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Abstract: Thrips hawaiiensis is a common thrips pest of various plant flowers with host preference. Plant
volatiles provide important information for host-searching in insects. We examined the behavioral
responses of T. hawaiiensis adults to the floral volatiles of Gardenia jasminoides Ellis, Gerbera jamesonii
Bolus, Paeonia lactiflora Pallas, and Rosa chinensis Jacq. in a Y-tube olfactometer. T. hawaiiensis
adults showed significantly different preferences to these four-flower plants, with the ranking of
G. jasminoides > G. jamesonii > P. lactiflora ≥ R. chinensis. Further, 29 components were identified
in the volatile profiles of G. jasminoides, and (Z)-3-hexenyl tiglate (14.38 %), linalool (27.45 %),
and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (24.67 %) were the most abundant. Six-arm olfactometer
bioassays showed that T. hawaiiensis had significant positive responses to (Z)-3-hexenyl tiglate, linalool,
and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene tested at various concentrations, with the most
attractive ones being 10−3 µL/µL, 10−2 µL/µL and 100 µg/µL for each compound, respectively. In pairing
of these three compounds at their optimal concentrations, T. hawaiiensis showed the preference ranking
of (Z)-3-hexenyl tiglate > linalool > (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene. Large numbers of
T. hawaiiensis have been observed on G. jasminoides flowers in the field, which might be caused by the
high attraction of this pest to G. jasminoides floral volatiles shown in the present study. Our findings shed
light on the olfactory cues routing host plant searching behavior in T. hawaiiensis, providing important
information on how T. hawaiiensis targets particular host plants. The high attractiveness of the main
compounds (e.g., linalool, (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, particular (Z)-3-hexenyl tiglate)
identified from volatiles of G. jasminoides flowers may be exploited further to develop novel monitoring
and control tools (e.g., lure and kill strategies) against this flower-inhabiting thrips pest.
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1. Introduction

Thrips hawaiiensis Morgan (Thysanoptera: Thripidae) is a common flower-dwelling thrips pest
of various horticultural plant species [1,2]. Native to the Oriental and Pacific regions, T. hawaiiensis
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is nowadays distributed in Asia, America, Africa, Australia, and Europe due to the expansion of
international trade in fresh flowers, fruits, and vegetables [3–6]. In the field, T. hawaiiensis can attack a
large number of plant species such as banana, mango, citrus, apple, tobacco, coffee, tea, horticultural
plants and vegetables [6–8]. Therefore, it has become an important agricultural pest globally.

Chemical insecticides have always been the primary tool for T. hawaiiensis control, especially
the high number of specific treatments applied on banana and mango crops [9–11]. T. hawaiiensis
showed the potential to rapidly develop resistance to insecticides (e.g., spinetoram) under laboratory
selection [9,10]. Early detection of thrips is important for growers to decide when best to apply chemical
insecticides or when to alter them, which would help to limit the frequency of insecticide applications,
delaying the development of insecticide-resistance. Understanding the host-location behavior in thrips
would be helpful for the development of monitoring tools for their early detection.

The color, shape and volatiles associated with different plant species were considered to provide
vital cues for thrips and help them to search and locate more suitable host plants [12–16]. Many studies
have evaluated the olfactory responses of thrips, e.g., the western flower thrips Frankliniella occidentalis
Pergande (Thysanoptera: Thripidae), indicating that both floral volatiles and non-floral odors were
attractive to this pest [14,16–18]. Further, it was reported that rose volatile compounds allowed the
design of new control strategies for western flower thrips [19]. So far little information has been
mentioned on the behavioral responses of T. hawaiiensis to plant volatiles.

As a polyphagous flower-inhabiting thrips in China, T. hawaiiensis is always the dominant
thrips pest on many banana and mango orchards during their flowering stages [9–11,20]. In addition,
T. hawaiiensis varies in its population size on different flower host plants and vegetable crops at
the flowering stage and particularly showed a preference for Gardenia jasminoides Ellis (Gentianales:
Rubiaceae) flowers [21,22]. These results indicated that host plant flowers had a great attractiveness to
T. hawaiiensis. To contribute to the knowledge on the role of volatile compounds in the host-searching
behavior of T. hawaiiensis, the olfactory responses of adult insects to the odors of different flower plants
including G. jasminoides, Gerbera jamesonii Bolus (Campanulales: Asteraceae), Paeonia lactiflora Pallas
(Ranales: Ranunculaceae), and Rosa chinensis Jacq. (Rosales: Rosaceae) and to the main components
identified from the preferred flower plant (G. jasminoides) were studied. These results may also help in
developing new monitoring tools and other control options, which could be implemented in integrated
pest management (IPM) strategies against T. hawaiiensis.

2. Materials and Methods

2.1. Insects and Plants

Mixed populations of T. hawaiiensis collected from various host plant species in the Nanming
District, Guiyang area (26◦34′ N, 106◦42′ E) of Guizhou Province, China were used to establish
a laboratory colony [21]. The independent colony was continuously reared for more than three
generations on bean pods, Phaseolus vulgaris L. (Fabales: Leguminosae) in plastic containers [21,23].
The containers were kept in a climate-controlled room at 26 ± 1 ◦C, 65 ± 5% RH and a 14:10 h
light:dark photoperiod.

G. jasminoides, G. jamesonii, P. lactiflora, and R. chinensis were grown in greenhouses in the nursery
of Guiyang University, Guizhou Province, China. The greenhouses were maintained pest free by
covering vent openings with insect-proof nettings. No pesticides were used in the whole plant growing
season. Flowers at anthesis with intact petals were collected for olfactory tests and analysis of volatiles.

2.2. Behavioural Responses of T. hawaiiensis to Flower Volatiles

The olfactory responses of T. hawaiiensis were tested in a Y-tube olfactometer using the method
described in Cao et al. [15,23]. Two types of two-way comparisons were made: (1) each plant flower
versus clean air (CA); and (2) all possible flowers pairing. The flow rate was 300 mL/min. All bioassays
were conducted between 8:00 a.m. and 6:00 p.m. in a room under 26 ± 1 ◦C, 65 ± 5% RH, and 1000 lux
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illumination conditions. For each comparison, 50 females that were 2–3 days old were tested. Thrips
were starved for 4 h before the bioassay and the flower material (15.0 g) was replaced after every
10 tested individuals.

2.3. Collection and Analysis of Volatile Organic Compounds (VOCs)

Flower volatiles were collected and analyzed as described in Cao et al. [16]. Flower material (0.3 g)
excised from a given host plant was kept in a glass bottle (200 mL) for 2 h prior to capturing
the volatiles emitted using a solid-phase microextraction fiber (a ~50/30 µm DVB/CAR/PDMS
StableFlex fiber). Volatiles were extracted for 40 min at 80 ◦C then the fiber head was quickly
removed. The collected volatiles were analyzed by gas chromatography mass spectrometry (GC–MS)
(HP6890/5975C, Agilent Technologies, CA, USA). The chromatographic column was a ZB-5MSI 5%
phenyl-95% dimethylpolysiloxane elastic quartz capillary vessel column (30 m × 0.25 mm × 0.25 µm).
The gas chromatograph was operated at an initial temperature of 40 ◦C for 2 min then increased at
5 ◦C/min to 255 ◦C, which was maintained for 2 min. To identify compounds, we compared the mass
spectra of compounds with those in databases (Nist 2005 and Wiley 275) and their constituents were
confirmed through coinjections with authentic standards.

2.4. Behavioural Responses of T. hawaiiensis to the Main G. jasminoides Volatile Organic Compounds (VOCs)

The VOC mixture from G. jasminoides was the most attractive to T. hawaiiensis as assessed by the Y-tube
olfactometer bioassays. Since linalool, (Z)-3-hexenyl tiglate and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-
tetraene were the most abundant compounds identified in the VOC profile of G. jasminoides, the
behavioral responses of T. hawaiiensis to these compounds were tested further in six-arm and Y-tube
olfactometer bioassays.

2.5. Odour Stimuli

Mineral oil (Sigma-Aldrich, Steinheim, Germany) solutions of linalool and (Z)-3-hexenyl tiglate
(Sigma-Aldrich, Germany; chemical purity 99%) (i.e., 10−5, 10−4, 10−3, 10−2 and 10−1 µL/µL)
and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (Sigma-Aldrich, Germany; chemical purity 99%)
(i.e., 0.1, 1, 10, 100 and 200 µg/µL) were prepared. Solutions were stored at−20 ◦C until the testing phase.

2.6. Six-arm Olfactometer Bioassays

The behavioral responses of adult T. hawaiiensis to different doses of linalool, (Z)-3-hexenyl
tiglate, and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene) were evaluated in a six-arm olfactometer
with the method described by Liu et al. [24]. and Cao et al. [25]. Briefly, the six-arm olfactometer
consisted of a central chamber with six arms, each connected to a glass tube that projected outwards at
an equidistance, with equal angles (60◦) between pairs of tubes. Each arm was connected through
Teflon tubing to a glass vessel containing a test or control stimulus. For each experiment, equal
volumes (25 µL) of each of the five solutions of one compound and mineral oil (used as the control),
absorbed onto a filter paper disk (1.0-cm diameter), were used as test and control stimuli, respectively.
The airflow was set at 200 mL/min to drive the odor source to thrips. Thrips hawaiiensis (2–3 days old
females) were starved for 4 h and introduced in groups (200 individuals per group) into the central
chamber with a fine camel hair brush. Within 20 min, insects that entered one arm of the olfactometer
were counted as having made a choice for a particular odor, while thrips that did not enter any arm
were considered non-responders. After each test, the olfactometer was cleaned, dried and the arms
were rotated (60◦). Each bioassay was replicated six times between 9:00 am and 6:00 pm. In order to
eliminate any light bias, a 25-W light was placed in the center 60 cm above the chamber.
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2.7. Y-Tube Bioassays

In the six-arm olfactometer bioassays, linalool, (Z)-3-hexenyl tiglate, and (E3,E7)-4,8,12-
trimethyltrideca-1,3,7,11-tetraene showed the highest attractiveness to T. hawaiiensis at the concentration
of 10−2 µL/µL, 10−3 µL/µL and 100 µg/µL, respectively. Therefore, the attractant power of the three
compounds at their optimal concentrations were compared in further Y-tube bioassays as described above.

2.8. Statistical Analyses

All statistical analyses were performed using SPSS 18.0 for Windows (SPSS Inc., Chicago, IL, USA) [26].
The null hypothesis that T. hawaiiensis adults showed no preference for either Y-tube arm (a response equal
to 50:50) was analyzed using a chi-square goodness-of-fit test [27]. The number of thrips found in the
different arms of the six-arm olfactometer were subjected to Friedman two-way ANOVA by ranks and in
the case of significance (p < 0.05) the Wilcoxon signed ranks test was used for separation of means [28].

3. Results

3.1. Behavioural Responses of T. hawaiiensis to Flower Volatiles

When T. hawaiiensis adults were presented with different flower volatiles versus clean air (CA), they
showed significant preferences for G. jasminoides (χ2 = 25.13, df = 1, p < 0.01), G. jamesonii (χ2 = 16.20,
df = 1, p < 0.01), P. lactiflora (χ2 = 5.82, df = 1, p = 0.016) and R. chinensis (χ2 = 5.00, df = 1, p = 0.025)
(Figure 1).
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Figure 1. Behavioral responses of T. hawaiiensis to the volatiles from different flowers. Asterisks
indicate highly significant (** p < 0.01) and significant (* p < 0.05) differences in the selectivity of
T. hawaiiensis between two odors by χ2 test. NS indicates no significant differences (p > 0.05) in the
selectivity of T. hawaiiensis between two odors.

Thrips hawaiiensis also showed significant preferences among the flowers when presented with
choices. Gardenia jasminoides was more attractive to T. hawaiiensis than G. jamesonii (χ2 = 4.79, df = 1,
p = 0.029), P. lactiflora (χ2 = 6.15, df = 1, p = 0.013) or R. chinensis (χ2 = 8.02, df = 1, p = 0.005). Gardenia
jasminoides was more attractive than P. lactiflora (χ2 = 4.26, df = 1, p = 0.039) or R. chinensis (χ2 = 5.23,
df = 1, p = 0.022). However, T. hawaiiensis showed no significant preference between P. lactiflora
and R. chinensis (χ2 = 2.69, df = 1, p = 0.10) (Figure 1).
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3.2. Analysis of G. jasminoides Volatiles

Twenty-nine components were identified in the volatiles from G. jasminoides (Table 1).
The component with the highest relative content was linalool (27.45%), followed by
(E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (24.67%), (Z)-3-hexenyl tiglate (14.38%), and then
jasmine lactone (6.93%). There was no other component greater than 5% identified from the flower
volatiles of G. jasminoides.

Table 1. Volatile components of G. jasminoides flower.

Number Compounds Molecular Formula Molecular Weight Content (%)

1 Methyl tiglate C6H10O2 114 0.39
2 (Z)-3-Hexen-1-ol C6H12O 100 3.59
3 β-Myrcene C10H16 136 0.15
4 (Z)-3-Hexenyl acetate C8H14O2 142 0.18
5 (E)-Ocimene C10H16 136 1.38
6 γ-Caprolactone C6H10O2 114 0.10
7 trans-Linalool oxide C10H18O2 170 0.32
8 Methyl benzoate C8H8O2 136 1.64
9 Linalool C10H18O 154 27.45
10 (Z)-3-hexenyl iso-butyrate C10H18O2 134 0.22
11 Benzyl acetate C9H10O2 150 0.25
12 (Z)-3-hexenyl butanoate C10H18O2 170 0.38
13 Methyl salicylate C8H8O3 152 0.20
14 (Z)-3-hexenyl 2-methylbutanoate C11H20O2 184 1.28
15 Hexyl 2-Methylbutyrate C11H22O2 186 0.61
16 Benzyl propionate C10H12O2 164 0.12
17 (Z)-3-hexenyl tiglate C11H18O2 182 14.38
18 Hexyl tiglate C11H20O2 184 4.01
19 (Z)-3-hexenyl hexanoate C12H22O2 198 0.11
20 Isoamyl benzoate C12H16O2 192 0.28
21 γ-Decanolactone C10H18O2 170 0.18
22 Jasmine lactone C10H16O2 168 6.93
23 Benzyl tiglate C12H14O2 190 0.23
24 α-Farnesene C15H24 204 3.58
25 Octyl (E)-2-methylbut-2-enoate C13H24O2 212 0.58
26 E-Nerolidol C15H26O 222 0.27
27 (Z)-3-Hexenyl phenylacetate C14H18O2 218 0.41
28 (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene C16H26 218 24.67
29 Geranyl tiglate C15H24O2 236 0.41

3.3. Behavioural Responses of T. hawaiiensis to the Main Components of G. jasminoides VOCs

3.3.1. Six-Arm Olfactometer Bioassays

In these experiments, the number of insects that entered the control arm connected to the vessel
with mineral oil were significantly lower than those of insects found in the arms with the different
doses of linalool (Friedman test: χ2 = 30.00, df = 5, p < 0.001, Wilcoxon tests: p = 0.026–0.028),
(Z)-3-hexenyl tiglate (Friedman test: χ2 = 29.88, df = 5, p < 0.001, Wilcoxon tests: p = 0.026–0.027),
or (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (Friedman test: χ2 = 29.88, df = 5, p < 0.001, Wilcoxon
tests: p = 0.026–0.028) (Figure 2).
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Figure 2. Olfactory responses of T. hawaiiensis to different doses of linalool, (Z)-3-hexenyl tiglate
and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in a six-arm olfactometer. Control was mineral oil.
Each box plot represents the median and its range of dispersion (lower and upper quartiles and outliers).
Above each box plot, different letters indicate significant differences (Wilcoxon test, p < 0.05).

There were relatively significant differences in attraction among all doses of linalool (Wilcoxon tests:
p = 0.026–0.028), (Z)-3-hexenyl tiglate (Wilcoxon tests: p = 0.026–0.038), and (E3,E7)-4,8,12-
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trimethyltrideca-1,3,7,11-tetraene (Friedman test: χ2 = 29.88, df = 5, p < 0.001, Wilcoxon tests: p = 0.026–0.043)
(Figure 3). Significantly more insects entered the arm connected to the vessel that contained 0.25 µL of
linalool or 0.025 µL of (Z)-3-hexenyl tiglate or 0.25 mg of (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene over
the arm with the other doses.
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3.3.2. Y-Tube Olfactometer Bioassays

In the six-arm olfactometer bioassays, 10−2 µL/µL for linalool, 10−3 µL/µL for (Z)-3-hexenyl tiglate
and 100µg/µL for (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, respectively, were the most attractive
concentrations to T. hawaiiensis. Thus, the behavioral responses of T. hawaiiensis to these compounds
at their optimal doses were further compared in a Y-tube olfactometer (Figure 3). Significantly higher
numbers of T. hawaiiensis were found to prefer (Z)-3-hexenyl tiglate (χ2 = 27.00, df = 1, p < 0.01),
linalool (χ2 = 25.13, df = 1, p < 0.01), and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (χ2 = 19.57,
df = 1, p < 0.01) as compared to clean air (Figure 3).

When these three compounds were compared with each other, T. hawaiiensis significantly
preferred (Z)-3-hexenyl tiglate to linalool (χ2 = 5.33, df = 1, p = 0.021), (Z)-3-hexenyl tiglate
to (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (χ2 = 5.57, df = 1, p = 0.018), and linalool to
(E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (χ2 = 4.46, df = 1, p = 0.035) (Figure 3).

4. Discussion

Volatile compounds emitted from plants are important cues in the host selection process of
phytophagous insects. In a natural plant community, different plant species emit different qualitative
and quantitative blends of VOCs, which guide insects to discriminate and locate their host plants [29,30].
For flower thrips pests, a great number of studies have documented that F. occidentalis exhibited
significantly positive responses to the volatiles of host plants [13–15,17,18], and displayed a significant
preference for specific host olfactory cues [16,23]. Therefore, based on the bioactive compounds
identified from the host plant volatiles, lures were developed and applied for the monitoring and control
of F. occidentalis [19,31–34]. In the present study, T. hawaiiensis were significantly attracted to the
volatiles from G. jasminoides, G. jamesonii, P. lactiflora, and R. chinensis, and showed olfactory preferences
with G. jasminoides > G. jamesonii > P. lactiflora ≥ R. chinensis. This is consistent with our previous field
observations during which large numbers of T. hawaiiensis were found in G. jasminoides flowers [21].
Furthermore, the nutritional composition of G. jasminoides flowers could adequately satisfy the
nutritional needs of T. hawaiiensis which could have a faster population development when fed on
these flowers [35].
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GC-MS analysis highlighted the presence of 29 compounds in the VOC profile of G. jasminoides flowers,
among which the most abundant compounds, linalool (27.45 %), (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-
tetraene (24.67 %), and (Z)-3-hexenyl tiglate (14.38 %), were considered to be related to the typical floral
odor of this plant species [36]. Different concentrations of linalool (10−5 ~ 10−1 µL/µL), (Z)-3-hexenyl
tiglate (10−5 ~ 10−1 µL/µL), and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (0.1 ~ 200 µg/µL) were all
attractive to T. hawaiiensis, but the 10−2 µL/µL, 10−3 µL/µL, and 100 µg/µL concentrations, respectively,
were the most attractive ones. Further, regarding these three compounds at their optimal attractive
concentration, T. hawaiiensis had different olfactory preferences with (Z)-3-hexenyl tiglate > linalool >

(E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene. Therefore, (Z)-3-hexenyl tiglate seems to have greater
potential for the development of a new attractant lure for T. hawaiiensis monitoring and control. The behavioral
responses of insects are influenced not only by individual compounds and concentrations but also by their
ratios in mixtures [37–39]. So, the possible additive or synergistic effects among (Z)-3-hexenyl tiglate and the
other attractive compounds identified in this study may require to be further evaluated through massive
behavioral bioassays testing different doses and combinations of these VOCs. Moreover, field-trapping tests
should be conducted to confirm their practically attractive effects [18,19,30,37].

Pollens were considered to be an important factor involved in the preference of thrips for host
plant flowers [40–42], as F. occidentalis was attracted to the compound of (S)-verbenone identified from
the volatiles of pine pollen [18,33]. However, pollens of G. jasminoides flowers were not involved in
T. hawaiiensis’ olfactory responses in this study. Besides, the host preference of different thrips species
were related to the color, shape, nutritional conditions or other physicochemical characteristics of
host plants [13,15,17,43–45]. Thus, more related physicochemical characteristics that may influence
the behavioral responses of T. hawaiiensis should be studied to comprehensively understand the
mechanism of host selection among different flower plants.

Host plant volatiles not only attract phytophagous pests but also their natural enemies [46–48]
Although predators seem to be more attracted by herbivore-induced volatiles, as reported on the
significant preferences of the predator Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae) to
the volatiles from vegetable hosts infested by F. occidentalis or Thrips tabaci Lindeman (Lindeman)
(Thysanoptera: Thripidae) [47,49], data that do not support such a specificity have been reported [50–53].
In this framework, it is imperative to study the attractiveness of VOCs from healthy and infested flowers
to natural enemies of T. hawaiiensis, e.g., Orius sauteri Poppius (Heteroptera: Anthocoridae) [54].

5. Conclusions

Females of T. hawaiiensis exhibited a higher olfactory preference for the VOCs of G. jasminoides flowers
over a range of four flower plants. Moreover, insects were significantly attracted by different concentrations
of the three main components of G. jasminoides flower VOCs with (Z)-3-hexenyl tiglate being the most
attractive. Overall, this study clearly demonstrated that plant volatiles are involved in host-plant selection
by T. hawaiiensis even if, to comprehensively understand this mechanism, possible interactions among
chemical cues and other physicochemical characteristics remain to be investigated. The kairomonal activity
of (Z)-3-hexenyl tiglate, linalool, and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene to T. hawaiiensis females
found in this study provides a basis for further electrophysiological, behavioral, and field-trapping experiments
to develop semiochemically-based monitoring tools and direct control options for this pest.
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