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Abstract: Peroxiredoxins (PRX) are thiol peroxidases that are highly conserved throughout all
biological kingdoms. Increasing evidence suggests that their high reactivity toward peroxides has a
function not only in antioxidant defense but in particular in redox regulation of the cell. Peroxiredoxin
IIE (PRX-IIE) is one of three PRX types found in plastids and has previously been linked to pathogen
defense and protection from protein nitration. However, its posttranslational regulation and its
function in the chloroplast protein network remained to be explored. Using recombinant protein,
it was shown that the peroxidatic Cys121 is subjected to multiple posttranslational modifications,
namely disulfide formation, S-nitrosation, S-glutathionylation, and hyperoxidation. Slightly oxidized
glutathione fostered S-glutathionylation and inhibited activity in vitro. Immobilized recombinant
PRX-IIE allowed trapping and subsequent identification of interaction partners by mass spectrometry.
Interaction with the 14-3-3 υ protein was confirmed in vitro and was shown to be stimulated under
oxidizing conditions. Interactions did not depend on phosphorylation as revealed by testing phospho-
mimicry variants of PRX-IIE. Based on these data it is proposed that 14-3-3υ guides PRX-IIE to certain
target proteins, possibly for redox regulation. These findings together with the other identified
potential interaction partners of type II PRXs localized to plastids, mitochondria, and cytosol provide
a new perspective on the redox regulatory network of the cell.

Keywords: peroxiredoxin; AT3G52960; glutathione; S-glutathionylation; glutaredoxin; 14-3-3 protein;
phosphorylation; posttranslational modification; redox regulatory network

1. Introduction

Chloroplasts of cormophytes contain three types of peroxiredoxins (PRXs), namely
classical 2-cysteine peroxiredoxin (2-CysPRX), a bacteroferritin-comigratory protein ho-
molog PRX-Q and a type II peroxiredoxin named PRX-IIE [1,2]. The basic PRX complement
of plastids is subjected to variation by the presence of isoforms, e.g., 2-CysPRX-A and -B in
Arabidopsis thaliana (At3g11630, At5g06290), and PRX-IIE-1 and PRX-IIE-2 in Oryza sativa
(Os06g42000, Os02g09940) [3].

PRXs are thiol peroxidases. They possess a peroxidatic cysteinyl thiol (CysP) with a
very low pK value and thus expose the deprotonated thiolate anion in a conserved catalytic
environment. Because of this particular feature, PRXs function as highly affine and efficient
thiol peroxidases [4]. The catalytic activity of 2-CysPRX, PRX-Q, and type II PRX relies on
a conserved second cysteine, which acts as resolving thiol (CysR). Upon reaction with the
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peroxide substrate, the CysP-thiol forms a sulfenic acid derivative which immediately is
attacked by the CysR. A disulfide bond is formed between CysP and CysR. Prior to the
next catalytic cycle, the disulfide bond needs to be reduced to dithiols by electron donors
like thioredoxin (TRX) or glutathione/glutaredoxin (GRX). The different PRX forms show
variation in their primary sequence, as well as the presence and position of CysR and the
regeneration mechanism [2].

The best understood plant PRX is the 2-CysPRX, which has been scrutinized with
respect to its catalytic properties, redox-dependent conformational dynamics, regeneration
by electron transmitters such as TRX and GRX/GSH, and its role in the redox regulatory
network of the chloroplast [5–8]. In contrast, PRX-Q and PRX-IIE have been studied for
their peroxidatic property, regeneration mechanism, and their function in mutant plants
with decreased protein amounts [9,10].

PRX-IIE belongs to the group of highly conserved atypical 2-cysteine peroxiredoxins,
initially discovered in the phloem of poplar [11]. PRX-II type PRX are found in, e.g., some
but not all photosynthetic cyanobacteria [12], animals/humans (PRDX5) [13], and lower
and higher plants [14].

Previous studies showed PRX-IIE to be localized in the soluble fraction of plastids.
Its transcript amount in A. thaliana leaves slightly increased in response to high light, de-
creased upon ascorbate and NaCl treatment, and remained unchanged with leaf age [1,15].
The redox titration of the dithiol-disulfide transition gave a midpoint redox potential of
−288 mV which is 19 and 34 mV less negative than 2-CysPRX-A and -B [1], respectively.

Re-reduction of the oxidized PRX-IIE from poplar was most efficient with GRX/
glutathione system and low with glutathione and TRX [14]. The catalytic efficiency was
105 M−1s−1 with tertiary butylhydroperoxide (t-BOOH), fourfold less with H2O2, and
activity was absent with cumene hydroperoxide (CuOOH) [14]. Among the three GRXs
(GRX-S12, -S14, and -S16) that are targeted to the plastid in poplar, only GRX-S12 efficiently
regenerated oxidized PRX-IIE [14]. The authors suggested a catalytic mechanism where
the sulfenic acid derivative, formed by reaction with the peroxide substrate, reacts with
reduced glutathione to form an S-glutathionylated intermediate. GRX reduces the CysP-SG
and becomes itself S-glutathionylated. Another glutathione molecule then regenerates
GRX-SG, leading to the formation of oxidized glutathione (GSSG) [14,16].

This study aimed for the biochemical characterization of PRX-IIE, with a focus on
redox-dependent posttranslational modifications of its critical cysteine residues and their
impact on protein function. In the light of the presumed function in redox signaling, it ap-
peared timely to address the interactome of PRX-IIE by affinity chromatography and mass-
spectrometric identification. Among other proteins, six members of the phosphoprotein-
binding 14-3-3 family were identified. Their function and activity are often connected to
cell signaling function [17]. Therefore, one of them, namely the 14-3-3 υ was used to further
validate the interaction. The presence of 14-3-3 υ slightly affects the peroxidase activity.
These novel findings point out an additional role of PRX-IIE in redox signaling apart from
its peroxidase activity.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

A. thaliana Col-0 plants were grown on soil (SM Max Planck Köln, project 187509,
Stender, Germany) in a greenhouse with 14 h day and 10 h night at 25 ◦C.

2.2. Cloning

PRX-IIE (AT3G52960), Glutaredoxin-S12 (GRX-S12; AT2G20270), and sulfiredoxin
(SRX; AT1G31170) were cloned into pET28a (Novagen, Darmstadt, Germany). Forward
and reverse primer were designed with NdeI and BamHI restriction sites, respectively
(Table S1). The variants C121S, C146S, C121S/C146S, S82D, T108E, and T223E of PRX-
IIE were generated by site-directed mutagenesis with specific primers (Table S1). The
correctness of all constructs was confirmed by DNA sequencing.
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2.3. Heterologous Expression and Purification

E. coli BL21 (DE3)pLysS cells (Invitrogen, Carlsbad, CA, USA) were transformed with
plasmid DNA. Overnight cultures were used to inoculate 2 L lysogeny broth medium supple-
mented with 50 µg/mL kanamycin and 20 µg/mL chloramphenicol. Protein expression was
induced in the exponential phase by the addition of isopropyl-β-D-thiogalactopyranoside
to a final concentration of 0.4 mM. Induced cells were grown at 37 ◦C and 140 rpm for
4 h. Cells were harvested for 15 min at 5000× g and resuspended in lysis buffer (50 mM
NaH2PO4, 300 mM NaCl and 10 mM imidazole, pH 8.0). Cells were disrupted using
lysozyme digestion followed by sonication (HF-Generator GM2070 in combination with
an ultrasonic converter UW2070, standard horn SH 70G, and microtip MS73, Bandelin,
Berlin, Germany). The soluble and insoluble fractions were separated by centrifugation
at 20,000× g for 45 min. His-tagged proteins were incubated with nickel-nitrilotriacetic
acid (Ni-NTA) sepharose (Qiagen, Hilden, Germany) at 4 ◦C with slight shaking for 1 h.
Washing was performed with wash buffer I (50 mM NaH2PO4, 300 mM NaCl, and 20 mM
imidazole, pH 8.0) and subsequently with wash buffer 2 (50 mM NaH2PO4, 300 mM NaCl,
20 (v/v) glycerol, and 50 mM imidazole, pH 8.0) until the OD280 reached zero. Elution was
achieved with elution buffer (50 mM NaH2PO4, 300 mM NaCl, and 250 mM imidazole,
pH 8.0). Protein containing fractions were pooled and dialyzed against 40 mM K-Pi, pH 7.2.
After dialysis, protein concentrations were determined using a molar extinction coefficient
of 8480 M−1 cm−1 for PRX-IIE and its variants and 9970 M−1·cm−1 and 4470 M−1·cm−1 for
GRX-S12 and SRX, respectively. GRX-C5 (At4g28730) was purified following established
procedures [18,19].

2.4. Xylenol Orange Assay

The ferrous-dependent xylenol orange assay (FOX) was used to analyze the activity of
PRX-IIE and its phosphomimic variants with DTT as electron donor. The reaction mixture
contained 2 µM PRX-IIE and 4 mM dithiothreitol (DTT) in 40 mM K-Pi, pH 7.2. The
measurement was started by the addition of peroxides (400 µM H2O2, 200 µM t-BOOH, or
200 µM CuOOH) in a time course of 90 s at 15 s intervals. The remaining peroxides were
detected by ferrous-dependent oxidation of xylenol orange as reported previously [20].

2.5. NADPH-Dependent Peroxidase Activity Measurement

The reduction of peroxides by PRX-IIE was monitored with the GRX system as re-
ductant. The activity was measured using a Cary 300 Bio UV/VIS spectrometer (Varian,
Middelburg, The Netherlands) following NADPH oxidation at 340 nm. The assay was per-
formed at 25 ◦C in quartz cuvettes with 2 µM PRX-IIE, 0.5 units glutathione reductase (GR),
200 µM NADPH, 1 mM EDTA, 1 mM GSH, varying amounts of GRX-S12 and peroxides
(H2O2, t-BOOH, CuOOH) in 40 mM K-Pi, pH 7.2.

2.6. Hyperoxidation of PRX-IIE

Hyperoxidation of PRX-IIE was assayed as described above using the FOX assay with
400 µM H2O2 as substrate and increasing CuOOH concentrations. Furthermore, the oxi-
dation state was investigated by electrospray ionization coupled with mass spectrometry
(ESI-MS; Esquire 3000, Bruker Daltonics, Bremen, Germany). 10–20 µM of prereduced
protein in 100 mM Tris-HCl, pH 8.0, was incubated with 5 mM DTT and different CuOOH
concentrations or 0.5 mM DTT and increasing H2O2 concentrations for 1 h at room temper-
ature (RT). Excess low molecular weight reagents were removed by acetone precipitation
and proteins were resuspended in H2O. Dilutions were prepared in 30% EtOH, 0.1% formic
acid (FA) and the mixture was introduced into the ESI-MS. Instrumental settings: Capillary
voltage = 4.000 V. Nebulizer gas pressure = 15 psi. Drying gas flow = 4.0 L/min. Drying
gas temperature = 300 ◦C. Mass-to-charge (m/z) values: 650-1200. Mass spectra were
deconvoluted using the software provided by the manufacturer (DataAnalysis, Bruker
Daltonics, Bremen, Germany).
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2.7. S-Glutathionylation

10–30 µM PRX-IIE in 100 mM Tris-HCl, pH 8, was reduced for 30 min at room
temperature (RT) with 4 mM DTT. Desalting was achieved by passing the solution through
PD10 columns. S-glutathionylation was carried out by disulfide exchange with oxidized
glutathione (GSSG) for 1 h at RT. Excess GSSG was removed via acetone precipitation.
Afterward, S-glutathionylation was detected by Western blot using a monoclonal anti-
GSH antibody (Thermo Scientific, Schwerte, Germany). In addition, molecular masses
of modified and unmodified proteins were assessed by ESI-MS as mentioned before. For
deglutathionylation, 10 µM glutathionylated PRX-IIE was incubated with 10 µM of GRX-
S12, GRX-C5, or SRX and 0.5 mM GSH at 25 ◦C. The decrease of glutathionylated PRX-IIE
was determined using Western Blot with anti-GSH antibodies. The spot intensities were
analyzed using ImageJ.

2.8. 2-Dimensional SDS-PAGE

6-week-old A. thaliana Col_0 plants were sprayed with 300 µM methylviologen (MV)
and 0.1% (v/v) Tween-20 as control, respectively. After 3 h the plants were harvested and
immediately frozen in liquid nitrogen and ground to a fine powder. Proteins were isolated
and used for the separation in the first dimension with Immobiline Dry Stripes (pH range
3–10 NL, 18 cm, GE Healthcare, Uppsala, Sweden) [21]. 250 µg protein were dissolved in
340 µL rehydration buffer (0.01% ampholyte; 0002% (w/v) bromophenol blue) and applied
to the Immobiline Dry Stripe. The rehydration and focusing consisted of the following
steps: 1 h 0 V, 12 h 30 V, 2 h 60 V, 1 h 500 V, 1 h 1000 V, and finally 8000 V for as long
as needed to reach 42,000 Vh. Separation in the second dimension was done with 12%
non-reducing SDS-PAGE. Afterward, the gel was blotted to nitrocellulose membrane and
subjected to Western blotting with PRX-IIE antibody and peroxidase-labeled secondary
antibodies. Detection was done with ECL Substrate (GE Healthcare, Chicago, IL, USA) and
X-ray films.

2.9. Subcellular Localisation of PRX-IIE

The open reading frame of PRX-IIE from A. thaliana was cloned into the 35S-EYFP-
NosT vector using specific primers (Table S1) for in vivo subcellular localization of PRX-
IIE [22]. The resulting construct consisted of the PRX-IIE preprotein fused to EYFP as
a reporter under the control of the CaMV35S-promoter. Transient expression in meso-
phyll protoplasts and confocal laser scanning microscopy were performed as described
before [23,24].

2.10. Affinitiy Chromatography and Mass Spectrometry

Reduced His-tagged PRX-IIE (3 mg) or PRX-IIE C146S (3 mg) were bound to 1 mL
Ni-NTA resin (Qiagen, Hilden, Germany) and used as an affinity matrix. Ni-NTA matrix
without PRX-IIE served as control. Leaves of about 5-week-old plants were homogenized
in 50 mM Tris-HCl, pH 8.0, 1 mM PMSF, and afterward, filtrated through Miracloth. Clear
protein extract was obtained via centrifugation (30 min at 20,000 rpm and 4 ◦C). The
supernatant (about 40 mg protein) was applied to the matrix and incubated at RT with
gentle agitation for 1.5 h. Non-bound material was removed by washing the column
with 20 mL of 50 mM Tris-HCl, pH 8.0, and 20 mL of 50 mM Tris-HCl, pH 8.0, 200 mM
NaCl. The first elution step was achieved with 1 mL of 50 mM Tris-HCl, pH 8.0, 200 mM
NaCl, 50 mM DTT, and incubation for 15 min at RT. The eluted fraction was collected
and stored. Afterward, the columns were washed with 10 mL 50 mM Tris-HCl, pH 8.0,
200 mM NaCl. The second elution step was achieved by using a high concentration of
imidazole, therefore 1 mL 50 mM Tris-HCl, pH 8.0, 200 mM NaCl, 50 mM DTT, and 500
mM imidazole were applied to the column and incubated at RT for 15 min. The second
elution step was also collected and stored. The samples of the first and second elution were
trypsinated after chloroform/methanol precipitation [25] and dissolved in 0.1% formic
acid, 1% acetonitrile. Peptides were separated by reverse-phase nano-LC and analyzed
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by electrospray ionization-mass spectrometry (ESI-QTOF-MS) as described [26]. Data
were searched against the entries of UP000006548 3702 ARATH A. thaliana of the UniProt
database using ProteinLynx Global Server 3.0.2. Proteins, which were found in two out of
three biological experiments with at least two peptides were accepted for further analysis.
In addition, proteins, which were identified in the control sample (nonspecific binding),
were removed from protein lists. The LC-MS data are deposited using the e!DAL system of
IPK Gatersleben [27] and available at http://dx.doi.org/10.5447/ipk/2021/0 [28].

2.11. Far Western Blot

Dilution series of recombinant 14-3-3 υ protein were spotted on nitrocellulose mem-
brane, together with a dilution series of PRX-IIE as a calibration curve. The membrane
was blocked with Tris-buffered saline (TBS), pH 7.5, containing 1% (w/v) milk powder. The
membrane was incubated with PRX-IIE or its phospho-mimicry variants in TBS with either
1 mM DTT or 100 µM H2O2 overnight at 4 ◦C. After three times washing with TBS for
5 min, proteins were detected using a specific anti-PRX-IIE antibody, a peroxidase-labeled
secondary antibody against rabbit, ECL® substrate (GE Healthcare, Chicago, IL, USA),
and X-ray films. Intensity quantification of the spots after documentation was done using
ImageJ. The relative amounts of bound PRX-IIE were determined in the linear range of
the blots.

2.12. Structural Modeling

PRX-IIE structure was obtained from SWISS-MODEL [29] based on the structure
of Populus tremula PRX D type II (pdb: 1tp9A). Further analysis was done with PyMOL
version 2.4.0 [30].

2.13. Statistical Analysis

Statistics were calculated either using F-Test followed by students T-test or using
one-way ANOVA together with post hoc Tukey honest significance differences (HSD) test.
Statistical results obtained with the students T-test are indicated in the figures using one to
three asterisks representing the different p-values (*: p < 0.05; **: p < 0.01; ***: p < 0.001).
Statistical results using the one-way ANOVA together with post hoc Tukey HSD are
represented using different letters using p ≤ 0.05.

3. Results
3.1. PRX-IIE Is Localized to the Chloroplast Stroma

The PRX family in A. thaliana consists of 10 ORFs, of which 9 members are described
to be expressed [31]. Besides the mitochondrial PRX-IIF, PRX-IIE is the only type II PRX in
A. thaliana which displays a putative transit peptide covering for the first 70 amino acids
(Figure 1A). The remaining amino acids form the stable TRX-like structure with seven
β-sheets and five α-helices (Figure 1B). To confirm the subcellular localization of PRX-
IIE, a plasmid encoding the PRX-IIE-EYFP fusion protein was transfected into mesophyll
protoplasts. Confocal laser scanning microscopy of the transfected protoplasts revealed the
plastidial localization, as indicated in the overlay of the EYFP signal with the chlorophyll
autofluorescence (Figure 1C).

http://dx.doi.org/10.5447/ipk/2021/0
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Figure 1. Subcellular localization of PRX-IIE. (A) Amino acid sequence alignment of A. thaliana type II PRXs. The signal
peptides of PRX-IIE and PRX-IIF are highlighted in green as well as the highly conserved cysteines (C: red) and tryptophan
(W: blue). (B) Predicted 3D structure of mature PRX-IIE from three different points of view. The model is based on the
PRX D type II from P. tremula (pdb:1tp9A) and further analysis was done using PyMOL 2.4. Both cysteines, C121 and
C146 are marked in red, whereas the putative phosphorylation sites S82, T108, and T223 are marked in blue. The distance
between the cysteines is 7.83 Å. The accessible surface area of the peroxidatic cysteine at position 121 is 0.795 Å2. (C) The
coding sequence of PRX-IIE was fused in-frame to EYFP as a reporter and used for transient expression in A. thaliana
mesophyll protoplasts. Confocal laser scanning images revealed chlorophyll autofluorescence (green) and fluorescence of
the PRX-IIE-EYFP construct (purple). White areas in the overlay indicate chloroplastic localization of PRX-IIE.

3.2. PRXIIE Detoxifies H2O2 Using the GRX System for Regeneration

Peroxiredoxins reduce a broad range of peroxides and their activities rely on the
conserved cysteine residues. The reduction of H2O2 by PRX-IIE and its cysteine variants
was determined using the FOX assay. The removal of either the Cysp as well as the CysR
residue had a negative impact on peroxidase activity, constraining that both thiol groups are
necessary for reactive oxygen species (ROS) scavenging (Figure 2A). Substrate specificity
with H2O2, t-BOOH, and CuOOH of wild-type (WT) protein is depicted in Figure 2B.
PRX-IIE showed the highest rate of activity with H2O2 as substrate and DTT as reductant.
Reduction rates of t-BOOH and CuOOH relative to H2O2 were about 20% and 0.5%,
respectively. This indicates that H2O2 is the preferred substrate for PRX-IIE. Furthermore,
peroxide reduction by PRX-IIE in the presence of chloroplastic glutaredoxin-S12 (GRX-S12)
as reductant was determined (Figure 2C) and confirmed H2O2 as the preferred substrate,
but unlike with DTT, lower activities were recorded.
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***: p < 0.001.

3.3. CuOOH-and H2O2-Dependent Hyperoxidation

CuOOH is a strong oxidizing agent and based on activity measurements (Figure 2B)
it was assumed that PRX-IIE is hyperoxidized by CuOOH. This hypothesis was tested
in vitro using the FOX assay at increasing CuOOH concentrations (Figure 3A). Significant
inhibition of H2O2 detoxification could be detected in the presence of 12.5 µM CuOOH and
the peroxidase activity was undetectable at high CuOOH concentration. To further address
the possibility for hyperoxidation of PRX-IIE by CuOOH, ESI-MS analyses were carried
out (Figure 3B). In contrast to reduced PRX-IIE with a molecular mass of 19,438.0 Da, the
sample treated with 0.5 mM CuOOH showed a mass increase of ~32 Da corresponding to
the formation of the sulfinic acid derivative (-SO2H). Higher CuOOH concentrations lead
to further oxidation to the sulfonic acid (-SO3H).

ESI-MS analysis of cysteine variants of PRX-IIE was performed to elucidate which of
the two cysteines is prone to redox modifications (Table 1). Deconvoluted data revealed that
hyperoxidation occurs in the C146S variant, lacking the CysR, while the PRX-IIE protein
variant lacking Cysp (C121S) showed only slight oxidation at high CuOOH concentrations.
This assay relied on a single turnover of peroxide reduction and, therefore, used relatively
high CuOOH concentrations in a first set.

Activity measurements for PRX-IIE revealed that H2O2 is the preferred substrate
(Figure 2B), but H2O2 is also known to catalyze hyperoxidation of proteins [19]. To test
this for PRX-IIE, peroxide-mediated hyperoxidation was analyzed by ESI-MS (Figure 4).
The extent of sulfinic acid formation was calculated from the ratio of the peak intensities
for the reduced (-SH, 19,438.0 Da) and hyperoxidized (-SO2H, 19,470.0 Da) protein in
the deconvoluted ESI-MS spectra. Incubation of PRX-IIE with 25 µM H2O2 resulted
in an hyperoxidation rate of 46%, and higher peroxide concentrations lead to further
hyperoxidation of the protein. Masses that correspond to the sulfonic acid (-SO3H) could
not be detected, suggesting that H2O2-mediated hyperoxidation is limited to the formation
of the sulfinic acid derivative at CysP.
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Table 1. CuOOH-dependent thiol modifications of PRX-IIE variants. Proteins were treated with DTT or CuOOH for 1 h at
RT and then analyzed by ESI-MS. Generation of the oxidized (-SOH) and hyperoxidized (-SO2H, -SO3H) forms increased
the mass of the protein by 16, 32, or 48 Da. Data are means ± SD, n = 10 with protein from two independent purifications.

Treatment
PRX-IIE C121S PRX-IIE C146S

Mass [Da] Cys Modification Mass [Da] Cys Modification

5 mM DTT
(control) 19,422.93 ± 0.61 None (SH) 19,422.22 ± 0.52 None (SH)

0.5 mM CuOOH 19,422.75 ± 0.57 None (SH) 19,422.57 ± 0.55
19,454.61 ± 0.44

None (SH)
Hyperoxidation (SO2H)

1 mM CuOOH 19,423.13 ± 0.22 None (SH) 19,422.86 ± 0.87
19,454.93 ± 0.62

None (SH)
Hyperoxidation (SO2H)

2.5 mM CuOOH 19,423.31 ± 0.17 None (SH)
19,422.46 ± 0.86
19,454.51 ± 0.92
19,471.37 ± 0.81

None (SH)
Hyperoxidation (SO2H)
Hyperoxidation (SO3H)

5 mM CuOOH 19,422.95 ± 0.54 None (SH)
19,422.52 ± 0.41
19,453.86 ± 0.53
19,470.75 ± 0.96

None (SH)
Hyperoxidation (SO2H)
Hyperoxidation (SO3H)

10 mM CuOOH 19,422.97 ± 0.57
19,438.11 ± 0.92

None (SH)
Oxidation (SOH)

19,423.25 ± 0.69
19,454.14 ± 0.98
19,470.73 ± 0.81

None (SH)
Hyperoxidation (SO2H)
Hyperoxidation (SO3H)
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the mass of the protein by 306 Da (Figure 6A). The PTM of PRX-IIE was further proven 
with a specific anti-GSH antibody (Figure 6B). In addition, S-glutathionylation of PRX-IIE 

Figure 4. H2O2-dependent hyperoxidation of PRX-IIE. Pre-reduced and desalted PRX-IIE at 10 µM
concentration was incubated with H2O2 as indicated in the presence of 500 µM DTT for 15 min.
This allowed for continued re-reduction and H2O2-dependent oxidation and accumulation of the
hyperoxidized form. The extent of sulfinic acid formation in percent of the total was estimated from
the ratio of the peak intensities for the reduced (SH; 19.438 Da) and hyperoxidized (SO2H; 19.470 Da)
protein in the deconvoluted ESI-MS spectra. Data are means of n = 10 ± SD with recombinant protein
from two independent purifications.

3.4. S-Glutathionylation of PRX-IIE Occurs at Cysp

The results shown above revealed a lower peroxidase activity for PRX-IIE with GRXs
as an electron donor in comparison to DTT as reductant (Figure 2C). The antioxidant
glutathione is one component of the assay. In addition, H2O2-dependent hyperoxida-
tion of PRX-IIE could be observed (Figure 4). For A. thaliana and T. brucei reversible S-
glutathionylation, the addition of one glutathione molecule to specific cysteine residues has
been shown to prevent 2-Cys PRX hyperoxidation and thereby regulates its function [32,33].
To analyze the possibility for this redox-related posttranslational modification, reduced
PRX-IIE was incubated with either 0.5 mM DTT or 10 mM oxidized glutathione (GSSG)
overnight at 4 ◦C. Following acetone precipitation samples were subjected to ESI-MS and
masses of the intact protein were obtained (Figure 5)
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Figure 5. Mass spectra of reduced and S-glutathionylated PRX-IIE. S-glutathionylation was carried
out by disulfide exchange with GSSG. The reaction mixtures containing 30 µM reduced PRX-IIE
without (left) or with 10 mM GSSG (right) in Tris buffer, pH 8.0, were incubated at 4 ◦C for 18 h. The
protein products were precipitated and subsequently subjected to ESI-MS analysis.

Deconvoluted data revealed the addition of one glutathione molecule that increased
the mass of the protein by 306 Da (Figure 6A). The PTM of PRX-IIE was further proven with
a specific anti-GSH antibody (Figure 6B). In addition, S-glutathionylation of PRX-IIE at low
physiological GSSG concentrations could be observed (Figure 6A). The time-dependent
S-glutathionylation in vitro was detected after incubation with GSSG for different time
points (Figure 6C). Thiol modification was observed already after 10 min and reached a
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maximum of 60 min. The results demonstrate the fast S-glutathionylation of PRX-IIE at
physiologically relevant concentrations in vitro. Not only incubation of PRX-IIE with GSSG
resulted in S-glutathionylation, but also incubation of pre-reduced PRX-IIE with 1 or 5 mM
S-nitrosoglutathione. Besides this, the formation of S-nitrosation (19.469 kDA, -SNO) and
S-nitrosoglutathionylation (19.772 kDa, -SSGNO) was observed, using ESI-MS (Table S2).
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iants were analyzed using Western Blot with the specific anti-GSH antibody. Results 
showed S-glutathionylation of WT PRX-IIE and the C146S variant, but not for the C121S 
variant (Figure 7). Furthermore, mass spectrometry was done with WT and the Cys→Ser 
variants. 19422 Da corresponds to the reduced variants with single mutated cysteine res-
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ing the CysR at position 146, was S-glutathionylated in a concentration-dependent manner 
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Figure 6. S-glutathionylation of PRX-IIE. (A) Deconvoluted mass spectra of reduced and S-glutathionylated PRX-IIE after
treatment with oxidized glutathione (GSSG). Reduced PRX-IIE (19,438 Da) was treated with indicated GSSG concentrations
and the degree of modification was estimated from the mass shift of 306 Da to 19,744 Da, which could be assigned to
monoglutathionylated protein. Data are representative spectra of n = 12, with protein from three independent protein
purifications. (B) Western blot analyses of reduced and S-glutathionylated PRX-IIE (treatment with 10 mM GSSG) using
specific anti-GSH and anti-PRX-IIE antibody. (C) Time dependence of S-glutathionylation with recombinant PRX-IIE in vitro.

To test for the particular residue that is prone to S-glutathionylation, Cys to Ser variants
were analyzed using Western Blot with the specific anti-GSH antibody. Results showed
S-glutathionylation of WT PRX-IIE and the C146S variant, but not for the C121S variant
(Figure 7). Furthermore, mass spectrometry was done with WT and the Cys→Ser variants.
19,422 Da corresponds to the reduced variants with single mutated cysteine residues (C121S
or C146S) and 19406 Da to the double variant. Only the C146S protein, lacking the CysR at
position 146, was S-glutathionylated in a concentration-dependent manner using GSSG
(Figure 7B).

Next, the effect of S-glutathionylation on peroxidase activity was investigated using
a modified FOX assay (Figure 8A). Peroxidase activity in the presence of GRX-S12, GSH,
and H2O2 as substrate decreased in the presence of GSSG amounts as low as < 2.5% GSSG
of total glutathione. The extent of glutathionylation was tested by ESI-MS at different
GSH/GSSG ratios (Figure 8B). Deconvoluted spectra showed the presence of PRX-IIE-SG
already at 1.25% GSSG, which is in line with the decreased peroxidase activity. Protein-
SG forms through several mechanisms in vitro, however the precise reaction mechanism
in vivo remains unclear [34]. In contrast, deglutathionylation reaction is reported to be
catalyzed by GRXs and SRXs [35,36]. To monitor the deglutathionylation of PRX-IIE, PRX-
IIE-SG was incubated with GSH in the presence or absence of GRX-S12, GRX-C5, and SRX
(Figure 8C). Western blot analysis with specific GSH antibody and subsequent analyses of
spot intensities using ImageJ revealed a decrease in signal intensity for PRX-IIE-SG already
after 10 min of reaction time with GSH alone (Figure 8C and Figure S1). The addition of
SRX or GRX did not increase the deglutathionylation reaction, leading to the conclusion
that the glutathione pool itself is capable of modulating the redox state of PRX-IIE.
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Figure 7. Identification of the S-glutathionylated Cys residue in PRX-IIE using Cys→Ser variants. To test for the site of
glutathionylation, Cys→Ser mutated PRX-IIE variants were analyzed by Western blot with specific anti-GSH antibody and by
mass spectroscopy. (A) 10 µM reduced WT PRX-IIE and variants (C121S; C146S; C121S/C146S) were incubated with 10 mM
GSSG for 1 h at RT and subjected for Western blot analysis. (B) Representative deconvoluted ESI-MS spectra of PRX-IIE and
variants treated with GSSG. 19438 Da corresponds to the theoretical mass of the reduced and His-tagged protein, whereas a
shift of 306 Da to 19,744 was observed for the glutathionylated version of PRX-IIE with a single bound glutathione molecule.
19,422 Da corresponds to the reduced variants with single mutated cysteinyl residues (C121S; C146S) and 19,406 Da to the
double mutant. Only the C146S protein, lacking the CysR, was glutathionylated in a concentration-dependent manner. The
figure shows representative spectra of n = 6 determinations, using protein from two independent purifications.

Protein S-glutathionylation ensures the protection of critical protein thiols against
irreversible hyperoxidation in vivo and is therefore considered a biomarker for oxidative
stress [37,38]. To test for this redox-dependent posttranslational modification of PRX-IIE
in vivo, A. thaliana plants were sprayed with a single high dose of 300 µM methylviologen,
harvested after 3 h, and analyzed using non-reducing two-dimensional gel electrophore-
sis following Western blot with the specific anti-PRX-IIE antibody. In contrast to the
mock-treated samples, which showed two protein spots representing reduced (-SH) and
presumably oxidized protein species, plants stressed with MV exhibited three distinct
protein spots, two of them differed in acidity and molecular mass (Figure 9). Mature
PRX-IIE-SH displays a molecular mass of 17,260 Da with a theoretical pI value of 5.02,
whereas for PRX-IIE-SG a mass shift to 17,566 Da and a more acidic pI value of 4.91 are
predicted. Molecular masses and pI values were obtained using the Expasy ProtParam
tool [39]. Theoretical pI calculations and correlation with the pI values observed on the 2D
gels together with the mass change suggest that the acidic spots of the triplet correspond to
the glutathionylated protein.
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Figure 8. Effect of glutathionylation on peroxidase activity and deglutathionylation reaction. (A) Titration of peroxidase
activity of PRX-IIE in the presence of GRX-S12, GSH, and H2O2 and increasing amounts of GSSG using the FOX assay.
Glutathionylation and inhibition of activity occurred at <2.5% GSSG of total glutathione. Data are means of n = 10 ± SD
with the protein of two independent protein purifications; *** p ≤ 0.001. (B) PRX-IIE was treated with different GSH/GSSG
ratios and glutathionylation was determined via ESI-MS. Deconvoluted spectra reveal the presence of glutathionylated
PRX-IIE already at 1.25% GSSG. (C) Time course of the deglutathionylation reaction. 10 µM PRX-IIE-SG were incubated
together with 0.5 mM GSH and equal amounts of sulfiredoxin (SRX), GRX-S12, or GRX-C5 in 100 mM Tris-HCl, pH 8.0, at
25 ◦C for indicated time and was monitored using an anti-glutathione antibody. The decrease in glutathionylated PRX-IIE
signal intensity relative to the 0 min time point was analyzed using ImageJ.
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address proteins that interact with PRX-IIE electrostatically, a second elution was done 
with imidazole. Seven proteins co-eluted with PRX-IIE, and 9 with the PRX-IIE C146S 
variant (Figure 10B). Out of the 54 proteins that interacted with PRX-IIE, 24 are localized 
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However, in comparison to the WT protein, almost the same number of proteins were 
trapped by the C146S variant, but only 14 of them reside in the chloroplast (Figure 10D). 

Figure 9. Detection of glutathionylated PRX-IIE species in vivo. A. thaliana plants were stressed for 3 h with 300 µM MV
(blot on the right-hand side) or 0.1% (v/v) Tween-20 as control (blot on the left-hand side). S-glutathionylation was detected
with specific anti-PRX-IIE antibody following separation by non-reducing 2D-SDS-PAGE and blotting. The spots of the two
blots were cropped and zoomed in to clearly show the shift of the spots induced by MV treatment (the bottom part of the
figure) The figure shows representative Western blots from two independent experiments.
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3.5. Identification of PRX-IIE Interaction Partners

The next experiments aimed to elucidate whether PRX-IIE exclusively functions as a
peroxidase or if it might be involved in cell signaling by direct protein-protein interactions.
For that, an affinity chromatography approach with immobilized His6-tagged PRX-IIE and
total A. thaliana leaf protein was used to identify interacting proteins. After washing, bound
proteins were eluted with buffer containing DTT or imidazole and subsequently identified
by mass spectrometry. In addition, a thiol-trapping experiment with the C146S variant was
used to identify redox-regulated proteins that preferentially interact through Cysp. The
reductive elution with DTT resulted in the identification of 47 proteins, 14 of which were
also identified to interact with the C146S variant (Figure 10A). To address proteins that
interact with PRX-IIE electrostatically, a second elution was done with imidazole. Seven
proteins co-eluted with PRX-IIE, and 9 with the PRX-IIE C146S variant (Figure 10B). Out of
the 54 proteins that interacted with PRX-IIE, 24 are localized within the chloroplast, and
half of them are involved in metabolic processes (Figure 10C). However, in comparison to
the WT protein, almost the same number of proteins were trapped by the C146S variant,
but only 14 of them reside in the chloroplast (Figure 10D).
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Figure 10. Localization and function of PRX-IIE interaction partners. Venn diagrams depicting
unique and overlapping interactors of PRX-IIE WT and C146S variant after (A) elution with DTT
and (B) second elution with imidazole. Identified interacting proteins with (C) PRX-IIE WT or (D)
PRX-IIE C146S during first and second elution, were grouped according to their localization and
function. The pie charts on the right hand side in (C) and (D) reveal the functional assignments of
the chloroplast-located proteins. See also supplementary file list of identified proteins.

Interestingly, 4 out of the 24 identified chloroplast proteins trapped by the WT PRX-IIE
protein belong to the 14-3-3 family (Table 2). In total 6 different 14-3-3 proteins were iden-
tified regardless of the bait protein (Table S3) [40–51]. Plant 14-3-3 proteins are reported
to be involved in multiple developmental and stress-related processes, such as apoptosis,
leaf shape, and salt stress tolerance [52–54]. They normally occur as homodimers or het-
erodimers and can bind two different targets at the same time and, therefore, act as scaffold
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proteins [55]. Furthermore, they are involved in signaling processes regulated by phos-
phorylation [48,56,57]. Since PRX-IIE has three experimentally reported phosphorylation
sites [58], an interaction between phosphorylated PRX-IIE and a 14-3-3 protein could be
part of a signaling process. 14-3-3 υ was chosen as a representative to study the interaction
between PRX-IIE and 14-3-3, because of the high number of identified unique peptides and
the reported chloroplastic localization [48] (Table S3). Therefore, A. thaliana 14-3-3 υ was
expressed, purified, and used in further experiments.

To characterize the interaction between 14-3-3 υ and PRX-IIE, phospho-mimicry vari-
ants of PRX-IIE were generated and their peroxidase activity was analyzed using the
FOX-Assay. Interestingly, all variants revealed lower peroxidase activity in comparison to
WT PRX-IIE, whereas S82D and T108E showed a significantly lower activity (Figure 11A).
Binding between PRX-IIE or its phosphomimic variants and 14-3-3 υ under defined redox
conditions was assessed in an overlay approach (Figure 11B). Binding was similar under
all conditions apart from the 2.5-fold improved binding of WT PRX-IIE to 14-3-3 υ under
oxidizing conditions (Figure 11B). Supplementation with 14-3-3 υ had a beneficial effect on
peroxidase activity albeit a ten-fold excess of 14-3-3 υ was necessary to observe a significant
increase of PRX-IIE peroxidase activity (Figure 11C).

Table 2. Chloroplast localized interaction partners of PRX-IIE WT. Listed are the proteins identified
from elution with DTT and imidazole (grey background), with AGI code and uniport accession number.

AGI Code Protein Accession Protein Name

AT4G09000 P42643 14-3-3 χ

AT5G10450 P48349 14-3-3 λ

AT3G02520 Q96300 14-3-3 ν

AT5G16050 P42645 14-3-3 υ

AT3G60880 Q9LZX6 4-Hydroxy-tetrahydrodipicolinate synthase 1
AT1G02560 Q9S834 ATP-dependent Clp protease proteolytic subunit 5
AT5G03690 F4KGQ0 Fructose-bisphosphate aldolase 4
AT4G26530 O65581 Fructose-bisphosphate aldolase 5
AT5G49910 Q9LTX9 Heat shock 70 kDa protein 7
AT2G24200 P30184 Leucine aminopeptidase 1
AT5G45930 Q5XF33 Magnesium-chelatase subunit ChII-2
AT1G70890 Q9SSK5 MLP-like protein 43
AT5G26000 P37702 Myrosinase 1
AT3G62030 P34791 Peptidyl-prolyl cis-trans isomerase CYP20-3
AT2G29630 O82392 Phosphomethylpyrimidine synthase
AT5G52920 Q9FLW9 Plastidial pyruvate kinase 2
AT1G32440 Q93Z53 Plastidial pyruvate kinase 3
AT5G52520 Q9FYR6 Proline tRNA ligase
AT2G21170 Q9SKP6 Triosephosphate isomerase
AT4G17090 O23553 β-amylase 3
AT3G01500 P27140 β-carbonic anhydrase 1
AT5G14740 P42737 β-carbonic anhydrase 2
AT5G64460 Q9FGF0 Phosphoglycerate mutase-like protein 1
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(A) Peroxide reduction of WT PRX-IIE and its phospho-mimicry variants were measured with 400 µM H2O2, 4 mM DTT,
and 2 µM protein. The decrease in H2O2 was quantified using the FOX assay. Data are means of n = 10–16 ± SD with
protein from three independent protein purifications. Different letters indicate groups of significant differences (p ≤ 0.05)
calculated by one-way ANOVA and post hoc Tukey HSD. (B) Overlay assay of 14-3-3 υ with PRX-IIE. A higher affinity of
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4. Discussion

PRX-IIE is a thiol-dependent peroxidase that is localized to the chloroplast stroma
(Figure 1C). Two cysteinyl residues are highly conserved within the type II PRX (Figure 1A)
and mutation of either one or both cysteines to serine results in a loss of peroxidase
activity (Figure 2A). Therefore, both Cys, namely Cysp121 and CysR146, are essential for
the PRX-IIE peroxidase activity.

The human homolog peroxiredoxin 5 (PRDX5) more readily reduces t-BOOH [59],
while PRX-IIE from A. thaliana showed the highest activity with H2O2 as a substrate
(Figure 2B,C). The differences in substrate specificity could be due to the different accessible
surface areas of Cysp of both enzymes. The accessible surface area of the Cysp of PRDX5 is
1.305 Å2, whereas the accessible surface area of the PRX-IIE Cysp is just 0.795 Å2 (Figure 1B).
Therefore, PRX-IIE seems more likely to detoxify smaller peroxides in comparison to the
human analog PRDX5.

4.1. Regeneration of Reduced PRX-IIE Limits Catalytic Turnover

The GRX-S12-coupled assay revealed the same substrate preference as the FOX assay,
however, the catalytic activities were lower in comparison to the DTT-driven activity,
especially in the case of H2O2 as substrate (Figure 2C). Since activity measurements with
t-BOOH showed almost the same values, it seems that PRX-IIE regeneration by GRX-S12
is the rate-limiting step in the catalytic cycle of peroxide reduction, disulfide formation,
and regeneration.

4.2. Bulky Substrates Favour Hyperoxidation and Inhibition of PRX-IIE

Activity was undetectable in both assays using CuOOH as substrate, and rather bulky
substrates like CuOOH inhibited peroxidase activity, which was already reported for poplar
PRX-IIE [14]. The inhibitory effect of CuOOH on the peroxidase activity of PRX-IIE was
revealed by a decrease in H2O2-reduction activity in the presence of increasing CuOOH
concentrations. Already the presence of 12.5 µM CuOOH resulted in a significant decrease
in PRX-IIE peroxidase activity (Figure 3A) and the inhibition of activity correlated with
hyperoxidation of PRX-IIE (Figure 3B). Since Figure 3A represents an activity assay in
presence of DTT, the oxidized PRX-IIE (SO2H) accumulates during the catalytical activ-
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ity [60]. Therefore, a lower amount of CuOOH is needed in comparison to the ESI-MS
measurements (Figure 3B).

ESI-MS measurements of CuOOH-treated PRX-IIE C121S and C146S variants showed
the hyperoxidation at C121 to sulfinic (-SO2H) and sulfonic acid (SO3H) at intermediate
amounts of CuOOH (Table 1). Oxidation of the resolving thiol C146 to sulfenic acid (-SOH)
occurred after treatment with relatively high CuOOH concentrations only. H2O2 treatment
resulted in oxidation of PRX-IIE to the sulfinic acid derivative during continuous thiol
peroxidase cycling (Figure 4) similar to 2-CysPRX, where hyperoxidation occurs after
about 250 peroxidase cycles (Figure 4) [61]. Oxidized sulfenylated 2-CysPRX functions
in proximity-based oxidation reactions. Sobotta et al. [62] reported this type of signal-
ing cascade, where human PRDX2 gets oxidized by ROS and afterward oxidizes STAT3.
Disulfide-bonded 2-CysPRX from A. thaliana oxidizes chloroplast TRXs which in turn
oxidize target proteins in the Calvin-Benson cycle or malate dehydrogenase [8]. This type
of regulation was termed TRX oxidase function of 2-CysPRX and participates in the adjust-
ment of enzyme activity to decreased light intensity. PRX-IIE is, therefore, suggested to be
part of a ROS-induced signaling cascade, whereas PRX-IIE may oxidize a nearby protein.

Hyperoxidized PRX may also function in cell signaling, for example, if the change
in redox-state affects its conformational state which in turn allows for binding to other
proteins and alters their activity [63]. Pea mitochondrial PRX-IIF adopts a hexameric
conformation in addition to its dimeric form and tightly binds thioredoxin-o [64].

4.3. Besides Hyperoxidation, Cys121 of PRX-IIE Is Subject to Multiple
Posttranslational Modifications

Apart from oxidation and hyperoxidation, PRX-IIE is also S-glutathionylated
(Figures 5 and 6). Although glutathionylation of PRX-IIE inhibited its peroxidase activity
(Figure 8A), S-glutathionylation of Cysp (Figure 7) may prevent PRX-IIE from hyperoxida-
tion, as already shown for glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) from
spinach and isocitrate lyase from C. reinhardtii [65,66]. Reversal of this type of regulation
of PRX-IIE could be achieved by deglutathionylation via GRXs, TRXs, and SRXs [67–69].
However, the presence of GRX-S12, SRX, or GRX-C5 failed to increase the deglutathionyla-
tion rate in comparison to GSH alone, indicating that the GSH/GSSG ratio could be the
main route for the regulation of this PTM in vivo.

Under normal physiological relevant concentrations of ~1 mM glutathione [70] and a
ratio of 0.002% oxidized glutathione [71], it seems unlikely that PRX-IIE is glutathionylated.
Application of stresses to the plant, like exposure to methylviologen or arsenic treatment,
however, can alter the GSSG ratio [72,73] and, therefore, may result in S-glutathionylation
of PRX-IIE. This is consistent with the results shown in Figure 9, where the application of
severe stress resulted in S-glutathionylation of PRX-IIE. This post-translational modification
could prevent PRX-IIE from hyperoxidation. In addition, reversible S-glutathionylation of
PRX-IIE could take part in PRX-dependent signal transduction and regulation of the redox
homeostasis [74].

4.4. PRX-IIE Binds to Target Proteins

Besides post-translational control of activity, protein-protein interactions alter the
functions and properties of binding partners. PRX-IIE protein interactions mostly seem to
be redox-regulated, since most of the trapped proteins were found in the fraction eluted
with DTT (Figure 10A,B). In total 54 proteins were identified to interact with PRX-IIE. Since
PRX-IIE is located in plastids, we focused on the 24 proteins with plastidial localization.
However, the other proteins also deserve attention, since they might interact with the
cytosolic type II PRXs which display high similarity with PRX-IIE (Figure 1A). Most of the
identified proteins are known targets of redox regulation [75] like cyclophilin 20-3 [69] or
β-carbonic anhydrase [76].
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4.5. 14-3-3 Proteins as Binding Partner of PRX-IIE Open up New Perspectives

14-3-3 proteins function as molecular adapters and their identification as binding
partners of PRX-IIE appeared interesting and novel. They are present in various isoforms
in plant genomes and act as homo- and heterodimers [77]. 14-3-3 proteins can integrate
and control multiple pathways like the abscisic acid-dependent transcription of embryo-
specific target genes [78]. They participate in the regulation of salt stress tolerance and
apoptotic signaling transduction [52,53]. Furthermore, they function in the development of
cotyledons [54]. The 14-3-3 υ isoform co-controls the cell proliferation cycle and induces
the division of chloroplasts, which results in an increased plastid number, chlorophyll
content, and photosynthetic activity [54].

In this study, six 14-3-3 proteins could be identified to interact with PRX-IIE WT
(Table S3). 14-3-3 proteins are known to preferentially bind to phosphorylated motifs
containing phosphoserine residues [79,80]. In addition, pThr-dependent binding as well
as non-phosphorylation dependent interactions with target proteins were reported [81].
Phospho-mimetic variants of PRXIIE have been used to further address the binding prop-
erties to 14-3-3 υ under defined redox-conditions. However, preferential binding of 14-3-3
υ to these variants could not be detected under reducing as well as oxidizing conditions.
Instead, the highest binding could be observed for WT PRX-IIE under oxidizing condi-
tions (Figure 11B). In addition, introducing negative charges at positions S82, T108, and
T223, resulted in an inhibition of the thiol peroxidase activity (Figure 11A). Similar results
have been reported for human PRX2, where Cdk5-derived phosphorylation at T89 had a
negative effect on its activity [82].

To check if the interaction of 14-3-3 υ and PRX-IIE under oxidizing conditions may
alter the peroxidase activity, H2O2 reduction by PRX-IIE was determined in the presence
or absence of 14-3-3 υ (Figure 11C). A tenfold excess of 14-3-3 υ increased the peroxidase
activity of PRX-IIE significantly. Since such a high amount of 14-3-3 υ is necessary to alter
the PRX-IIE activity, it is more likely that the interaction is important during signaling
processes. In addition, future studies like proximity-based labeling approaches, bimolecular
complementation assays (BiFC), or Förster resonance energy transfer (FRET) measurements
under stressed and unstressed conditions would allow for further characterization of the
nature of the interaction between PRX-IIE and 14-3-3 proteins.

4.6. Hypothetical Outlook and Where to Go

Several mechanistic scenarios may be hypothesized. Formation of regulatory assem-
blies of PRX-IIE with homo- or heterodimers of 14-3-3 proteins may recruit additional
binding partners. In such a regulatory complex, proximity-based oxidation between
oxidized PRX-IIE and reduced 14-3-3 υ or binding of a third partner could be the regu-
latory mechanism that leads to changes in function and regulation of cellular processes
(Figure 12).

As described previously, oxidative stress not just induces new interactions of 14-3-3
proteins with protein partners, but also results in a loss of homeostatic interactions [83].
Under oxidative stress in humans, the selenoprotein W binds to 14-3-3 with an intermolecu-
lar disulfide bridge. This process results in a release of apoptosis signal-regulating kinase-1
(ASK1) from the 14-3-3-ASK1 complex. ASK1 then activates the Jun n-terminal kinase and
p38 MAP kinase pathways, which in turn activates caspases and thereby apoptosis [83,84].
Therefore, PRX-IIE may affect several functions of 14-3-3 υ. As indicated in the hypothetical
schematics presented in Figure 12, PRX-IIE could induce dimerization of 14-3-3 υ and,
thereby, mediate the binding or release of other proteins. Further studies are needed
to address the importance of PRX-IIE on 14-3-3 complex formation and their associated
signaling pathways. It will also be important to scrutinize the interaction of 14-3-3 proteins
with the cytosolic PRXs in order to evaluate the conservation of this interaction in other
cellular compartments in plants.
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Figure 12. Schematic depiction of the hypothetical interaction between PRX-IIE and 14-3-3 υ. Binding
of oxidized PRX-IIE to 14-3-3 υ could induce the association of a third partner. The formation of such
a complex could facilitate redox regulation, e.g., by proximity-based oxidation. The hypothetical
assembly may involve homo- or heterodimers of 14-3-3 isoforms.

5. Conclusions

The peroxidase activity of PRX-IIE is an important route for maintaining a proper ROS
homeostasis within plant cells. Our data show that the PRX-IIE activity is regulated by
different redox-dependent posttranslational modifications like sulfenylation, sulfinylation,
and sulfonylation, S-glutathionylation, and S-nitrosation. In addition, the interaction of
PRX-IIE with members of the 14-3-3 protein family suggests a novel function of PRX-IIE in
cell signaling. The interaction between PRX-IIE and other identified chloroplast proteins is
highly promising and awaits further validation and scrutiny of cell biological significance.
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