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BRCA1-regulated RRM2 expression protects
glioblastoma cells from endogenous replication
stress and promotes tumorigenicity
Rikke D. Rasmussen1, Madhavsai K. Gajjar1, Lucie Tuckova2, Kamilla E. Jensen1, Apolinar Maya-Mendoza3,

Camilla B. Holst4, Kjeld Møllgaard4, Jane S. Rasmussen5, Jannick Brennum5, Jiri Bartek Jr5,6, Martin Syrucek7,

Eva Sedlakova2, Klaus K. Andersen8, Marie H. Frederiksen8, Jiri Bartek3,9 & Petra Hamerlik1,10

Oncogene-evoked replication stress (RS) fuels genomic instability in diverse cancer types.

Here we report that BRCA1, traditionally regarded a tumour suppressor, plays an unexpected

tumour-promoting role in glioblastoma (GBM), safeguarding a protective response to

supraphysiological RS levels. Higher BRCA1 positivity is associated with shorter survival of

glioma patients and the abrogation of BRCA1 function in GBM enhances RS, DNA damage

(DD) accumulation and impairs tumour growth. Mechanistically, we identify a novel role of

BRCA1 as a transcriptional co-activator of RRM2 (catalytic subunit of ribonucleotide

reductase), whereby BRCA1-mediated RRM2 expression protects GBM cells from

endogenous RS, DD and apoptosis. Notably, we show that treatment with a RRM2 inhibitor

triapine reproduces the BRCA1-depletion GBM-repressive phenotypes and sensitizes GBM

cells to PARP inhibition. We propose that GBM cells are addicted to the RS-protective role of

the BRCA1-RRM2 axis, targeting of which may represent a novel paradigm for therapeutic

intervention in GBM.

DOI: 10.1038/ncomms13398 OPEN

1 Brain Tumor Biology, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen DK-2100, Denmark. 2 Department of Clinical and Molecular
Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic. 3 Genome
Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen DK-2100, Denmark. 4 Department of Cellular and Molecular
Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200-DK, Denmark. 5 Department of Neurosurgery,
Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark. 6 Department of Medicine, Unit of Microbial Pathogenesis, Karolinska
Institutet and Department of Neurosurgery, Karolinska University Hospital, Solna 171 76, Stockholm, Sweden. 7 Department of Pathology, Hospital Na Homolce,
Roentgenova 2, 150 30 Praha 5, Czech Republic. 8 Statistics, Bioinformatics and Registry Unit, Danish Cancer Society Research Center, Strandboulevarden 49,
Copenhagen DK-2100, Denmark. 9 Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Science for
Life Laboratory, Karolinska Institute, Scheeles vag 2, Stockholm 17177, Sweden. 10 Department of Radiation Biology, Copenhagen University Hospital,
Blegdamsvej 9, Copenhagen 2100-DK, Denmark. Correspondence and requests for materials should be addressed to P.H. (email: pkn@cancer.dk).

NATURE COMMUNICATIONS | 7:13398 | DOI: 10.1038/ncomms13398 | www.nature.com/naturecommunications 1

mailto:pkn@cancer.dk
http://www.nature.com/naturecommunications


F
aithful completion of chromosomal DNA replication is
essential for genome integrity. Replication stress (RS)
including stalling or collapse of replication forks can

be induced by activated oncogenes and numerous cancer
chemotherapeutics. Exposure to genotoxic insults results in
activation of checkpoint cascades that impose cell-cycle arrest
thereby preventing propagation of damaged DNA. During S
phase, the genome is replicated through a fundamental
process that requires spatio-temporal coordination of many
replication origins. The intra-S phase checkpoint responds to
replication-associated DNA damage and suppresses firing of
new origins, inhibits elongation and stabilizes ongoing replication
forks to avoid genome destabilization and carcinogenesis1.
BRCA1 is a tumour suppressor implicated in DNA repair,
transcription, chromatin remodelling and cell survival. In
mammalian cells, Fanconi anaemia and tumour suppressor
BRCA1/2 proteins protect the replication forks. These
proteins stabilize nucleoprotein filaments composed of RAD51
and nascent single stranded DNA (ssDNA) at stalled forks,
thereby preventing MRE11 nuclease-mediated DNA strand
degradation2,3. Human replication protein A (RPA) is a highly
conserved ssDNA-binding protein that plays critical roles in
DNA replication and repair4. RPA accumulates on ssDNA
at stalled and collapsed forks, thereby providing a signal for
activation of the intra-S checkpoint5. In S phase, RPA co-localizes
with Rad51, a protein thought to remove RPA during formation
of a nucleoprotein complex during homologous recombination
DNA repair (HR)6. RPA phosphorylation, increased foci
formation by RPA/Rad51 in S-phase cells, and the induction of
53BP1 ‘bodies’ in the following G1 phase represent hallmarks
of ongoing RS (refs 7–9). BRCA1 loss can result in collapse of
replication forks into DNA double strand breaks (DSBs)2,10,11

that can contribute to malignant transformation. DSBs trigger the
DNA damage response (DDR) network including checkpoints
that provide an intrinsic barrier to carcinogenesis12,13. BRCA1 is
expressed in many adult mostly proliferative tissues14, and its loss
can induce apoptosis15–18. BRCA1 gene resides on human
chromosome 17q21 (ref. 16), and germ-line BRCA1 mutations
account for large subsets of hereditary breast and ovarian cancer
cases16,17. Reflecting the concept of synthetic lethality BRCA1
and BRCA2-defective tumours are intrinsically sensitive to Poly
(ADP-ribose) polymerase (PARP) inhibitors18,19. PARP
inhibitors (PARPi) cause accumulation of single-strand DNA
breaks (SSBs), which are then converted into irreparable cytotoxic
DSBs in BRCA1/2-defective cells20. Interestingly, even some
tumours with intact BRCA1/2 may exhibit sensitivity to PARPi,
such as glioblastomas (GBM), where treatment with olaparib
(a PARP inhibitor) showed promising results in pre-clinical21,22

and phase I clinical studies (https://clinicaltrials.gov). Prognosis
of GBM (WHO grade IV glioma)23 patients; however, remains
dismal with median survival of only B15 months24. Several
studies including ours showed that malignant gliomas exhibit
constitutive activation of the DDR, a network whose various
facets have been implicated in early-stage protection against
tumour progression25,26, yet also tumour maintenance and
therapeutic resistance in later-stage cancers23. Given the
pronounced genomic instability and endogenous RS in gliomas,
we reasoned that these tumours may develop dependence on
BRCA1, a hypothesis tested in the present study. Indeed, here
we show that BRCA1 is a negative prognostic factor for
glioma patient survival. Furthermore, we identify BRCA1 as a
transcriptional regulator of RRM2, a gene encoding the catalytic
subunit of ribonucleotide reductase (RNR), which protects GBM
cells from endogenous RS and thereby promotes their survival
and tumorigenic potential. Importantly, triapine-mediated
inhibition of RRM2 or BRCA1 depletion impaired growth

of GBM cells and, moreover, sensitized GBMs to olaparib.
Therefore, triapine alone or in combination with olaparib may
represent a novel therapeutic intervention in malignant gliomas.

Results
BRCA1 is essential for GBM cell viability and tumour growth.
To explore the biological significance of BRCA1 in GBM cells
(for baseline BRCA1 expression levels in cell models used here,
see Supplementary Fig. 1e), we performed shRNA-mediated
knockdown of BRCA1 in three representative GBM xenograft
lines and measured their viability over a period of seven days.
BRCA1 knockdown impaired GBM cell viability, increased
apoptosis (Fig. 1a–c) and caused a notable accumulation in
S phase (Fig. 1d). To assess the cell-cycle checkpoint integrity we
used the mitotic inhibitor nocodazole to trap cells at their exit
from mitosis. GBM cells with BRCA1 knockdown were partially
arrested at G2 phase and exhibited only modest reduction
(compared with DMSO-treated controls) of G2/M checkpoint
delay after nocodazole treatment (Fig. 1e). BRCA1 knockdown
in normal human astrocytes (NHA-26 and NHA-DRB) also
decreased their viability and caused G1 arrest (Supplementary
Fig. 1a,c). To investigate whether the effect of BRCA1 knockdown
on cell viability is unique to GBM cancer cells, we have tested
additional four cancer cell lines. BRCA1 loss in Cal51 (breast
carcinoma) and OVCAR5 (ovarian carcinoma) cells did neither
impair their viability, nor affected cell cycle progression
(Supplementary Fig. 2a,b). Prostate cancer cell line PC3 and
cervical carcinoma cell line HELA encountered decreased
viability, but continued growing over a period of seven days
(Supplementary Fig. 2a). The cell cycle analysis of PC3 cells
lacking BRCA1 showed significant reduction on S-phase
accompanied by G2/M arrest (Supplementary Fig. 2b). In
non-malignant control cells (BJ; human foreskin fibroblasts),
BRCA1 knockdown reduced their viability and induced G2/M
arrest (Supplementary Fig. 1b,c).

To further demonstrate the impact of BRCA1 loss in
gliomagenesis, we orthotopically injected two representative
GBM xenograft lines; each transduced either with control shRNA
(shCTRL) or two non-overlapping shRNAs targeting BRCA1 into
immunocompromised mice. BRCA1 knockdown significantly
extended survival of the tumour-bearing mice (Fig. 1f), thereby
confirming the supporting role of BRCA1 in GBM growth and
maintenance.

BRCA1 protects GBM cells from RS-induced DSB formation.
To understand the cause of S-phase arrest after BRCA1
knockdown in GBM cells, indicative of enhanced RS levels, we
employed several methods to evaluate the extent of RS-induced
DNA damage and DDR activation. Microscopy analyses of
GBM01 and GBM02 cells confirmed increased p-RPA/Rad51 foci
in S phase and 53BP1 body counts in G1 after shRNA-mediated
BRCA1 knockdown (shBRCA1-2/-4) compared with control
(shCTRL) (Fig. 2a–c). DDR activation is thought to reflect DNA
RS (refs 12,13,27,28) and, consistently, BRCA1 knockdown in
GBM cells led to the activation of ATM/Chk2-Chk1/RPA
signalling (Fig. 2d). In addition, we performed flow cytometry
analysis (FACS) of cells double-stained for p-RPAþ / gH2AXþor
PCNAþ /gH2AXþ , to evaluate the frequency of S-phase
cells experiencing enhanced RS. Both, the fraction of
PCNAþ /gH2AXþ and p-RPAþ / gH2AXþ cells were increased
after BRCA1 knockdown compared with controls, indicative of
replication fork stalling and/or collapse into DSBs (Fig. 2e,f).
Microscopy-based analysis of gH2AX foci counts and comet
assay confirmed significant induction of DSBs in GBM cells
lacking BRCA1 (shBRCA1-2/-4) (Fig. 2g,h). Altogether, our data
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indicate that BRCA1 facilitates protection of GBM cells against
endogenous RS-induced DNA damage. Notably, the immunoblot
analysis of p-RPA in normal human controls (NHA-DRB, BJ)
and the four non-GBM cancer cell lines (OVCAR5, Cal51, PC3
and HELA) confirmed elevated p-RPA levels after BRCA1
knockdown (Supplementary Figs 1d and 2c).

BRCA1-regulated RRM2 protects GBM from replication stress.
Using DNA fibre assays, BRCA1 was shown to protect replication

fork stability and progression2,11. Here, BRCA1 knockdown
negatively impacted the total fork speed (Fig. 3a and Table 1).
To test the involvement of BRCA1 in the recovery of stalled
replication forks, we monitored the stability of nascent replication
tracts29 post exposure to exogenous RS (2 mM hydroxyurea (HU)
for 4 h). Specifically, nascent replication tracts were CldU-labelled
after replication stalling with HU. HU treatment resulted in
markedly shorter CldU tract length in cells with BRCA1
knockdown compared with control (Fig. 3b, Table 2 and
Supplementary Table 1). These data confirmed the importance
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Figure 1 | BRCA1 is essential for GBM cell maintenance. (a) Viability curves for GBM01, GBM02 and GBM03 cells transduced with shCTRL virus or two

independent BRCA1-targeting shRNAs (shBRCA1-2 and shBRCA1-4) (7 days). (b) Quantification of apoptotic cells (% of Annexin V-positive) for GBM01,

GBM02 and GBM03 cells transduced with shCTRL virus or two independent BRCA1-targeting shRNAs (shBRCA1-2 and shBRCA1-4). (c) Immunoblot analysis

of BRCA1, caspase 3 and cleaved caspase-3 in GBM01 and GBM02 cells transduced with shCTRL virus or two independent BRCA1-targeting shRNAs

(shBRCA1-2 and shBRCA1-4). Tubulin was used as a loading control. (d) FACS analysis of cell cycle profile and the proliferative index (% of Edu-positive cells)

in GBM01 cells transduced with shCTRL virus or two independent BRCA1-targeting shRNAs (shBRCA1-2 and shBRCA1-4). (e) FACS analysis of cell cycle

profile and the mitotic index (% of H3Ser10-positive cells) in DMSO or nocodazole treated GBM01 cells transduced with shCTRL virus or two independent

BRCA1-targeting shRNAs (shBRCA1-2 and shBRCA1-4). (f) Kaplan-Meier survival curve for NMRI nude mice intracranially injected with GBM01 or GBM03

cells transduced with shCTRL virus or two independent BRCA1-targeting shRNAs (shBRCA1-2 and shBRCA1-4 or shBRCA1-5). Statistical significance was

calculated by one-way ANOVA, Tukey’s multiple comparisons test (in vitro study) and Log-rank/Mantel-Cox test (in vivo study). All data are shown as

means±s.d. and performed as technical triplicates. (*Po0.05, **Po0.005, ***Po0.005, ****Po0.0001; NS represents non-significance).
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of BRCA1 in regulating the replication fork speed and fork
recovery after stalling in GBM cells. The HU-induced CldU tract
shortening observed even in the shCTRL-exposed cells indicated
that GBM cells are sensitive to dNTP depletion already in the
presence of BRCA1 (Table 2 and Supplementary Table 1), and
this phenotype was further enhanced on BRCA1 knockdown. HU
depletes cellular deoxyribonucleotide triphosphate (dNTP) levels
via inhibition of ribonucleotide reductase (RNR), an enzyme
which plays a key role in regulating DNA replication, and
consequently, cell proliferation30. RNR is responsible for dNTPs
biogenesis and consists of two large catalytic subunits (RRM1)
and two small regulatory subunits (RRM2). Of importance,
RRM2 is the regulatory subunit controlling dNTP synthesis
during S phase of the cell cycle and is rate-limiting for
RNR activity31. Thus, we sought to determine whether RRM2
expression is regulated by BRCA1. Notably, both the
messengerRNA (mRNA) and protein levels of RRM2 were
decreased in GBM cells lacking BRCA1 (Fig. 3c–e), indicating

that BRCA1 may function as a transcriptional regulator of RRM2
expression. To exclude the possibility that this decrease in
RRM2 levels is just a consequence of cell cycle arrest invoked by
BRCA1 knockdown, we have performed additional analysis of
RRM2 protein levels in individual cell cycle phases using
flow cytometry analysis. As shown in Fig. 3f, RRM2 levels were
increasing as the GBM01-shCTRL cells progressed from
G1 through S phase and peaked at G2/M phase. In GBM01
cells with BRCA1 knockdown (shBRCA1-2 & shBRCA1-4), the
RRM2 protein levels significantly decreased in all cell cycle
phases, while this decrease was more prominent in S-G2/M
phases than in G1 phase.

To test our hypothesis that BRCA1 acts as a transcriptional
co-activator of RRM2, we performed chromatin immuno-
precipitation (ChIP) using BRCA1 antibody. Using two
independent primer sets (P1 & P2, see Fig. 3g), we confirmed
BRCA1 recruitment to RRM2 promoter region in GBM01,
GBM02, as well as GBM03 cells (Fig. 3h), thereby identifying a
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(h) Comet assay and tail moment quantification of DSBs in GBM cells transduced with shCTRL or two independent BRCA1-targeting shRNAs (shBRCA1-2 and

shBRCA1-4). Statistical significance was calculated by one-way ANOVA and Tukey’s multiple comparisons test in a–c,e–h and all data are shown as

means ±s.d. and performed as technical triplicates. (*Po0.05, **Po0.005, ***Po0.005, ****Po0.0001; NS represents non-significance).
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novel role of BRCA1 as an upstream regulator of RRM2. Using
the same approach, we have confirmed BRCA1 binding to
RRM2 promoter in NHA-DRB and BJ cells (Fig. 3i), but not in
non-GBM cancer cell lines PC3, HELA; OVCAR5 or Cal51
(Fig. 3j). Intriguingly, BRCA1 knockdown did not result in RRM2
protein level changes in either NHA-DRB or BJ cells
(Supplementary Fig. 1d).

In addition to ChIP, we have employed luciferase reporter
assay to measure transcriptional activation of RRM2 promoter in
GBM01 cells. In comparison to shCTRL, BRCA1 knockdown
(shBRCA1-2/shBRCA1-4) significantly reduced transcriptional

activity of RRM2 promoter in GBM01 cells (Fig. 4a). A role for
BRCA1 as transcription factor is well established, but given
BRCA1’s lack of sequence-specific DNA binding, BRCA1 is likely
to be recruited to target gene promoters by sequence-specific
DNA binding transcription factors32. Therefore, we sought to
investigate whether BRCA1 binds RRM2 promoter in a direct or
indirect manner. Three putative consensus transcriptional
response elements: AP-1, Sp1 and E2F1 were identified in
the BRCA1-bound RRM2 promoter region33 (Fig. 3g). siRNA-
mediated knockdown of AP-1 and Sp1 did not significantly
impair transcriptional activation of RRM2 promoter, whereas the
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Figure 3 | BRCA1 loss impedes replication fork progression by down-regulating RRM2 in GBM cells. (a) DNA fibre assay measuring the replication fork

progression speed in GBM cells (GBM01 and GBM02) transduced with shCTRL or two independent BRCA1-targeting shRNAs (shBRCA1-2 and

shBRCA1-4). See also Table 1. (b) Replication fork recovery assay showing the quantification of CldU tract length in GBM01 cells transduced with shCTRL or

2 non-overlapping BRCA1-targeting shRNAs (shBRCA1-2 and shBRCA1-4) and treated or not with 2 mM HU (4 h) prior CldU labelling. See also Table 2;

Supplementary Table 1. (c) Immunoblot analysis of RRM2 protein levels in GBM cells transduced with shCTRL or two independent BRCA1-targeting shRNAs

(shBRCA1-2 and shBRCA1-4). (d,e) RT-qPCR analysis of BRCA1 and RRM2 mRNA levels in GBM cells transduced with shCTRL or two independent

BRCA1-targeting shRNAs (shBRCA1-2 and shBRCA1-4). (f) FACS analysis of RRM2 protein level changes throughout cell cycle in GBM cells (GBM01)

transduced with shCTRL or two independent BRCA1-targeting shRNAs (shBRCA1-2 and shBRCA1-4). (g) Partial sequence of the human RRM2 promoter

(GenBank accession number AY032750)33, which was used to design Chip primers: P1 primer forward (F)/reverse (R) and P2 primer forward (F)/reverse

(R). Positions are numbered from the downstream transcription initiation site (þ 1). Putative binding sites for transcription factors are color-coded and

identified above the sequence. (h) Chip immunoprecipitation of BRCA1 binding RRM2 promoter in GBM01-03 cells using primer set P1 and P2. (i) Chip

immunoprecipitation of BRCA1 binding RRM2 promoter in NHA-DRB and BJ cells using primer set P1 and P2. (j) Chip immunoprecipitation of BRCA1

binding RRM2 promoter in PC3, HELA, OVCAR and Cal51 cells using primer set P1 and P2. Statistical significance was calculated by one-way ANOVA and

Tukey’s multiple comparisons test in d–f,h–j or Student’s t test (a,b) and all data are shown as means±s.d. and performed as technical triplicates.

(*Po0.05, **Po0.005, ***Po0.005, ****Po0.0001; NS represents non-significance).
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knockdown of E2F1 reduced RRM2 promoter activation to the
same extent as BRCA1. Interestingly, simultaneous knockdown
of BRCA1 and E2F1 had no additional impact on RRM2
transcription when compared with either alone (Fig. 4b,c).
Consistent with previously published reports29,30,34, ChIP
analysis confirmed the binding of E2F1 to RRM2 promoter
(Fig. 4d) and its knockdown significantly reduced BRCA1
recruitment to promoter regions amplified by both primer sets
(P1 and P2), thereby indicating that BRCA1 binding and
transcriptional activation of RRM2 occurs in E2F1-dependent
manner (Fig. 4e).

Because BRCA1 has been shown to act directly on replication
forks and protect cells from RS-induced DNA damage in other
cell types, we next wished to evaluate the extent of RRM2’s
contribution to observed RS induction in GBM cells on BRCA1
loss. We found that ectopic expression of RRM2 at least in
part rescued the BRCA1 knockdown-associated phenotypes of
decreased fork progression speed associated with increased
phosphorylation of RPA (assessed by immunoblot analysis), as
well as the viability of GBM cells (Fig. 4f–h & Table 3).

Triapine treatment mimics BRCA1 loss phenotype in GBM.
The emerging pro-survival role of BRCA1-RRM2 in protecting
GBM cells from RS inspired us to search for compounds to target
the BRCA1-RRM2 axis and cross the blood-brain barrier
(BBB). We came across an RRM2-specific inhibitor triapine
(3-aminopyridine-2-carboxaldehydethiosemicarbazone), a drug
reportedly effective in two clinical studies on cervical cancer35

and currently assessed in several phase I and II trials in other
cancer types (https://clinicaltrials.gov/ct2/results?term=triapine).
Triapine exhibits neuroprotective effects in a rat model of
transient ischaemia36. We found that the EC50 values for triapine
in 3 representative GBM xenografts were in the nanomolar range
(GBM01: 518.6 nM; GBM02: 581.2 nM; GBM03: 307.2 nM)
(Fig. 4i). Exposure of GBM cells to triapine (EC50) in vitro
caused: (i) decreased replication fork speed (Fig. 4j; Table 4), (ii)
elevated p-RPA and Rad51 foci mean intensity in S-phase cells,
(iii) increased counts of 53BP1 bodies in G1 cells and (iv)
DSBs accumulation (gH2AX quantification and comet assay)
(Fig. 5a–c). A single-dose exposure of GBM cells to triapine
impaired viability over a period of 5 days and induced apoptosis
(Fig. 5d,e). Supportive of likely favourable therapeutic index,
astrocytes (NHA-26) were more resistant to triapine compared
with GBM lines, with EC50 of 2.5 mM and no effect on
astrocyte viability when treated with EC50-GBM02 or 10 mM
triapine (Fig. 5f,g). To further explore the therapeutic potential
of triapine, we assessed the effect of direct triapine (10 mM)
co-injection with GBM cells on tumour growth in vivo. Triapine
extended survival of the tumour bearing mice (median survival of

25 days in DMSO control group versus 58.5 days in triapine
group; P¼ 0.0114, Log-rank (Mantel-Cox) test; Fig. 5h). Triapine
is an iron chelator that inhibits the enzymatic activity and the
tyrosil radical of the RRM2/p53R2 subunit of RNR. Furthermore,
iron chelators can promote release of localized and cytotoxic
reactive oxygen species (ROS)37. Indeed, we found that
triapine treatment enhanced ROS and oxidative DNA lesions
(8-oxo-guanine) in all 3 GBM xenograft lines (Supplementary
Fig. 4a,b). Triapine not only induced p-RPA, but also
increased the PARylation levels, a marker of activated PARP
(Supplementary Fig. 4c). We explored the possibility that
triapine-induced ROS/8-oxo-guanine sensitizes GBM cell to
olaparib. The combined administration of triapine (EC50-Tria)
and olaparib (EC50-Ola and EC25-Ola) was more efficient at
reducing GBM cell viability than either drug alone, a
combinational effect not observed in NHA-26 or BJ cells used
as non-malignant controls (Supplementary Fig. 4d,e).
Interestingly, a lower olaparib dose (half dose of EC50-olaparib;
EC25-ola) was equally (GBM03) or more efficient (GBM01 and
GBM02) at eradicating GBM cells than full EC50 when combined
with triapine. This was concordant with our previous work
showing that induction of ROS and oxidative DNA lesions
renders GBM cells dependent on functional PARP (ref. 38).

Expression of BRCA1 and RRM2 in malignant gliomas. To
explore the therapeutic potential of targeting the BRCA1-RRM2
signalling axis in malignant gliomas, we performed
immunohistochemistry (IHC) analysis BRCA1 and RRM2 in 145
gliomas (Supplementary Table 2) and 10 non-neoplastic adult
brain controls (NB). The mean BRCA1 positivity was increased in
WHO grade II gliomas (mean¼ 5.92%) compared with NB
(P¼ 0.5344, n.s., One-way ANOVA and Tukey’s multiple
comparisons test; Fig. 6a,b). Whereas there was no significant
difference in the percentage of BRCA1þ cells in WHO grade III
versus IV gliomas (mean positivity 39.85 and 41.6% of BRCAþ

cells, respectively), both grade III and IV tumours (high-grade
gliomas, HGG) exhibited higher percentage of BRCA1þ cells
compared with either NB or WHO grade II gliomas (Po0.0001,
One-way ANOVA and Tukey’s multiple comparisons test;
low-grade gliomas, LGG; Fig. 6b). While BRCA1 was undetect-
able in adult NB (Fig. 6a,b), the cortical plate and its extension
into the ammonic plate in the hippocampal anlage were BRCA1
positive in human fetal forebrain (12th week post conception).
Parallel IHC staining for Ki67 (proliferative marker) showed
that BRCA1 is maximally expressed in non-proliferative
(Ki67-negative) regions of the developing human brain
(Supplementary Fig. 5a). Similarly, BRCA1 expression was not
restricted to proliferating GBM cells ex vivo and in vitro
(Supplementary Fig. 5b). RRM2 positivity was significantly higher
in WHO grade IV gliomas (mean¼ 9.3%) than in WHO grade III
(mean¼ 4.15%; P¼ 0.0134, One-way ANOVA and Tukey’s
multiple comparisons test) and grade II (mean¼ 1.1%;
Po0.0001, One-way ANOVA and Tukey’s multiple comparisons
test), whereas there was no significant difference in mean

Table 1 | Statistics and comparison of data in Fig. 3a.

Mean fork speed (kb per min) s.d. s.e.m. n

GBM01
shCTRL 0.6541 0.2159 0.0093 538
shBRCA1-2 0.4195 0.1613 0.0070 527
shBRCA1-4 0.4991 0.2027 0.009 501

GBM02
shCTRL 0.5733 0.1831 0.0078 546
shBRCA1-2 0.3536 0.1097 0.0045 589
shBRCA1-4 0.3839 0.1398 0.0058 589

Statistical significance was calculated by Student’s t test: GBM01 cells: shCTRL versus
shBRCA1-2 (****Po0.0001); shCTRL versus shBRCA1-4 (****Po0.0001). GBM02 cells:
shCTRL versus shBRCA1-2 (****Po0.0001); shCTRL versus shBRCA1-4 (****Po0.0001).

Table 2 | Statistics and comparison of data in Fig. 3b.

GBM01 shCTRL shBRCA1-2 shBRCA1-4

Mean 0.5604 0.5193 0.4834
s.d. 0.0157 0.0348 0.0274
s.e.m. 0.0007 0.0016 0.0012

Statistical significance was calculated by Student’s t test: Fold comparison (2 mM HU/H2O) for
shCTRL versus shBRCA1-2 (****Po0.0001) and fold comparison for shCTRL versus shBRCA1-4
(****Po0.0001).
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positivity between WHO grade II and III tumours (Fig. 6e). Next,
we validated these findings by ‘in silico’ analysis of the
publically available REMBRANDT glioma dataset (GlioVis web
application). Both, BRCA1 and RRM2 mRNA levels were
significantly higher in HGG (WHO grade IIIþ IV) compared
with LGG (WHO grade II), whereas the RRM2 expression was
also significantly higher in WHO grade IV tumours compared
with WHO grade III (Supplementary Fig. 5c), thereby supporting
our findings above.

Prognostic value of BRCA1 and RRM2 in malignant gliomas.
To further correlate the fraction of immunohistochemically
BRCA1þ and RRM2þ cells and overall survival, we analysed
their prognostic significance using the Cox regression method.

As shown in Fig. 6c, BRCA1 high patients (414.5%, median
survival¼ 230 days, were 14.5% represents median BRCA1
positivity in our cohort) had significantly shorter overall survival
than BRCA1 low patients (o14.5%, median survival not yet
available as over 50% of patients were alive at the end of this
study) or patients negative for BRCA1 (BRCA1 negat.; median
survival also unavailable as over 50% of patients were alive,
Log-rank P¼ 0.00). The median RRM2 positivity (% of RRM2þ

cells) in our cohort was 1% and Cox regression analysis showed
that glioma patients negative for RRM2 (RRM2 negat., median
survival not reached) had longer survival times than RRM2
positive patients (RRM2 positive; median survival¼ 222 days,
Log-rank P¼ 0.00; Fig. 6f). The univariate Cox regression analysis
revealed BRCA1 and RRM2 are negative prognostic factors
informing worsen patient survival (HR¼ 7.72, P¼ 0.00, 95% CI
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Figure 4 | BRCA1 regulates RRM2 expression via E2F1 and RRM2 overexpression rescues BRCA1-loss phenotype in GBM cells. (a) Luciferase assay of

transcriptional activation of the RRM2 promoter in GBM01 transduced with shCTRL or shBRCA1-2/shBRCA1-4. (b) Luciferase assay of transcriptional

activation of the RRM2 promoter in GBM01 after siRNA-mediated knockdown of Sp1; AP-1 and E2F1 in comparison to BRCA1. (c) Luciferase assay of

transcriptional activation of the RRM2 promoter in GBM01 after siRNA-mediated knockdown of BRCA1 and E2F1 alone or on combination. (d) Chip

immunoprecipitation of E2F1 binding RRM2 promoter in GBM01 cells using primer set P1 and P2. (e) Chip immunoprecipitation of BRCA1 binding RRM2

promoter in GBM01 cells transfected with siCTRL and siE2F1 using primer set P1 and P2. (f) DNA fibre assay measuring the replication fork progression

speed in GBM cells lacking BRCA1 (shBRCA1-2 and shBRCA1-4) or not (shCTRL) transfected with either control vector (pcDNA) or vector expressing

RRM2 (pcDNA-RRM2). See also Table 3. (g) Cell viability of GBM cells lacking BRCA1 (shBRCA1-2 and shBRCA1-4) or not (shCTRL) transfected with

either control vector (pcDNA) or vector expressing RRM2 (pcDNA-RRM2). (h) Immunoblot analysis of BRCA1, p-RPA, RPA and RRM2 in GBM cells lacking

BRCA1 (shBRCA1-2 and shBRCA1-4) or not (shCTRL) transfected with either control vector (pcDNA) or vector expressing RRM2 (pcDNA-RRM2).

(i) Viability-based assessment of EC50 triapine concentrations in GBM01, GBM02 and GBM03 cells. (j) DNA fibre assay measuring the replication fork

progression speed in GBM cells treated with DMSO or EC50 triapine. See also Table 4. Statistical significance was calculated by one-way ANOVA and

Tukey’s multiple comparisons test in a–d,f,h or Student’s t test (e,i) and all data are shown as means ±s.d. and performed as technical triplicates.

(*Po0.05, **Po0.005, ***Po0.005, ****Po0.0001; NS represents non-significance).
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2.98–19.97 for BRCA1 high; HR¼ 3.14, 0¼ 0.00, 95%
CI 1.82–5.42 for RRM2; Supplementary Table 3). According to
multivariate analysis (Supplementary Table 3) both, BRCA1 and
RRM2 positivity, correlate with WHO malignancy degree and
patient age, but are independent of proliferative index (% of
Ki67þ cells). Cox regression analysis of WHO grade IV (GBM)
patients divided into BRCA1 low (o14.5%) and BRCA1 high
(414.5%) or RRM2 negative and positive groups showed a trend
toward worse survival of BRCA1 high and RRM2 positive
patients (251 days for BRCA1 low versus 159 days for BRCA1
high and 320 days for RRM2 negat. versus 148 for RRM2 posit.;
Fig. 6d,g, respectively).

Next, we sought to determine whether there is a correlation
between BRCA1 and RRM2 expression in our clinical glioma
cohort. Spearman correlation analysis (SCA) for association
revealed a positive correlation between the percentage of
BRCA1þ and RRM2þ cells in our glioma cohort (correlation
coefficient¼ 0.24; P¼ 0.0039; Fig. 6h). Furthermore, we validated
these findings by ‘in silico’ analysis of the publically available
REMBRANDT glioma dataset (GlioVis web application), which
confirmed the positive correlation between BRCA1 and RRM2
mRNA expression (SCA; P¼ 0.00; CI 0.44–0.57; Fig. 6i). No
correlation between BRCA1 and RRM2 was found in normal
brain controls (SCA; P¼ 0.8; CI � 0.57–0.68).

The validation study using the REMBRANDT glioma dataset
(ALL gliomas and GBM) confirmed the prognostic significance of
BRCA1 and RRM2 mRNA expression in malignant gliomas.
BRCA1 high patients showed significantly shortened survival
compared with BRCA1 low patients when either ALL gliomas or
just GBM patients were analysed (Supplementary Fig. 5d,e).
Similarly, high RRM2 expression (RRM2 high) analysis was
associated with worsen survival of glioma, in general, and GBM
patients, in particular (Supplementary Fig. 5f,g). The correlation
between BRCA1 or RRM2 positivity and GBM patient survival
was surprising as our results from multi-variate analysis showed
strong association of both factors with WHO grade. Hence, we
sought to investigate whether this was attributable to differences
in BRCA1 and RRM2 positivity in GBM molecular subtypes39.
This was indeed the case, as shown in Supplementary Fig. 6a,
both BRCA1 and RRM2 mRNA expression was markedly higher
in classical GBMs (compared with mesenchymal and proneural
subtype), which was reflected in the worsen survival of BRCA1
high and RRM2 high patients with classical GBM tumours
(Supplementary Fig. 6b,c).

Altogether, our data show that BRCA1 loss causes impeded
replication fork speed aggravating the endogenous RS and
accumulation of DSBs in GBM cells. Transition through the
cell cycle with enhanced amounts of aberrant replication
intermediates and/or DSBs (if left unrepaired) may result in
aberrant mitoses and cell death. Our data show that the

abrogation of BRCA1 function impairs tumorigenicity of GBM
cells, implying a novel stress-support, pro-tumorigenic role for
BRCA1. Importantly, our present results provide the first
evidence of BRCA1 and its down-stream effector RRM2 as
negative prognostic factors for glioma patient survival. Last but
not least, our experiments with triapine suggest a potential new
therapeutic avenue for highly aggressive GBM.

Discussion
Error-free and timely regulation of cell cycle progression is crucial
for genome integrity maintenance. Cells are particularly sensitive
during S phase when DNA damage causes replication fork stalling
or collapse, collectively referred to as replication stress, one of the
emerging hallmarks of cancer40. If not restarted in a timely
manner, stalled forks collapse into DSBs, potentially yielding
deleterious chromosomal rearrangements4. To cope with such
problems, cells evolved a complex monitoring system called
S-phase checkpoint, which becomes activated in response to
stalled forks and DNA damage in order to trigger appropriate
cellular responses. The tumour suppressor BRCA1 plays a critical
role in maintaining genomic stability in general, and RS in
particular8,41. Preclinical and retrospective clinical data suggest
that BRCA1 mutation may provide a novel predictive marker of
response to chemotherapy42. Our present findings provide the
first clear evidence that BRCA1 positivity increases with
increasing degree of malignancy in human gliomas and
serves as a negative prognostic factor for patient survival
(Fig. 6, Supplementary Fig. 5).

Numerous reports have demonstrated that the wild type
BRCA1 loss impairs the growth of several cancers (breast,
ovarian, lung, prostate and colon)14,16,43–47. In addition, the work
by Holt et al. has shown that over-expression of BRCA1 causes
growth retardation in breast and ovarian cell lines48. In our
studies, BRCA1 loss resulted in massive RS-induced DNA
damage associated with apoptosis and impaired GBM growth.
Our data indicate, that this phenotype is at least in part
attributable to down-regulation of RRM2 upon BRCA1
knockdown (Figs 1–3). Even though the reduction in RRM2
levels was moderate, we believe it was sufficient to induce RS as
evidenced by a number of assays. This is consistent with previous
reports showing that even a moderate increase RRM2 activity and
so dNTP pools protects cells from RS by promoting replication
fork progression49,50. To rule out that the drop in RRM2 levels
was not simply a cell cycle effect, because BRCA1 knockdown
arrested cells in S-phase in which RRM2 levels are known to be
the highest51, we have performed cell cycle analysis with
nocodazole arrest (Fig. 1e). Despite marked accumulation of
cells in S phase, these were still progressing from S to G2/M
phase. In addition, the analysis of RRM2 expression in individual
cell cycle (G1-S-G2/M) phases confirmed that after BRCA1

Table 4 | Statistics and comparison of data in Fig. 4j.

Mean fork speed
(kb per min)

s.d. s.e.m. n

GBM01
DMSO 0.4764 0.1722 0.0077 500
triapine 0.3595 0.1507 0.0067 500

GBM02
DMSO 0.5256 0.1939 0.0087 500
triapine 0.3385 0.0909 0.0041 500

Statistical significance was calculated by Student’s t test: GBM01 cells: DMSO versus triapine
(****Po0.0001); GBM02 cells: DMSO versus triapine (****Po0.0001).

Table 3 | Statistics and comparison of data in Fig. 4f.

GBM01 Mean fork speed
(kb per min)

s.d. s.e.m. n

pcDNA/shCTRL 0.6914 0.309 0.0138 500
pcDNA/shBRCA1-2 0.4033 0.1829 0.0081 500
pcDNA/shBRCA1-4 0.504 0.2305 0.0131 500
pcDNA-RRM2/shCTRL 0.5268 0.2186 0.0098 500
pcDNA-RRM2/shBRCA1-2 0.7508 0.2781 0.0124 500
pcDNA-RRM2/shBRCA1-4 0.975 0.3334 0.0149 500

Statistical significance was calculated by Student’s t test: pcDNA/shBRCA1-2 versus pcDNA-
RRM2/shBRCA1-2 (****Po0.0001); pcDNA/shBRCA1-4 versus pcDNA-RRM2/shBRCA1-4
(****Po0.0001).
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knockdown, RRM2 levels decreased in all cell cycle phases
(Fig. 3f). To evaluate whether this phenotype is unique to GBM or
applies to other cell types, we performed BRCA1 knockdown in 4
additional cancer and 3 non-malignant cell lines. Our
experiments showed no major impact on growth characteristics
of human ovarian (OVCAR5) and breast cancer (Cal51) cell lines
upon BRCA1 knockdown. Prostate (PC3) and cervical carcinoma
(HELA) cell lines experienced lowered viability and cell cycle
arrest at G2/M after BRCA1 knockdown, but continued growing
(Supplementary Fig. 2a). Since the inhibition of endogenous
BRCA1 expression in mouse fibroblasts led to their malignant
transformation and increased apoptotic rates in neural progenitor
cells47,52, we also evaluated the effect of BRCA1 knockdown in
foreskin human fibroblasts (BJ) and normal human astrocytes
(NHA). Both cell types responded by decreased viability and cell
cycle arrest (Supplementary Fig. 1a,c). Importantly, none of these
cells (non-malignant or non-GBM cancers) exhibited either
reduced RRM2 protein levels or S-phase arrest, thereby indicating
a unique mechanism used by GBM cells for protection to supra-

physiological levels of RS. Interestingly, we have observed
markedly increased baseline levels of RPA phosphorylation and
oxidative DNA lesions (8-oxo-guanine) in GBM cells in
comparison to above evaluated non-GBM cancer and non-
malignant cell lines (Supplementary Fig. 4f), which allow us to
speculate that our results reflect differential starting levels of
endogenous RS and hence selective raise of RS to intolerably high
levels in only the GBM models, or some more fundamental
differences between RS responses in GBM versus epithelial
cancers, a task which remains to be investigated in future studies.

Recent evidence identified a link between BRCA1 and DNA
repair through transcriptional regulation of the DDR (ref. 32).
BRCA1 stabilizes p53, thereby directing a selective transcriptional
response towards cell-cycle arrest and DNA repair53.
Our biochemical data revealed a novel BRCA1 transcriptional
target—RRM2. Further investigations suggested that the
BRCA1-regulated RRM2 expression in GBM cells was
dependent on E2F1, a transcriptional factor previously reported
as transcriptional activator of RRM2 (refs 30,33) (Fig. 4c,e).
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A number of transcription factors has been shown to
trans-activate the RRM2 gene, including E2F1, Sp1, AP-2,
CTF-1/NF1- and NF-Y/CAATA, some of which have been
shown to directly interact with BRCA1 at regulatory DNA
sequences. Thus, the regulatory interplay of BRCA1 and E2F1 in
the control of RRM2 transcription uncovered in our present
study, will be followed by further experiments to understand the
specific mechanism and how BRCA1 interacts with E2F1 and
possibly additional proteins at the RRM2 gene promoter.

Even though we confirmed BRCA1 binding to RRM2 promoter
in NHA and BJ cells, BRCA1 loss was not associated with
reduction in RRM2 protein levels in these cells (Supplementary
Fig. 1d), thereby indicating that this regulatory mechanism is
unique to GBM cells.

Ectopic expression of RRM2 rescued the BRCA1-depletion
phenotype (RS/viability), thereby underscoring the importance of

this newly identified BRCA1 function. Additionally, RRM2
expression positively correlated with that of BRCA1 and both
the percentage of BRCA1þ and RRM2þ cells correlated
negatively with glioma patient survival (Fig. 6c,e,f,h;
Supplementary Fig. 5c,e), thus making RRM2 an attractive
candidate for therapeutic targeting in GBM. Supraphysiological
levels of RRM2 can lead to genomic instability and tumorigenesis
due to imbalanced dNTP pools, underlining its ‘proto-oncogenic’
role54,55. Here, chemical inhibition of RRM2 with triapine
undermined viability and tumour initiating capacity of GBM
cells due to increased replication and oxidative stress.
Importantly, NHA-26 cells were resistant to doses of triapine
used to target GBM cells and EC50-NHA26 was significantly higher,
consistent with reports suggesting the use of triapine as a
neuroprotectant36. The cellular consequences of replication and
oxidative stress depend on the extent of DNA damage and the
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capacity to activate DDR and repair the damage. Our previous
work and that of others showed that malignant gliomas display
aberrant activation of the DDR, due to ongoing RS and the
presence of oxidative DNA lesions22,26,56. In the present study,
we show that BRCA1 provides GBM cells with an additional fork
protection mechanism, distinct from the pathways reported so
far. BRCA1 loss in GBM cells resulted in reduced replication fork
speed and impaired recovery of HU-induced fork stalling
(Fig. 3a,b). To prevent DSBs during replication, stalled forks
need to restart before collapsing. Impaired fork recovery after
BRCA1 knockdown and S-phase arrest coincided with DDR
signalling and increased frequency of p-RPAþ /gH2AXþ

GBM cells altogether indicating the conversion of stalled forks
into DSBs. In response to replication inhibitors such as HU,
PARP-1 reportedly interacts with MRE11 and promotes MRE11
foci formation, ssDNA generation and replication fork restart3,57.
We now show that impairment of replication fork restart may
potentiate effects of olaparib on triapine treated GBM cells
(Supplementary Fig. 4), a phenomenon to be explored in future
studies.

Given that neither BRCA1 nor RRM2 is expressed in normal
adult brain, their function as a ‘RS’-support pathway provides a
promising rationale for clinical application of triapine, possibly
combined with PARP inhibitors or standard-of-care genotoxic
treatments. We believe that apart from the discovery of the
BRCA1-RRM2 interplay as a novel example of non-oncogene
addiction58 in GBM, our results also offer testable predictive
biomarkers (BRCA1/RRM2), and therefore may inspire further
work to validate clinical relevance of our present findings.

Methods
Patients. We performed a retrospective study of 75 patients with a diagnosis of
glioblastoma WHO grade IV (GBM, 66 primary and 9 secondary), 20 patients with
a diagnosis of anaplastic astrocytoma WHO grade III and 50 patients with a
diagnosis of astrocytoma WHO grade II. Informed written consent was obtained
for all patients, which were identified through the database of the University
Hospital Olomouc and Na Homolce Hospital Prague (Supplementary Table 2). IRB
approval was obtained for tissue collection (Hospital Na Homolce Institutional
Ethics Committee protocol #3.3.2016/1).

All patients in the study underwent brain biopsy or tumour resection between
years 2011 and 2014 at the Departments of Neurosurgery (University Hospital
Olomouc or Na Homolce Hospital Prague, CZ). Subsequently, the material was
processed at the Department of Clinical and Molecular Pathology (University
Hospital Olomouc, CZ) or at the Department of Pathology (Na Homolce Hospital
Prague, CZ). It was examined by at least two histo-pathologists in order to make
the diagnosis according to the current WHO classification59.

Cell isolation and culturing. Xenografted glioblastoma (GBM) cells GBM01
(IN1123), GBM02 (IN84) were a generous gift from Dr I. Nakano (The Ohio State
University, USA). Non-neoplastic brain cells (NB34, derived from epilepsy patient)
and GBM03 (4121) cells were provided by Dr JN Rich (Cleveland Clinic, USA).
GBM cells were derived from specimens of neurosurgical resection directly from
patients in accordance with an Ohio State University or Cleveland Clinic
Institutional Review Board-approved protocol in which informed consent was
obtained by the tumour bank which provided deidentified excess tissue to the
laboratory. Low grade glioma (LGG-1636 and LGG-67, WHO grade II) cells were
derived from neurosurgical resections at Copenhagen University Hospital
(Department of Neurosurgery) directly from patients in accordance with the
Danish Ethical Committee guidelines (Protocol Number H-3-2009-136) including
an informed consent acquired 24 h prior surgery. Normal Human Astrocytes were
purchased from 3H biomedical and cultured in Astrocyte Basal Medium supple-
mented with SingleQuots, as recommended by the manufacturer. Whole Brain
Extract used for immunoblot analysis was purchased from Novus Biologicals.
No-GBM cancer cancer cell lines: PC3, HELA, Cal51 and OVCAR5 (ATCC), were
used as tissue specific controls and cultured as recommended by the manufacturer.
GBM cells were maintained through subcutaneous xenografting in the flanks of
BALB/c (nu/nu) mice. Tumours were dissected out and dissociated using papain
dissociation system (Worthington Biochemical). Dissociated cells (max culture
time 24 h post dissection from mice) were cultured in Neurobasal A media sup-
plemented with B27 Supplement Minus vitamin A (Invitrogen), epidermal growth
factor and basic fibroblast growth factor (10 ng ml� 1, Invitrogen). Cells were
cultured at 37 �C in an atmosphere of 5% CO2. For cell counting before each
experiment, single-cell suspension was prepared using TrypLE (Invitrogen).

Lentiviral shRNA particle preparation and cell transduction. Lentiviral shRNA
particles (Sigma-Aldrich, non-targeting shRNA control plasmid SHCO16-1EA
(shCTRL), TRCN0000244985 (shBRCA1-2), TRCN0000244987 (shBRCA1-4),
TRCN0000244988 (shBRCA1-5) were prepared as described previously60 and
equal amounts of virus were used for infection three days post infection cells were
collected and used downstream assays. The level of BRCA1 knockdown was
assessed by immunoblotting.

Wet reverse pDNA transfection. GBM01 cells stably overexpressing RRM2 were
generated by wet reverse transfection using the X-tremeGENE HP DNA Trans-
fection Reagent (Roche, cat. no. 06 366 244 001). pcDNA3 RRM2 was a gift from
Edward Whang (Addgene plasmid #13796) and pcDNA3.1 empty vector was used
as control (Invitrogen). Protocol in brief, 6 ml transfection reagent and 2 mg
plasmid DNA of interest was incubated for 15 min at room temperature and then
spread on the bottom of a well in a 6 well plate. 200,000 GBM01 cells were seeded
on top of the transfection solution in 2 ml complete medium and cultured
overnight before plating in selection medium.

siRNA transfection. siRNA knockdown was performed by wet-reverse
transfection using HiPerFect transfection reagent according to manufacturer’s
protocol (Qiagen, HiPerFect transfection reagent, cat no 301704). In brief, siRNA
(50 nM from Ambion: siRNA-Sp1 ID: 116546, siRNA-AP1/JUN ID: 145018,
siRNA-AP-1/Fos ID: 115631; and Sigma: siRBA-E2F1 cat no. EHU070981) and
HiPerFect Reagent were mixed and spotted into wells. After complex formation
(15 min incubation), cells were plated on the mixture in their respective media and
incubated for 72 h before assessing the efficiency of knock down. See
Supplementary Fig. 3b for knockdown efficiency validation using immunoblot
analysis of E2F1, Sp1 and AP-1 expression.

Luciferase reporter assay. The luciferase reporter assay was performed with the
use of a Dual-Glo Luciferase Assay System according to manufacturer’s
instructions (Promega). In brief, cells were transfected with pGL3-RRM2-firefly
construct (a generous gift from Dr Wang, Dept. of Mol. Cardiology, Lerner
Research Institute/NB50, Cleveland, OH, USA) using PEI transfection reagent
(PEI, Polyethylenimine, Polysciences, Inc.). In each experiment, a control plasmid
expressing Renilla luciferase (at a ratio 1:2) was co-transfected. Fourty eight hours
post transfection, cells were harvested, and firefly luciferase reporter and Renilla
control luciferase activities were measured. Firefly luciferase reporter activity was
expressed as a fold change following normalization to Renilla luciferase activity.

Chromatin immunoprecipitation. Cells (108) were harvested, washed with PBS,
resuspended in cold PBS, and incubated in PBS with 1% formaldehyde for 10 min
at RT. Crosslinking reaction was stopped by addition of glycine to 0.125 M. Cells
were washed with PBS, resuspended in ChIP lysis buffer (10 mM EDTA, 50 mM
Tris pH 8.1, 0.5% SDS), and sonicated to 300–500 bp average DNA fragment size.
Debris was removed by centrifugation (13,200g for 10 min at 4 �C) and the
supernatant diluted 10-fold in ChIP binding buffer (150 mM NaCl, 20 mM
Tris–HCl (pH¼ 7.5), 0.1% Nonidet NP-40, protease inhibitors (EDTA-free,
Roche), and phosphatase inhibitors (PhosSTOP, Roche)) and incubated with anti-
BRCA1 (or E2F1; Abcam, ab4070) or isotype-matched rabbit anti-IgG control
(negative control) or anti-Histone H3K9ac (Abcam, ab4441, positive control—see
Supplementary Fig. 3a) overnight at 4 �C with agitation. The next morning, 50 ml
protein A/G sepharorse beads (blocked in ChIP binding buffer containing single
stranded herring sperm DNA at 0.1 mg ml� 1)) were added for 1 h. Beads were
washed six times (ChIP binding bufferþ 0.1% SDS). Crosslinked protein–DNA
complexes were eluted for 15 min at RT with elution buffer (100 mM NaHCO3,
1% SDS) and incubated in NaCl at 100 mM overnight at 65 �C to reverse crosslinks.
DNA was purified using QIAGEN QIAquick PCR kit and used as template for
q-PCR quantification on the Applied Biosystems 7500 Fast Real Time PCR System.
Calculations were carried out using the per cent input method according to
guidelines from Thermo Fisher Scientific guidelines (https://www.thermo-
fisher.com/us/en/home/life-science/epigenetics-noncoding-rna-research/chroma-
tin-remodeling/chromatin-immunoprecipitation-chip/chip-analysis.html) to
include normalization for both background levels and input chromatin going into
the ChIP. First, the input is adjusted to 100%. Since the starting input fraction is
1%, a dilution factor of 100 (corresponding to 6,644 cycles) is subtracted from the
Ct value of the diluted input. Next, the per cent input is calculated using the
equation: 100� 2^(adjusted input- average triplicated Ct (IP)). RRM2 primer sets
P1 and P2 (for sequence see Fig. 3g) were designed based on human RRM2
promoter sequence with GenBank accession number: AY032750 (ref. 33).

RNA extraction and Real-Time PCR. RNA from GBM01 and GBM02
(transduced with lentiviral shCTRL or shBRCA1-2 or shBRCA1-4 particles) was
extracted using an RNeasy Plus Mini kit (QIAGEN #74134) according to the
manufacturer’s instructions. RNA concentrations were measured with a NanoDrop
spectrophotometer and samples were stored in � 80 �C freezer. cDNA was
synthesized from total RNA using the High Capacity cDNA reverse transcription
kit (Applied Biosystems). Real-time PCR (quantitative PCR) was performed using
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Fast SYBR Green Master mix (Applied Biosystems) according to manufacturer’s
instructions. Amplification was performed in the Applied Biosystems 7500 Fast
Real Time PCR System. Primer sequences: BRCA1 (forward primer: ACTGCA
GCCAGCCACAGGTA; reverse primer: TAGCCAGGACAGTAGAAGGA),
RRM2 (forward primer: TTACATAAAAGATCCCAAAGAAAGG, reverse primer:
AGCCTCTTTGTCCCCAATC, b-actin forward CCAACCGCGAGAAGATGA;
reverse CCAGAGGCGTACAGGGATAG) b-actin was used as an internal control
and the DDCT method was used to calculate changes in fold expression.

Immunohistochemistry. Ten-micrometre thick sections were prepared from
formalin-fixed, parafin-embedded neoplastic tissue. The sections were pretreated in
microwave oven to retrieve the antigen. The endogenous peroxidase activity was
blocked using 6% H2O2. The sections were then incubated for 1 h with mouse
monoclonal primary antibody against BRCA1 (1:200, IHC-00278, Bethyl
Laboratories, Montgomery, TX), RRM2 (1:500, Abcam, ab57653) or Ki67 (DAKO)
and followed with Dako EnVisionþ Dual Link System-HRP secondary antibody
(DAKO, Glostrup, Denmark) incubation for 1 h at room temperature. The
immunoreactivity was visualized by liquid DABþ substrate-chromogen system
(DAKO, Glostrup, Denmark). Finally, slides were washed under running water,
dehydrated through graded ethanol and mounted. The nuclei were counterstained
with hematoxylin. Immunostaining on each slide was scored by an experienced
pathologist, to examine the percentage of BRCA1/RRM2 positive tumour cells.
At least 400 GBM cells were counted in 10 large, random microscopic fields
per section. Patients were divided into BRCA1 high and BRCA1 low groups based
on the calculated median positivity of 14.5% BRCA1-positive cells. Patients were
divided into RRM2 positive (40%) and RRM2 negative groups based on the
median positivity (¼ 1%).

Immunofluorescence and microscopy. Immunofluorescence staining of Rad51
(Abcam, ab213, 1:250), g-H2AX ser139 (Millipore, 05-636, 1:1,000), pRPA (Thr21)
(Abcam, ab61065, 1:2,000), BRCA1 (Bethyl laboratories, IHC-00278, 1:500), PCNA
(Immuno Concepts, 2037, 1:100), 53BP1 (Millipore, MAB3802, 1:700) were
performed as described previously56. GBM cells were grown on GelTrex
(Invitrogen)-coated coverslips and treated with shRNA-mediated knock down over
a 72 h period. NHA cells were grown to appropriate confluence and treated with
2 mM HU or DMSO vehicle for 2 h. Subsequently, cells were fixed with 4% PFA
and immunostained with the indicated primary antibody. Nuclei were
counterstained with DAPI (Sigma-Aldrich). Imaging was performed using LSM
700 META/imager.Z1 (plan-apochromat 63� /1.40 oil DIC M27 objective, Carl
Zeiss, Inc.). Confocal images were acquired with equal settings and processed with
Zen 2008 software (Carl Zeiss, Inc.). For quantification, 100 non-overlapping
images were acquired for each condition using the Scan^R screening station
(Olympus). At least 1,000 cells were scored and processed using Scan^R Analysis
software (Olympus).

Immunoblot analyses. Whole-cell extracts were separated by 6, 8 or 15%
SDS–PAGE and transferred to nitrocellulose membranes (Biorad) using wet
electroblotting system (Bio-Rad laboratories). The membranes were blocked using
5% (w/v) dry milk in PBS-Tween-20 (0.5% vol/vol) and probed with appropriate
primary antibodies (Supplementary Table 4). The antibody against a-tubulin
was used as loading control. ECL detection system was used according to
manufacturer’s instructions (GE Healthcare). Uncropped scans of the most
important blots are provided in Supplementary Figs 7 and 8.

Cell viability. Dissociated single cells were plated into a 96-well plate at 3,000 cells/
well in triplicates. Next day, vehicle (DMSO) and triapine (EC50) were added and
cell viability was measured over a period of up to 7 days using CellTiter-Glo
Luminescent Cell Viability Assay (Promega) and results were calculated as relative
fold change in ATP with each group internally normalized to the respective vehicle
control. For BRCA1 shRNA knockdown experiments, cells were plated three days
post lentiviral transduction. For each cell line (GBMs and NHA), the appropriate
EC50 concentration of a drug was calculated and used for all further inhibitor
experiments.

Small molecule inhibitor and EC50 calculations. The small molecule inhibitor
triapine (Selleck Chemicals S7470) and PARP inhibitor olaparib (Selleck
Chemicals, AZD2281) were dissolved in DMSO at 20 mg ml� 1 and 5 mg ml� 1,
respectively. DMSO at a final percentage equivalent to that of the drug stock
solution served as vehicle control for all studies. For each cell line, the appropriate
EC50 concentration of triapine was calculated and used for all further experiments.
For EC50 calculation, acutely dissociated single cells were plated (3,000 cells per
well in a 96-well in triplicate). Next day, vehicle or drug was added and cell viability
was measured using CellTiter-Glo Luminiscent Cell Viability Assay (Promega) 72 h
later. EC50 was calculated using non-linear regression in GraphPad Prism Software.

DNA fibre assay. GBM cell cultures (transduced with respective shRNA or
treated with triapine inhibitor) were pulse-labelled with 25 mM of CldU for 20 min,

followed by the change of media and a second pulse of 250 mM of IdU for 20 min.
For the fork recovery assay cells were treated with 25 mM of CldU for 20 min
followed by exposure to 2 mM hydroxyurea for 4 h or left untreated. Labelled cells
were harvested, lysed and DNA fibre spreads prepared as described previously
(Maya-Mendoza et al., 2012). Further to detect CldU a rat anti-BrdU antibody
(OBT0030, Serotec, 1:500) was used and for IdU detection a mouse anti-BrdU
antibody (347580, Becton Dickinson, 1:500). Antibodies for secondary detection
used were anti-rat AlexaFluor564 and anti-mouse AlexaFluor488, respectively with
dilution 1:500. Images of well spread DNA fibres were taken using the LSM700
Zeiss microscope with the � 63 oil immersion objective. Double-labelled replica-
tion forks were analysed manually using ZEN software. Presented results are from
replicates of 2–3 independent experiments. The rate for nascent tract replication
was estimated using the conversion of 2.59 kbmm� 1 (ref. 61).

Flow cytometry and cell cycle analysis. Flow cytometry was performed using
FACS Verse Cell Sorter (BD Biosciences) and analysed using FlowJo software.
For Annexin-V staining, cells were labelled with Alexa Fluor 488-conjugated
Annexin-V for 15 min in Annexin V-binding buffer according to the
manufacturer’s instructions (Invitrogen). Click-it EdU kit (Invitrogen) was
employed to assess the cell cycle profile and quantify the percentage of S-phase
cells. Briefly, cells were incubated with EdU (5-ethynyl-20-deoxyuridine) at a
concentration of 10mM for 20 min and subsequently, detection of EdU was
performed according to manufacturer’s instructions (Invitrogen). To allow for
quantification of mitotic cells and RRM2- or p-RPA/gH2AX- or PCNA-gH2AX-
positive cells, cells were further labelled with anti-H3Ser10, anti-RRM2,
anti-p-RPAþ anti-gH2AX or anti-PCNAþ gH2AX antibodies, respectively. For
G2/M arrest experiment, cells were treated with nocodazole (0.04 mg ml� 1,
Sigma-Aldrich) for 12 h prior the analysis. In all analyses, DNA was counterstained
with Hoechst 33342 dye (Invitrogen). Measurement of ROS (H2-DCF probe,
Invitrogen) and 8-oxo-20-deoxyguanosine (using anti-8-oxo-20-deoxyguanosine
antibody followed by Alexa Fluor 488-conjugated secondary antibody) levels were
measured as described previously22. Samples were acquired using FACSverse
(BD Biosciences) and FlowJo software was used for data analysis.

Alkaline comet assay. Single-cell gel electrophoresis under alkaline conditions
was performed as described previously62. Briefly, cells were harvested into a
single-cell suspension in Neurobasal A media, mixed with 0.5% low-melting-point
agarose (Gibco) in PBS and spread on a microscope slide pre-coated with 1%
normal-melting-point agarose (Invitrogen). Cells were lysed overnight (2.5 M
NaCl, 100 mM EDTA, 10 mM Tris, 1% Triton X-100) and subsequently rinsed in
neutralization buffer (0.4 M Tris–HCl, pH 7.4). Electrophoresis was carried out in
alkaline electrophoresis solution at 25 V for 25 min and fixed in 96% ethanol. DNA
was stained using SYBR Green I (Molecular Probes), visualized using fluorescence
microscopy (Axiovert 200 M, Carl Zeiss) and analysed using Comet Assay IV
software. The mean of at least 200 olive tail moments was calculated. Olive tail
moment (OTM) is the product of the amount of DNA in the tail and the mean
distance of migration in the tail.

Animals and in vivo tumour formation studies. All animal studies described
were approved by the Danish Regulations for Animal Welfare (Protocol Number
2012-15-2934-00636). For in vivo BRCA1 shRNA tumour formation studies,
50,000 viable cells (trypan blue method was employed to exclude dead-cell prior
counting using Countess automated cell counter, Life Technologies) were
stereotactically implanted into the right frontal lobe of Balb/c nu/nu mice (female,
8 weeks). For triapine inhibitor study, GBM03 cells were treated with vehicle or
triapine (10 mM). Twenty four hour later 20,000 viable cells were stereotactically
implanted into the right frontal lobes of NMRInu-F mice (female, 8 weeks). Mice
were monitored daily for neurological impairment and weight loss, at which point
they were sacrificed.

Retrospective analysis of BRCA1/RRM2 expression in gliomas. Correlations
between glioma grade, molecular GBM subtype (classical, mesenchymal and
proneural), patient survival and BRCA1 or RRM2 mRNA expression were
determined through analysis of the National Cancer Institute’s Repository for
Molecular Brain Neoplasia Data (REMBRANDT), which is available through
GlioVis (http://gliovis.bioinfo.cnio.es/; Bowman R. and Squatrito M. manuscript in
preparation). High and low groups were defined as above and below the mean,
respectively.

Statistical analysis. All the data are represented as mean±s.d. and all the n values
represent the biological replicates. A Student’s t test by log-rank or one-way
ANOVA supplemented with Turkey’s multiple comparisons test were used. All the
statistical analyses of in vitro and mouse experiments were done by using
GraphPad Prism 6 software (GraphPad Software, Inc.). For animal survival studies,
Kaplan-Meier curves were generated using GraphPad Prism 6 software and log
rank analysis performed. Animals were randomly assigned to treatment group. For
analysis of the patient cohort the statistical analyses were done by using R
(R Development Core team). We applied Cox Proportional Hazard Regression to
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study the effect of BRCA on survival, both unadjusted and adjusted for con-
founders age, gender, WHO. All tests were likelihood ratio tests. (*Po0.05,
**Po0.005, ***Po0.005; NS represents non-significance).

Data availability. All data generated during this study are included in this pub-
lished article (and its supplementary information files) or available from the author
upon request. The data sets (REMBRANDT) analysed during the current study are
available in the GlioVis repository (http://gliovis.bioinfo.cnio.es/).
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