free-roaming target and non-target animals is important

for determining the number of baits that should be distributed within a control area [53, 54,

55]. Management of raccoon rabies through ORV requires a higher bait density than may be

typically used in programs targeting canids, which are territorial, have larger home ranges, and

are less densely populated than raccoons and skunks. For example, during European ORV

efforts to eliminate rabies in red foxes, 20–25 baits/km2 were commonly distributed [42],

whereas bait densities of 75–300 baits/km2 have been used to target raccoon and skunk reser-

voirs in eastern North America (see Table 1).

Landscape heterogeneity and season can influence the density and occurrence of target and

non-target animals, foraging resources, and thus bait uptake efficiency [56]. For this reason,

Boyer et al. [56] recommended refining bait distribution based on habitat and target species;

for example, forests fragmented by agricultural land are targeted for raccoons and field edges

adjacent to forest patches for skunks. However, in a recent experimental study in which

resource selection data were incorporated into bait distribution methods, bait uptake did not

differ between treatment sites (where bait application was stratified according to estimated

habitat use) and control sites (where baits were distributed uniformly along transects) [57].

Additional studies testing this concept are needed. The ORV delivery in the eastern US usually

occurs in late summer to early fall, when young-of-year are moving, often in maternal family

groups, and might encounter and consume baits. Juveniles are an important cohort to target,

given that they represent a pulse of new susceptible individuals that are capable of driving

transmission dynamics. During this time of year, natural food resources might become more

limited, which increases the attractiveness of baits, and the vaccine baits are less likely to be
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impacted by extreme temperatures [58, 59]. This bait timing is also advantageous because

maternal antibodies in juveniles would have waned by this time. Fry et al. [58] estimated the

half-life of maternal antibodies to be 10.5 days post-weaning, and the results of this study also

suggested (although not definitively) that the presence of maternal antibodies could interfere

with a young raccoon’s ability to properly respond to oral vaccination. Similarly, juvenile foxes

demonstrated an impaired immune response during a challenge with RABV, even after mater-

nal antibodies were no longer detected [60]. Timing of raccoon baiting also considers the need

to measure RABV neutralizing antibodies (rVNA) within the post-ORV recommended

Table 1. Previously published ORV campaigns in North America and the estimated population seroprevalence in response to vaccination.

Species

Tested

Study Location Bait

Type

Flight-Line

spacing (km)

Bait Density (baits/km2) Post-Bait

Seroprevalence (%)

Diagnostic Test

Used

Reference

Red foxes Eastern Ontario, Canada ERA 1.0–2.0 20 nd n/a [150, 49]

Red foxes Toronto, Ontario,

Canada

ERA n/a 49–691 46–80 (mean = 61) VNT, ELISA [65, 151]

Red foxes Ontario, Canada V-RG 0.75–1.5 75, 150 7–28 (mean = 14) cELISA [152]

Gray foxes West-central Texas, US V-RG 0.8 27–39 37–84 (mean = 62) VNT [44]

Coyotes South Texas, US V-RG 0.8 19–27 18–87 (mean = 56) VNT [153, 44]

Raccoons Anne Arundel County,

Maryland, US

V-RG 0.5 75, 100 21–47 (mean = 33) VNT [154]

Raccoons Massachusetts, US V-RG n/a 103 (uniform), 93

(targeted), 135(targeted)

16–55 (uniform),

39–67 (targeted),

46–77 (targeted)

VNT [155]

Raccoons New Jersey, US V-RG n/a 64 (targeted) 7–71 (mean = 41) VNT [156]

Raccoons Wolfe Island, Ontario,

Canada

V-RG 1.5 75, 150 nd2 n/a [69]

Raccoons Parramore Island,

Virginia, US

V-RG n/a 1000 52 VNT [61]

Raccoons Ohio, US V-RG 0.5 75,

150,

300

22, 18, 113,

27, 14, 83,

41, 36, 253

VNT [157]

Raccoons Maine, US V-RG 1.0 75 30–33,

25

VNT, cELISA [51]

Raccoons Vermont, US V-RG 0.75 150 38,

38

VNT, cELISA [52]

Raccoons Quebec, Canada ONRAB 0.75 150 52,

51

VNT, cELISA [52]

Raccoons West Virginia, US ONRAB 0.75 75 49 VNT [50]

Raccoons New Brunswick, Canada ONRAB 1.0 75 75–78,

67

VNT, cELISA [51]

Skunks Maine, US V-RG 1.0 75 3–11,

3

VNT, cELISA [51]

Skunks Ontario, Canada ONRAB 0.25, 0.50 300 20–344, 36–625 cELISA [43]

Skunks West Virginia, US ONRAB 0.75 75 7 VNT [50]

Skunks New Brunswick, Canada ONRAB 1.0 75 15–18,

15

VNT, cELISA [51]

1Straight line along a ravine (unit is baits/km).
2Not determined, but apparent elimination of raccoon rabies from the island; used in conjunction with TVR and population reduction.
3Based on titers (�5,�12,�56, respectively).
4Including only strong positives (inhibition value�26%).
5Including suspect and strong positives (inhibition value�16%).

VNT, virus neutralization test; ELISA, enzyme-linked immunosorbent assay; cELISA, competitive ELISA; nd, not determined; n/a, not applicable.

https://doi.org/10.1371/journal.pntd.0005249.t001
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sampling window as the serologic metric for ORV performance sampling before winter

weather commences in the north [61, 62]

Optimized flight-line spacing to ensure that target animals are likely to encounter baits is a

critical strategy consideration. Owen et al. [63] estimated raccoon home range size in an unde-

veloped area as approximately 2.5 km2 (females) and 4 km2 (males) in a central Appalachian

forest, but urban or suburban raccoon home ranges tend to be much smaller (e.g., average 0.2

km2) if animals do not have to travel far for resources [64]. In the past, ORV flight-line spacing

in the US and Canada varied from 500 to 1500 meters (see Table 1). The baiting schemes are

carefully chosen for each region in the ORV zone to ensure that sufficient land-area is covered

to vaccinate as many target animals as possible, thus maximizing population-level immunity.

The comparison between urban/suburban and rural bait delivery is also potentially con-

founded by different methods of bait distribution; helicopters and hand-baiting are used

extensively in urban/suburban areas, whereas rural areas receive bait delivery by fixed-wing

aircraft.

Trap-vaccinate-release (TVR)

TVR is a resource-intensive management tool that uses parenteral vaccination to boost popula-

tion immunity in emergency situations or where ORV baiting might not be feasible, such as in

densely human-populated urban areas [65, 24, 66] or for skunks [24]. ONRAB protected captive

skunks from rabies in an efficacy study [67] and also in a high density field application that

eliminated the arctic fox variant from free-ranging skunks in Ontario [43]. However, results

from other studies are contradictory because free-ranging skunks still demonstrate low popula-

tion immunity in response to more commonly used ORV bait application densities (Table 1)

[24, 50, 51, 68], which complicates management efforts because skunks are susceptible to spill-

over of raccoon rabies [11]. TVR is generally used to target animals in small areas (e.g., parks

and urban neighborhoods) [69, 70, 66], but it is too labor intensive and expensive for broad-

scale application [71]. This method is also used in contingency actions by the NRMP in

response to ORV-zone breaches or threats of rabies spreading beyond existing zones [72].

In Central Park, New York, US, TVR was used to control an outbreak of raccoon rabies where

ORV baiting was deemed infeasible, and local population reduction was publicly opposed [66].

In this case, rapid-response TVR likely prevented the virus from becoming enzootic in the Cen-

tral Park raccoon population [66]. TVR was also used in an integrated point infection control

(PIC) strategy in which raccoon rabies was detected across the St. Lawrence River in Ontario,

Canada [71]. Rabies cases persisted until 2005, but Ontario is a much larger landscape to manage

than New York, and the infection pressure from the US border states was constant [69, 71]. A

TVR strategy was also used effectively in and around Flagstaff, Arizona following an outbreak of

a bat rabies variant in striped skunks (M. mephitis) in 2001 [74, 73]. This multi-year TVR effort

was deemed crucial for controlling this outbreak while ORV delivery systems and vaccine are

being refined and optimized for skunks [24, 73].

Population reduction

Population reduction and fertility control have long been considered important tools for

reducing transmission of some density-dependent pathogens, although lethal management

techniques are controversial among many stakeholders [75, 76]. Also, growing evidence dem-

onstrates that population reduction over broad landscapes may not be achievable and that

population reduction might not be effective for pathogen elimination in complex ecological

systems, where social structure and contact dynamics are also influential, and transmission is

not simply driven by density [77].
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Local population reduction strategies can be reactive (in response to a specific outbreak), or

proactive (independent of specific cases) [78, 77]. In the United Kingdom and Ireland, pop-

ulation reduction of Eurasian badgers (Meles meles) to reduce bovine tuberculosis (bTB,

causative agent is Mycobacterium bovis) risk led to a decrease of the overall incidence of

bTB in cattle (Bos taurus) within local population reduction areas. However, incidence

became higher in untreated areas [79]. A potential explanation was that local population

reduction within the treatment areas caused social perturbation and changed movement

patterns among badger populations, enhancing the spread of bTB [80]. Although the two

pathogens can be transmitted through different routes (bTB transmission can be indirect

and RABV through direct contact), this example highlights a potential for unintended con-

sequences following local population reduction.

Similarly, the potential consequences of local population reduction to manage disease in

other wildlife species, such as raccoons, are not well understood [81]. The feasibility of local

population reduction as a management tool might depend on the spatiotemporal scale of

treatment and drivers of recolonization for the host species of concern. For example, three

years after raccoon removal from agricultural habitat patches in Indiana, US, only 40% of

the patches had recovered to preremoval densities. This was possibly driven by slow female

recolonization and, thus, low site fidelity in immigrating males, ultimately suggesting that

complete local population reduction might temporarily reduce the risk of density-depen-

dent pathogen transmission [81]. In Ontario, Canada, sites subjected to reactive local popu-

lation reduction in response to a raccoon rabies outbreak were not recolonized for ten

months [82]. That local population reduction event provided a period of reduced raccoon

density, which might offer emergency relief of risk of rabies spread [81, 82]. Population

reduction might stimulate raccoon movements into control sites from areas where raccoon

rabies is enzootic, or where rabies status unknown, exacerbating the intended outcome of

reduced risk of rabies spread [81].

In Latin America, reactive attempts to reduce the local density of vampire bats (Desmodus
rotundus) with an anticoagulant paste have not been effective in preventing or controlling

rabies circulation [40, 83]. In Peru, bat exposure to RABV increased following sporadic local

population reduction activities, possibly because these local bat population reduction efforts

unintentionally targeted the wrong age-class (adults versus juveniles and sub-adults), or

because the effort was not sufficient to impact RABV circulation in vampire bat populations

[40]. Also, Streicker et al. [40] did not find evidence for density-dependent transmission in

vampire bat colonies, an assumption that is also challenged for other rabies reservoirs [84]. In

host populations in which transmission is frequency-dependent rather than density-depen-

dent, or possibly a more complicated combination thereof, local population reduction alone is

unlikely to be an effective disease management strategy [84]. Furthermore, subsequent changes

in population structure, including if treated populations become more permissive to immi-

grants or if local population reduction activities trigger dispersal to new areas, could actually

enhance rabies transmission [83].

Fertility control

Fertility control offers potential alternatives to local population reduction or might be inte-

grated with other methods to enhance the rabies control strategy. One potential advantage of

some contraception methods, such as surgical spaying, is that population structure might not

be disrupted. Fertility control can be achieved either surgically, chemically, or through immu-

nocontraceptives. These different methods can vary in the temporal duration of efficacy. Con-

traception can be helpful as an alternative strategy to population reduction when a significant
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local population reduction would result in an influx of naïve hosts or when an increasing pro-

portion of juvenile animals might increase transmission and epidemic risk [40, 83]. By apply-

ing contraception instead of population reduction, animals are not taken from the population,

thus limiting immigration from other areas. Contraception can control the growth rate in a

population, keeping the density below an epizootic threshold. Given the potential nontarget

species impacts, other ecological concerns, and costs, orally delivered immunocontraceptives

are not likely to be used on the landscape-scale to manage wildlife rabies; however, the tool

might be useful when parenterally applied during TVR efforts. Surgical sterilization of dogs,

coupled with vaccination, has been used to mitigate canine rabies in developing countries [84],

with limited effectiveness. Also, at least two studies have evaluated concurrent administration

of GonaCon and parenteral rabies vaccination; both vaccines induced rabies and gonadotro-

pin-releasing hormone–specific immune responses in dogs in experimental settings [85, 86]. A

conventional compartmental model designed for urban dogs predicted that a combination of

vaccination and fertility control would achieve rabies elimination more quickly than vaccina-

tion alone, with less overall vaccine coverage required, although the model assumed homoge-

neous mixing of hosts [87].

Modeling approaches to understand wildlife rabies

Mathematical models have long been used to predict and understand the dynamics of animal

rabies [88, 89], and in this section, we review six general frameworks that have been used: sim-

ple epidemic models, host heterogeneity models, multi-host/multi-pathogen models, seasonal

models, and spatial models [89, 90]. The general classifications used here are not mutually

exclusive, and one model might fit into multiple categories. Examples of these methods are

described below and in Table 2. Any of the frameworks mentioned here can be run as deter-

ministic or stochastic models. Keeling and Rohani [90] describe deterministic models as

“clockwork systems,” in which the conditions and parameter values in the model are fixed,

thus leading to one (and the same) outcome each time the model is performed. Deterministic

models can be useful to understand general trends within a system; however, there is no

accounting for the random variation that is observed in real-world host/pathogen systems

[90]. Alternatively, stochastic models incorporate chance and uncertainty by randomly choos-

ing parameter values from probabilistic distributions, as defined by the model user [90]. With

each repeated model iteration, the resulting values can change, and the aggregate output will

reflect how parameter uncertainty affects the modeled system [90]. Also important to consider

with all models, but not discussed in this paper, is the model validation procedure, which is

used to determine which parameters contribute the most to uncertainty and variation in the

total output. The identified parameters can then be further examined and might indicate

empirical research needs [91].

Simple epidemic

Early simple deterministic epidemiological models were helpful for guiding the control of fox

rabies in Europe. For example, Anderson et al. [88] incorporated red fox population biology

into a simple deterministic, compartmental model to summarize the dynamics between host

and pathogen interactions and to predict the effect of control methods such as culling and vac-

cination. Källen et al. [92] used a similar approach to model the spatial spread of rabies at the

front of an epizootic wave. Murray [93] built on both of these models, combining spatial data

and density estimates to more completely capture the epizootiology of fox rabies; this was

instrumental in understanding the characteristics of epidemic wave fronts in fox rabies out-

breaks in Europe and where control measures could best be applied. These simple models
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Table 2. Summary of modeling approaches used to understand rabies dynamics in wildlife, conceptually structured as in Keeling and Rohani

[90].

Method Key Features Pros Cons Examples

Simple epidemic

(deterministic)

• Basic compartmental models

(e.g., SIR, SIS, SEIR)

• Assumes uniform mixing of the

population

• Population level only

• Computationally simple

• Predictions of the model are

easily interpreted

• Control measures either

succeed or not (no gray area)

• May not be biologically

accurate

• Early red fox compartmental

models [88]

Simple epidemic

(stochastic)

• Explicit modeling of random

events as part of model process/

behavior

• Population level only

• Estimates a more accurate

presentation of stochastic

nature of small populations

and extinction processes

• May be more appropriate for

control programs which aim to

reduce pathogens to

extinction

• Computationally

intensive

• Early models of the mid-

Atlantic epizootic in raccoons

[95, 96]

Host heterogeneities

(deterministic or

stochastic)

• Application of demographic

cohorts which have quantified

risk of transmission or

susceptibility

• Incorporate heterogeneous

population mixing

• Incorporate age-structure

• Can use for individual and/or

population level

• May help to identify

individuals, social groups, or

specific behaviors that

influence rabies dynamics

• May help to design more

efficient, targeted measures

for disease control

• Requires increased

computational time and

data needs for accurate

parameterization

• Social network models [29, 38,

119]

• Age-structured models [112]

• Individual-based models [108]

Multi-host/multi-

pathogen

(deterministic or

stochastic)

• Multiple host species affect the

transmission cycle

• Multiple pathogens impacting a

host population (e.g. RABV and

canine distemper virus)

• Individual or population level

• Better understanding of

multi-species (biodiversity)

effects on transmission

dynamics

• Better understanding of how

multiple circulating pathogens

affect host demographic and

transmission dynamics

• Design more efficient

targeted measures for disease

control

• Increased computational

time and data needs for

parameterization

• Need a thorough

understanding of reservoir

ecology and epizootiology

• Raccoon/skunk spillover model

[26]

• Dog/wild carnivore interactions

and rabies dynamics in Africa

[112, 113]

• Rabies and canine distemper

virus in African wild dogs [112]

Seasonal

(deterministic or

stochastic)

• Transmission and/or

susceptibility of host has

pronounced seasonality, within

and/or across years

• Individual or population level

• Better understanding of how

life history impacts

transmission dynamics (e.g.

mating, migration, parturition)

• Increased computational

time and data needs for

parameterization

• Early red fox rabies models

with seasonality [89]

• Social Network Analysis:

shows greater force of infection

during spring (overwintered

infections) and fall (dispersing

juveniles) [38, 119]

• Seasonal and multi-year rabies

dynamics [158]

• Impact of synchronized birth

pulses [118, 120]

• Individual-based models [108]

Spatial (deterministic

or stochastic)

• Metapopulation models

• Use of locality units (e.g.,

township, county, etc.) to

circumscribe host population

units (often because they match

surveillance data)

• Evaluation of natural (e.g.,

rivers, mountains) and man-

made (e.g., roads, vaccination)

barriers to spread

• Individual or population level

• Focus on real landscapes of

disease spread

• Control points on the

landscape may be easier to

identify

• Increased computational

time

and data needs for

parameterization

• Requires relatively robust

observation process

• Extension of red fox models to

include spatial dynamics [92, 93]

• Township, county level models

[121, 122, 123]

• Spatially explicit Individual-

based model [108]

SIR, susceptible-infected-recovered; SIS, susceptible-infected-susceptible; SEIR, susceptible-exposed-infected-recovered

https://doi.org/10.1371/journal.pntd.0005249.t002
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provided a foundation for the management of rabies in wildlife, ultimately leading to the

development of more complex models that can accommodate stochasticity and behavioral fac-

tors. The newer models can be used to refine and adapt existing control programs, thus ensur-

ing that resources are maximized while planning and managing rabies in changing and

variable environments [94].

Childs et al. [95] tested a priori predictions of local rabies epizootic dynamics from a mathe-

matical model [96] with empirical temporal data from the outbreak and found that model pre-

dictions matched the observed data, thus highlighting the value of predictive models. The use

of simple epidemic models in the analysis of RABV is a good way to characterize general epide-

miological features of an outbreak, such as prevalence, speed of spread, and incidence [92, 93,

94]. Also, these models can help users to understand the ecology of the RABV, or generate fur-

ther hypotheses.

Models to study host heterogeneities

Individual- and population-level heterogeneity in rabies hosts is important to understand for

more accurate representation of host inter- and intrapopulation contact. One of the most diffi-

cult parameters to estimate in pathogen dynamic models is transmission rate, because it depends

on knowledge of contact structure among individuals in a population and the relationship

between individuals and the virus [97, 39, 38]. Although mapping and other spatial tools have

been helpful to understand rabies spread over landscapes, they have limited value in explaining

intra-population dynamics and interactions among individuals [29, 98]. Also, conventional com-

partmental models (e.g., susceptible-infectious-recovered), often assume homogeneous contact

structure, but this might not always apply to wildlife populations that have variable degrees of

sociality, disease-induced behavioral changes, or other drivers of spatial mixing [99, 29, 39].

Social network analysis (SNA) and network modelling are methods that have emerged

recently to address questions of host behavior and pathogen transmission in human and animal

health [39]. A common obstacle in raccoon rabies population dynamic modeling has been a

firm understanding of the patterns of pathogen transmission between individual raccoons and

social groups [29, 37], although limited data exist [97, 99, 100, 101, 102]. Gehrt and Fritzell [102]

described significant home range overlap and shared denning behavior among related females

in south Texas, US; however, genetic relatedness was not an important factor for the cohesion

of male social groups [103]. A SNA study using proximity-collared raccoons in Illinois, US did

not find that genetic relatedness had an effect on raccoon social network structure [37]. Perhaps

this difference is reflective of variable raccoon density, urbanization, or geographic location, but

it highlights the heterogeneity of host social ecology in different landscapes, especially where

anthropogenic food sources or seasonal resource pulses are available [104]. Also, more contacts

among unrelated individuals could indicate an increased rate of immigration into some popula-

tions and possibly a higher likelihood for the introduction of RABV [81].

Network studies suggest that raccoon populations are much more connected than initially

recognized in suburban environments, where raccoons often occur at high densities [29]. Sub-

urban raccoon populations have a high likelihood of rabies becoming enzootic following its

introduction into the area [29, 38]. Also, dynamic network analysis of a suburban raccoon

population predicted that the magnitude and speed of rabies spread are seasonally dependent

[38]. The same study also predicted that ORV did not provide an effective barrier against

rabies invasion until a vaccine-induced seroprevalence of ~85% was reached within the rac-

coon population, possibly reflecting the difficulty of ORV control and prospective elimination

in metropolitan areas [24, 38]. Although network methods show promise in understanding

rabies dynamics in highly structured populations, some challenges still exist. It is unknown
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what proportion of contacts based on proximity detection actually end in bites that would lead

to transmission events [29, 39]. Additional contact network studies from raccoon populations

and habitat types along the rural–urban gradient would be helpful to further evaluate the effec-

tiveness of current ORV strategies, to improve our understanding of how raccoon movement

and density affect rabies transmission along that gradient.

Contact network models are best suited to studying the patterns and effects of host behavior

on RABV transmission and spread. Also, these models can also help to identify the characteris-

tics of individuals who are potential superspreaders or otherwise play an important role in

RABV ecology [105]. This information is useful because managers can implement control

strategies based on the timing (e.g., seasonal, annual, etc.) or locations of the individuals iden-

tified by the model. Like most models, contact network models have some limitations when

empirical data are applied, and as Craft and Caillaud [105] suggest, these models require a lot

of data and it can take months or years to collect enough data to make robust inferences about

a population [105]. Also, narrow windows of opportunity for data collection can limit infer-

ence to a certain timeframe, such as time of day or season [105]. For example, the availability

of desired data might be limited by the frequency with which satellite collars take readings, or

when radiotelemetry activities are performed by study personnel.

From a rabies management perspective, Individual-based models (IBMs) offer promise to

simulate the population-level consequences of various control methods, including vaccination

and local population reduction, while also accounting for landscape heterogeneity and contact

structure within a raccoon population. IBMs have long been used for simulating bottom-up

interactions in populations and communities and were first applied to forest-succession

modeling [106, 107]. IBMs are most useful to identify individual heterogeneity that can affect

an entire ecological system. In the 1990s, these models became popular to better understand

fish and wildlife populations but eventually were extended to address problems in epidemiol-

ogy and the understanding of disease agents, including raccoon RABV [106, 108]. Also, by

running multiple iterations of a stochastic model, some of the uncertainty within the model

outputs can be captured and sensitive parameters can be identified and studied in more detail.

Currently, IBMs are used to make recommendations and inform decision-making in several

areas of human enterprise, including the social sciences, advertising, natural resource manage-

ment, and public health [109, 110, 111].

IBMs are intuitive for modeling rabies dynamics in wildlife because they can be structured

to follow individual animals in a simulated population throughout their lifespans and behave

according to biologically relevant parameters defined by the analyst. Biological and ecological

events, such as mating, birth pulses, and pathogen invasions, can all be simulated, and the

starting parameter values can be hypothetical (e.g., when no data are available) or taken from

empirical reports in the literature [108, 109]. As discussed previously, individual movement

(e.g., dispersal and translocation) and other behaviors (e.g., heterogeneous contact structure)

can be important determinants of rabies persistence and spread, and are useful inputs for eval-

uating the effectiveness of various control strategies (e.g., the width of ORV zones) [108, 29].

Multi-host/multi-pathogen

Multi-species and multi-pathogen models require a thorough understanding of the reservoir

ecology and epizootiology, as well as intensive computational time, especially with a stochastic

framework. These factors have limited their use in the past, however, as researchers continue

to recognize host pathogens within a community ecology context, there is a growing need to

develop more complex models to account for a greater number of ecological processes and

features.
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When multiple species of competent rabies hosts are present in an ecosystem, the ecology

of these species, and the role of each in rabies dynamics, is crucial for unbiased modeling.

Often, one species is considered to be a reservoir, while the occurrence of rabies infections in

another can be the effect of pathogen spillover [112]. In this situation, it can be helpful to

understand the interaction parameters, especially contact, among the multiple rabies hosts

[113]. In the eastern US, the spillover of RABV from raccoons to skunks is an important factor

to consider when interpreting models and planning management strategies [26]. Accounting

for the dynamics of rabies in all potential host species may improve model accuracy and help

managers to design more efficient and targeted disease control measures [26].

Individual animals might be concurrently infected with multiple pathogens, or multiple

pathogens might be affecting population demographics at any given time [114], and it may be

helpful to understand how rabies epizootics change when individuals and/or populations are

being influenced by concurrent infectious disease processes. For example, canine distemper

virus (CDV) is known to cause large changes in the population demographics of carnivores

[112, 113, 115], and a rabies epizootic in a population already affected by CDV might have a

different, or less predictable pattern of spread. Concurrent infections might also be detrimental

to the affected population through additive mortality.

Seasonal

Seasonality has long been recognized as an important factor in the dynamics of rabies trans-

mission [116, 89]. Generally, seasonality can be studied at the individual or population level

[89, 117]. From seasonal models, researchers can gain a better understanding of how life

history events, such as mating, parturition, and juvenile dispersal, can affect transmission

dynamics [118]. Several different model types have been used to detect and study seasonality,

including social network models, simple epidemic models, and IBMs [38, 108, 118, 119, 120].

Clayton et al. [120] used a simple compartmental model to examine the role of birth pulses

and temporal vaccine distribution on raccoon rabies epizootics. This study demonstrated that

the coordination of birth pulses and vaccination timing are critical to rabies control and that

general ordinary differential equation models can help a researcher to determine what control

policies will limit the spread of rabies in raccoon populations [120]. Social network models

have also been used to identify and study seasonality in raccoon rabies outbreaks [38, 119] and

determined that social contact duration was a more important seasonal driver of raccoon

rabies epidemics than birth pulses or social network shifts. These studies demonstrate that sea-

sonality is another crucial consideration to account for while developing models of raccoon

rabies dynamics.

Spatial models

The raccoon rabies epizootic in the mid-Atlantic region of the US that began in the 1970s led

to an exceptional outbreak of rabies in raccoon populations and prompted the study of spatial

epizootic dynamics at the county level of mid-Atlantic and northeastern states [121].

The data from the mid-Atlantic raccoon rabies epizootic were used to parameterize predic-

tive spatial models for raccoon rabies spread, which were then used to guide surveillance and

strategic planning efforts at state and local levels [121, 122, 123, 124]. One alternative approach

used phylodynamics based on the virus genetics to estimate the spatial spread of raccoon rabies

[125], which was refined to explicitly incorporate landscape features in a more recent analysis

[126].

The ongoing development of sophisticated spatial tools enables a progressive focus on

rabies enzootic and epizootic dynamics over heterogeneous landscapes. Several mathematical
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and statistical methods are available to study raccoon and skunk habitat use, with implications

for rabies occurrence and other health risks [108, 127, 128, 129, 130, 131, 132, 133, 134]. These

methods can also help to elucidate how certain landscape features, such as roads, waterways,

and habitat fragmentation, combine with raccoon habitat use to affect rabies-control strategies

[56, 57, 108, 134, 135, 136], such as targeted baiting, TVR, or other control methods.

For example, IBMs have demonstrated that spatial heterogeneity in the landscape interacts

with the effectiveness of vaccination [108]. Spatially explicit approaches with a grid-based IBM

can allow for incorporation of landscape heterogeneity at both small and large scales, depending

on the complexity of within-cell contact structure [109, 134, 136]. Simulated rabies-control

measures such as vaccination, population reduction, and contraception can also be modeled.

Habitat heterogeneity is important to consider for the planning of elimination strategies because

managers can apply heavier control efforts in areas where vaccine coverage is inconsistent or

implement additional research projects to study the phenomenon [108]. Rees et al. [108] dem-

onstrated that spatial heterogeneity of a simulated landscape affects vaccination effectiveness,

especially in good-quality homogeneous and low-quality heterogeneous habitats. Insufficient

vaccination coverage is also predicted to be counterproductive by prolonging epizootics,

increasing the total number of cases during an epizootic, and increasing the probability of rabies

breaching a vaccination barrier [108]. Also from this study, moderate levels of seroconversion

(>60%) were necessary to prevent epizootics and breaches of vaccine barrier zones [108].

Genetic data can also be applied to IBM simulations to understand the role of physical

geography on mating and movement patterns; the infectious disease dynamics can also be

inferred from the resulting estimations [134, 135, 136]. Quantification of the genetic popula-

tion structure with IBMs directly demonstrated that landscapes provide structure for host pop-

ulation densities over space [134]. If it is known how the population genetics are structured

over a landscape and where the natural barrier effects exist, these barriers can be augmented

with ORV campaigns. Also, IBMs can provide a framework to quantify the strength of land-

scape barriers [134]. Integrating both landscape epidemiology and host/pathogen genetic data

can help to identify routes of viral transmission and key regions in which to enact control mea-

sures [35, 125, 134, 135, 136].

Historically, a significant limitation of IBMs was the need for great computational intensity

and more powerful computers to complete simulations in a time-efficient manner. Now that

such computers exist, the primary problem that remains is getting high-quality data that are

able to populate the many parameters used within an IBM framework.

The application of resource selection functions (RSFs), especially to guide stratified bait dis-

tribution, is an interesting concept and warrants further investigation [56, 57]. However,

despite the widespread use of RSFs, model inference is sensitive to the size and spatial extent of

the availability parameter. Interpretational bias is likely to be introduced if a sufficient avail-

ability sample is not selected, which is dependent on the ecology of the study species [137].

Maximum entropy (Maxent) models use machine learning methods to predict the geo-

graphic distributions of species and can also be applied to predict pathogen spread [138, 139].

This approach to ecological niche modeling can be advantageous because it requires presence-

only species occurrence data to generate estimates of species distribution. Two major assump-

tions of this method, however, are that sampling is either random or representative throughout

the area of interest and that detection probability is constant across sites [140]. If these assump-

tions are violated, possibly through opportunistic or haphazard sample collection, occurrence

probability estimates might be misleading, resulting in poor inferences about species distribu-

tions [140].

Circuit theory models define areas of connectivity within landscapes [141], thus identifying

potential areas where animal movements and contacts might be intensified, which could
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facilitate pathogen transmission. Circuit theory has been applied to rabies dynamics on both

theoretical and real landscapes [142]. Using Maxent and circuit theory methods in tandem

enables the identification of corridors in species-specific habitats; these are key areas of interest

in which rabies-control methods can be applied to attempt to prevent the spatial spread of the

virus [142]. Circuit theory can also be applied to predict patterns of gene flow and genetic dif-

ferentiation and has been used to model the landscape genetics of raccoon RABV and reser-

voirs [134, 136].

Looking forward in raccoon rabies management

Rabies management programs in Europe, Canada, and parts of the US demonstrated that

rabies elimination is a feasible goal [24]. Regardless of the strategy used, all successful options

will stress economic viability for the protection of human and animal health, a reality that can-

not be ignored, even in a theoretical discussion [143, 144]. Kemere et al. [145] estimated that

the maintenance of a large scale ORV barrier to prevent the westward spread of raccoon rabies

was economically beneficial in every cost and spread scenario considered. Shwiff et al. [143]

reported that for every dollar spent on a raccoon rabies program in Quebec, Canada, costs of

$0.96 to $1.55 were prevented. Economic research also supports the case for elimination; Elser

et al. [146] estimated that the successful raccoon rabies elimination program on Long Island,

New York will financially benefit the state by $27 million by 2019. In the same study, the

authors estimate that for every dollar spent on the program, $1.71 will be saved by 2019 [146].

A main driver of cost savings for New York is associated with reduced PEP and diagnostic test-

ing of rabies suspect animals [146].

The maintenance of the current ORV zones and prevention of westward expansion of the

raccoon rabies variant shows that large-scale vaccination with Raboral V-RG baits can manage

the disease spread [24]. Moving forward with raccoon rabies elimination will require collabo-

ration and strategic planning among experts from a variety of disciplines with a focus on mul-

tiple control methods, particularly in highly urbanized landscapes, where bait delivery can be

especially challenging and raccoon densities are high [24]. Bait stations containing ORV baits

in highly urban areas, such as in New York and Cape Cod, might help to deliver baits to rac-

coons, while limiting bait–human contact risks [147, 148]. The potential future broad-scale

application of ONRAB in the US is a promising addition to ORV programs and the rabies

management toolbox. Individual-based or other models that allow for species co-occurrence

and cross-species transmission in various land-use scenarios could be helpful to understand

the roles of raccoons and other species, such as skunks, in facilitating RABV persistence and to

apply the most suitable rabies-control methods across habitats. Although not discussed in

detail in this paper, genetic methods are highly valuable to understanding both host and patho-

gen evolution and ecology and should also be considered when refining landscape manage-

ment strategies. Modeling methods are important for risk assessment, and are important

components to raccoon rabies elimination and contingency action planning. Robust surveil-

lance of raccoon populations is also necessary to ensure that the models are being used and

revised within adaptive frameworks. Clearly, surveillance is critical for assessing the impacts of

management actions on the ground. If model outputs do not match what is observed through

surveillance, investigation into the discrepancies is warranted.

The combination of empirical field data and predictions from theoretical models has pro-

vided a modest understanding of the dynamics and control of RABV circulation in terrestrial

wildlife. Model outcomes can be used to generate new research questions and indicate previ-

ously unrecognized research needs [91, 149]. For example, the NRMP, as a science-based pro-

gram that regularly performs data-driven rabies management through the ORV program and
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other efforts, is working to parameterize predictive models with long-term program data from

which future management decisions might be drawn. In addition, the collaborative nature of

rabies management and research programs in North America highlights a true multidisciplin-

ary approach [2] and emphasizes the value of decision-making frameworks based on both

model predictions and empirical data analyses [149].
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Key learning points

• The westward range expansion of the raccoon variant of the rabies virus is currently

prevented by an oral rabies vaccine zone, and plans are underway to begin moving this

zone eastward to eliminate raccoon rabies over the next 30 years.

• Multiple management options exist for raccoon rabies virus, most importantly the

strategy of oral rabies vaccination targeting free-ranging mesocarnivores. Refinement

of strategies might include enhanced targeting of specific habitats, landscapes, and/or

demographic cohorts of animals.

• More recent modeling applications facilitate estimation of probabilities and uncertain-

ties associated with simulated outcomes to management strategies through incorpo-

ration of model stochasticity.
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