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Machine learning algorithm 
for estimating karst rocky 
desertification in a peak‑cluster 
depression basin in southwest 
Guangxi, China
Yali Zhang1, Yichao Tian1,2*, Ying Li3, Donghua Wang4, Jin Tao1, Yongwei Yang1, 
Junliang Lin1, Qiang Zhang1 & Luhua Wu5

Karst rocky desertification (KRD) has become one of the most serious ecological and environmental 
problems in karst areas. At present, mapping KRD with a high accuracy and on a large scale is still 
a difficult problem in the control of KRD. In this study, a random forest (RF) based on maximum 
information coefficient and correlation coefficient feature selection is proposed to predict KRD. Nine 
predictors stood out as feature factors to estimate KRD. Rock exposure was the most important 
predictor, followed by fractional vegetation cover for the prediction of KRD processes. The kappa and 
classification accuracy indexes were to evaluate the performance of the model. We recorded overall 
accuracy rate and kappa index values of 94.7% and 0.92 for the testing datasets respectively. The RF 
model was then used to predict the KRD in 2001, 2011, 2016, and 2020, and it was found that the KRD 
in the study area has exhibited a positive trend of improvement. Therefore, the use of multisource 
remote sensing data combined with the RF model can obtain better prediction results of KRD, thereby 
providing a new idea for large-scale estimation of the KRD in peak-cluster depression.

Karst rocky desertification, similar to desertification, is a landscape characterized by a large area of exposed bed-
rock due to vegetation destruction and soil erosion in karst areas1,2. It is not only a process of land degradation but 
also the result of land degradation. Typically, karst rocky desertification areas are characterized by thin surface 
soil, weak land productivity, and a poor anti-disturbance ability. Its ecological and environmental problems have 
been successively identified 3, including an extremely fragile ecological environment, loss of biodiversity4, and 
ecosystem degradation5,6. The ecological environmental security problems caused by karst rocky desertification 
have seriously affected people’s living environment and sustainable development7, and thus, KRD has drawn 
intensive interest in the field of global environmental change8.

Remote sensing technology has been widely used in military, agricultural, medical, and geographical map-
ping research due to its advantages of fast acquisition, high resolution, low cost, and good security. With the 
advancement of remote sensing techniques, karst rocky desertification assessment based on remote sensing 
data has also been rapidly developed9. This is exemplified in the work undertaken by Liu et al.10, which involved 
using a multispectral remote sensing Landsat 8 image to calculate the brightness temperature and determining 
the degree of karst rocky desertification by setting the brightness temperature threshold in Pingguo County, 
Guangxi. Another study was conducted by Zhang et al.11, in which based on a hyperspectral Hyperion image, 
the abundances of vegetation and exposed rock were extracted to monitor and evaluate the karst rocky deserti-
fication using the retrieved annual vegetation coverage from medium-resolution Moderate Resolution Imaging 
Spectroradiometer (MODIS) data. In a similar case, Zhang et al.12 assessed karst rocky desertification (KRD) in 
southwestern China. The information on karst rocky desertification was extracted using high spatial resolution 
GF-1 wide field of view (WFV) satellite data for the Nandong underground river basin. Overall, the remote 
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sensing data used to monitor the degree of karst rocky desertification have transitioned from multispectral13 to 
hyperspectral images14,15, and low resolution data have been replaced by high resolution data16,17.

Based on remote sensing data, considerable research has been conducted on karst rocky desertification 
monitoring techniques and methods. Traditionally, satellite imagery for karst rocky desertification mapping has 
relied on visual interpretation or human–computer interactive interpretation 18. This is evident in the case of 
Huang and Cai19, in which the human–computer interaction interpretation method was used to interpret remote 
sensing images acquired in 1974, 1993, and 2001, and then, the spatial pattern and changes in the karst rocky 
desertification in the middle of Guizhou Province were analyzed. Similarly, based on Thematic Mapper (TM) 
remote sensing data, Wang et al.20 mapped the karst rocky desertification in northern Guangdong through visual 
interpretation, and the accuracy of their karst rocky desertification map interpretation reached 93.6%. Although 
human visual interpretation can more accurately classify karst rocky desertification from remote sensing images, 
it demands considerable professional knowledge and is always time-consuming, which strongly hinders its effi-
ciency. Therefore, it can only be used for the assessment of the degree of karst rocky desertification on a small 
scale, making it difficult to conduct such research over a large area4. To overcome these limitations, scholars have 
used unsupervised classification, spectral hybrid analysis, and machine learning algorithms to extract karst rocky 
desertification information. For example, Li and Wu13 used the decision tree and fuzzy maximum likelihood 
methods to classify KRD. When the vegetation fraction, bedrock exposure, and slope factor were added to the 
classifier, the classification accuracy improved from 84.23 to 91.71%. Chen et al.21 utilized the Classification And 
Regression Tree (CART) method, which increased the unsupervised classification, and normalized difference 
vegetation index (NDVI) data participation decision classification to classify the KRD, which effectively avoided 
the problem of artificial subjectivity. After this, based on Advanced Land Observing Satellite (ALOS) imagery, 
Qi et al.22 assessed the feasibility of using the dimidiate pixel model (DPM) and spectral mixture analysis (SMA) 
approaches for KRD monitoring. Alternatively, a combination of spectral analysis and the vegetation index can 
be used to extract karst rocky desertification information with a high accuracy, but this method has difficulty 
identifying the degree of karst rocky desertification in similar shaded areas23. Supervised classification and 
spectral hybrid analysis can speed up the annotation process. However, high-quality expert-annotated samples 
are still a prerequisite for achieving accurate results using intelligent approaches. Unsupervised classification, 
to a certain extent, avoids the subjectivity of the artificial selection of samples, but has difficulty distinguishing 
between types of ground objects with small spectral characteristic differences. In the background of the big data 
era, machine learning methods such as support vector machines, random forest models, and neural networks 
have been extensively used in the fields of hydrology, meteorology, and ecology, and they have also provided a 
new direction in the extraction of karst rocky desertification information24. Machine learning combined with 
the factors influencing karst rocky desertification can not only overcome human subjectivity, but also efficiently 
identify the degree of karst rocky desertification in large areas4.

A recent case study reported by Zhang et al.25 argues that the optimal factor influencing karst rocky deser-
tification is of great significance to the evaluation of the degree of karst rocky desertification in karst areas. The 
vegetation coverage, rock exposure rate, and slope are usually used as grading factors for the degree of karst 
rocky desertification26,27. However, the factors influencing karst rocky desertification are complex and diverse. 
In support of this, Huang et al.8 utilized artificial neural networks (ANNs) to identify the importance of dif-
ferent environmental factors to karst rocky desertification. Zhang et al.28 used correlation analysis to study the 
relationships between karst rocky desertification, temperature, and rainfall and pointed out that karst rocky 
desertification is not sensitive to responses to climate change and there is a certain lag. Bai et al.29 explored the 
influence of lithology on karst rocky desertification using a combination of mathematical modeling and spatial 
analysis. Zhang et al.25 concluded that the karst rocky desertification index (KRDI) is a good indicator of karst 
desertification, and the higher the KRDI value, the higher the degree of desertification. In addition, the fragile 
ecological environment and unreasonable human interactions have promoted the aggravation of karst rocky 
desertification. For example, Li and Xiong30 qualitatively analyzed the impact of human activities on the degree 
of karst rocky desertification and pointed out that traditional agricultural activities have less impact on karst 
rocky desertification, while sudden short-term destructive economic activities are the humanistic motivations for 
initiating large-scale karst rocky desertification. Yao et al.31 studied the relationships between the degree of karst 
rocky desertification and the gross domestic product (GDP) and population density using superposition analysis 
and concluded that areas with higher population densities and higher GDPs also had higher degrees of karst rocky 
desertification. Shi et al.32 used night light remote sensing data to verify the impact of human activities on karst 
rocky desertification, and their study showed that the total night light (TL) associated with severe karst rocky 
desertification was concentrated in Guizhou and Yunnan. In addition, a large and growing body of literature 
has investigated the temporal and spatial distributions and change characteristics of karst rocky desertification, 
and these studies have achieved some results33. However, the research areas have been concentrated in Guizhou 
and Yunnan, and the research scale has usually been the county scale34,35. Few studies have been conducted on 
the karst rocky desertification in peak-cluster depression basins36.

The karst peak-cluster depression basin in southwest Guangxi is a typical area where tropical karst and non-
karst landforms intersect in the world, and it is also one of the hotspots of global biodiversity and ecosystem 
services. In addition, strong climate change, geological movements, and unreasonable human activities have 
caused karst rocky desertification to become the most serious environmental problem in this area, threatening 
the ecological security and economic and social development in the karst region in the peak-cluster depression 
basin in southwest Guangxi.

In response to these issues, in this study, a typical karst peak-cluster depression watershed in southwest 
Guangxi was selected as the study area. The main objectives of this study were as follows: (1) to analyze the 
relevant factors that may affect the development and evolution of karst rocky desertification; (2) to identify the 
optimal karst rocky desertification characteristic factors; and (3) to invert the spatial and temporal patterns of 
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karst rocky desertification from 2001 to 2020. The results of this study not only provide ideas for karst rocky 
desertification monitoring in peak-cluster depressions but also provide a data reference for government decision-
makers and environmental managers to make macroscopic decisions.

Results
Feature factors.  The R and MIC scores were used as measurements of linear and nonlinear correlations, 
and the results shown in Table 1.

The MIC, which is a nonlinear variable discovery method, revealed that 6 features of the 14 variables were 
relevant to the KRD in the peak-cluster depression basin in southwest Guangxi (Fig. 1). As is shown in Fig. 1, 
these six features were the RE, FVC, LAI, FPAR, ET, and P (MIC > 0.4). Among them, the RE and FVC had the 
strongest impact on the karst rocky desertification.

As can be seen from Table 1, the RE, FVC, S, FPAR, ET, LAI, DEM and LST factors exhibited strong correla-
tions with the degree of karst rocky desertification (Fig. 2), while the correlations between the drought index, 
lithology, soil type, population density, and slope direction and the degree of karst rocky desertification were 
low and only revealed the correlation degree between each factor and the karst rocky desertification linearly. 
Therefore, the RE, FVC, S, LST, P, ET, LAI, DEM and FPAR were selected as the feature factors for inverting the 
spatial distribution of the karst rocky desertification. Figure 3 shows the selected feature factors via MIC values 
and correlation coefficients.

Model accuracy and variable importance.  A summary of the parameters characterizing the accuracy of 
the RF models is presented in Table 2, which indicates that the overall accuracy rate of the random forest model 
is 94.7% and the kappa coefficient is 0.92. So, the random forest model is more reliable in mapping the karst 
rocky desertification. The importance of the input features obtained from the RF model can be used to measure 

Table 1.   MIC and correlation coefficients on the factors influencing of KRD. RE rock exposure, FVC 
fractional vegetation cover, S slope, LAI leaf area index, FPAR fraction of photosynthetically active radiation, 
ET evapotranspiration, LST land surface temperature, DEM elevation, P precipitation, SP slope aspect, ST soil 
type, POP population, L lithology, DI drought index.

RE FVC S LAI FPAR ET P LST DEM SP ST POP L DI

MIC 0.89 0.58 0.36 0.54 0.62 0.54 0.45 0.29 0.27 0.15 0.05 0.23 0.05 0.33

R 0.87  − 0.77 0.48  − 0.69  − 0.76  − 0.66  − 0.19 0.42 0.41  − 0.08  − 0.05 0.24 0.03 0.19

Figure 1.   Feature factors of KRD in 2020 selected based on MIC. Abbreviations: NKRD—No karst rocky 
desertification. LKRD—Light karst rocky desertification. MKRD—Medium karst rocky desertification. SKRD—
Severe karst rocky desertification. ESKRD—Extremely severe rocky desertification.
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their contributions to the classification accuracy (Fig. 4). Specifically, the variable importance scores are as fol-
lows: RE > FVC > FPAR > S > LAI > LST > P > ET > DEM. Notably, as the predominant features, RE and FVC score 
about twice compared with the following feature FPAR.

Spatial and temporal distributions of karst rocky desertification.  Figure 5 shows the distribution 
of the karst rocky desertification in the peak-cluster depression basin in southwest Guangxi. The evolution of 
the study area was characterized by KRD in space, indicating that the KRD generally improved, and the areas of 
SKRD and ESKRD continuously decreased. Specifically, in the early part of the study period (from 2001 to 2006), 
the SKRD and ESKRD accounted for large areas. The macroscopic pattern of the spatial distribution of the karst 
rocky desertification shows that the upper reaches of the basin were dominated by SKRD and ESKRD, the cen-
tral region was dominated by MKRD, and the lower region was characterized by LKRD and MKRD. However, 
from 2011 to 2020, the degree of karst rocky desertification was contained, and the severe and extremely severe 
karst rocky desertification were scattered in small areas. The macroscopic pattern of the spatial distribution of 

Figure 2.   Feature factors of KRD selected based on correlation coefficient. *Significant correlation at the 0.05 
level (both sides); **significant correlation at the 0.01 level (both sides); ***significant correlation at the 0.001 
level (both sides).
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Figure 3.   Feature factors of KRD in 2020 selected based on MIC and R in the peak-cluster depression basin in 
southwest Guangxi, China. Maps were generated using QGIS 3.26.2 (https://​www.​qgis.​org/​en/​site/).

Table 2.   Accuracy of the RF, including the kappa, OA, UA, and PA.

Overall accuracy (OA) Kappa

User’s accuracy (UA) Producer’s accuracy (PA)

Run timeNKRD LKRD MKRD SKRD ESKRD NKRD LKRD MKRD SKRD ESKRD

94.7% 0.92 100% 88.9% 96.8% 92.7% 92.9% 100% 80% 93.8% 97.4% 100% 4.5 s

Figure 4.   The importance of feature factors of KRD in the peak-cluster depression basin in southwest Guangxi, 
China.

https://www.qgis.org/en/site/


6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19121  | https://doi.org/10.1038/s41598-022-21684-5

www.nature.com/scientificreports/

the karst rocky desertification shows that only a few SKRD and ESKRD areas were distributed in Guangnan 
County in the upper reaches of the basin.

In general, since 2010, there has been an obvious decrease in the total area of karst rocky desertification in 
the peak-cluster depression basin in southwest Guangxi, indicating that the karst rocky desertification problem 
generally exhibits a reverse trend, primarily manifested as a decrease in the level of karst rocky desertifica-
tion. However, there are still a large number of moderate rocky desertification. In view of this, we suggest: (1) 
The primary task of karst rocky desertification control should follow the laws of nature, increase protection, 
reduce human disturbance, and strengthen the protection of potential rocky desertification land. For example, 
relevant government departments appropriately promote the pace of local urbanization, increase the intensity 

Figure 5.   Spatial distribution of the karst rocky desertification. Maps were generated using QGIS 3.26.2 
(https://​www.​qgis.​org/​en/​site/).

https://www.qgis.org/en/site/
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of ecological migration and rural population transfer, and effectively alleviate the population pressure in karst 
areas. (2) The ideal policies for the prevention and treatment of the rocky desertification peak-cluster depres-
sion basin in southwest Guangxi should properly handle the relationship between economic development and 
ecological protection so that local residents can gradually change their dependence on their original farming 
livelihoods. (3) Different methods should be effectively utilised according to the specific karst environments. 
Ecological restoration work should be carried out scientifically and rationally, particularly in areas with severe 
rocky desertification.

As can be seen from Table 3, the total area of KRD changed from 27,920 km2 to 26,830 km2 in the 20 years 
from 2001 to 2020; and the net area changed to 1090 km2 with a reduction rate of 54.5 km2 a−1. The MKRD, SKRD, 
and ESKRD areas decreased from 2001 to 2020 in the peak-cluster depression basin in southwest Guangxi. In 
particular, the proportions of the SKRD and ESKRD areas decreased from 32.39%, and 4.47% to 12.39%, and 
1.05%, respectively. Generally, the comprehensive control effect of the karst rocky desertification was remark-
able, and the overall karst rocky desertification exhibited a trend of improvement, but LKRD and MKRD were 
still widely distributed.

In the period from 2001 to 2020, the rocky desertification levels in the study area tended to decrease. The 
reason for the change of karst rocky desertification is mainly due to the rapid development of urbanization as 
well as social economy, and a large number of rural laborers have shifted from traditional agriculture to other 
industries, which has slowed down the pressure on land37. The reduction in farmland area improved farmland 
management and increased regional gross industrial product, which together with the continuously rising gross 
domestic product of the tertiary industry caused a positive rocky desertification development38. In addition, 
the Program of Conversion from Cropland to Forest and Grassland had been applied to restore the vegetation 
ecosystem since 2005, which has contributed to the gradual development of the ecological and environmental 
conditions of karst rocky desertification in a benign direction39.

Discussion
The occurrence of karst rocky desertification is a dynamic evolutionary process in time and space, and it is the 
result of the joint influences of the natural environment and human activities40–42. The formation factors of 
karst rocky desertification are complex and diverse, and an inversion model of karst rocky desertification needs 
to combine reasonable karst rocky desertification feature factors to produce reliable results. Feature extraction 
or generation is a critical step in the recognition process since the designated attributes strongly influence the 
recognition results43. Too many of the variables available may introduce noise or may not provide information to 
identify KRD44. When the feature factors used in the machine learning model are insufficient, the model will be 
under-fitted, which will lead to a certain deviation in the predicted results. However, adopting too many features 
will increase the search space of the model and the run time of the model, and concurrently, the correspond-
ing model’s construction process will be more complicated45. In addition, irrelevant factors will interfere with 
the model. Therefore, it is necessary to strategically identify the variables related to KRD, which can produce 
the best effect from the karst rocky desertification prediction model. Related studies have pointed out that the 
rock exposure rate and vegetation cover contribute the most to karst rocky desertification extraction17, which is 
consistent with the findings of this study.

As is shown in Table 1, the MIC and correlation coefficient between the KRD and RE are 0.87 and 0.89, respec-
tively. In addition, the results of the variable importance assessment provided in Fig. 4 indicate that the RE and 
FVC were the two most important variables affecting karst rocky desertification in the peak-cluster depression 
in southwest Guangxi. This was also proved by Xi et al.46 and Gu et al.31. From these two studies, it is evident 
that the NDVI had the best correlation with the karst rocky desertification, and the RE had a significant posi-
tive correlation with the occurrence intensity of the karst rocky desertification. Specially, based on geographical 
detector technology, Xi et al. obtained the contribution rates of the RE and FVC to karst rocky desertification, 
which were 44% and 42%, respectively. Gu et al. measured the importance of various factors to karst rocky 
desertification using the partial least squares regression model (PLS). However, this study attempted to input 
only the rock exposure rate and the vegetation coverage into the machine learning model, and the classification 
effect of the model was not good.

Moreover, data from several studies suggest that the leaf area index, LST, slope, rainfall, and ET can also be 
used as important factors and indicators for analyzing and evaluating the degree of rock desertification. For 
example, using Landsat 8 data, Deng et al.47 summarized the spatial distribution of the LST in karst areas, reveal-
ing that land surface temperature can describe the characteristics of karst rocky desertification in karst areas to a 
certain extent. Likewise, Li et al.48 found that biophysical parameters such as the surface vegetation coverage and 

Table 3.   Change in the karst rocky desertification areas of different levels.

Year

LKRD MKRD SKRD ESKRD Total karst area 
(103 km2)Area (103 km2) Proportion (%) Area (103 km2) Proportion (%) Area (103 km2) Proportion (%) Area (103 km2) Proportion (%)

2001 3.95 13.65 13.31 46.03 9.37 32.39 1.29 4.47 27.92

2006 4.17 14.39 14.04 48.55 8.71 30.11 1.05 3.63 27.96

2011 5.79 20.03 14.19 49.06 6.95 24.02 0.70 2.43 27.63

2016 8.89 30.73 13.00 44.94 3.61 12.48 0.31 1.08 25.81

2020 10.10 34.91 12.85 44.42 3.58 12.39 0.30 1.05 26.83
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leaf area index can better reflect the distribution of karst rocky desertification. Overall, these results demonstrate 
that the LST and LAI can better reflect the distribution of karst rocky desertification, which is consistent with 
the results of this study. As is shown in detail in Table 1, the LAI and FPAR also exhibit good correlations with 
the degree of karst rocky desertification. When all of the factors were incorporated into the machine learning 
model, the accuracy of the model classification did not improve (kappa coefficient was 0.86), but the run time of 
the model was longer. Thus, the scientific selection of the feature factors is particularly important when inverting 
karst rocky desertification. In this study, the feature variables selected using the MIC and correlation coefficient 
were added to the random forest model, which increased the overall accuracy of the model classification to 94.7% 
and the kappa coefficient to 0.92.

Traditional karst rocky desertification monitoring methods mainly rely on ground surveys, which require 
a great deal of time and money. Owing to the terrain limitations, they can only be carried out in areas with low 
altitude slopes and are not suitable for investigation in peak-cluster depression areas49. Although visual interpre-
tation of remote sensing images for monitoring rock desertification is not limited by the topography, it also has 
disadvantages, including a low interpretation efficiency, easily influenced by human subjectivity, and difficulty 
guaranteeing the accuracy. In this study, based on machine learning, the spatial distribution of the karst rocky 
desertification in a karst area was mapped using remote sensing data and auxiliary data. Using a traditional 
machine learning algorithm has certain advantages, but the selection of the feature vectors and the determina-
tion of the model parameters all have a certain impact on the accuracy of the prediction model50. Recently, little 
research has been conducted on mapping karst rocky desertification information based on machine learning 
algorithms. Pu et al.17 compared the accuracy of three algorithms, i.e., the random forest (RF), bagged decision 
tree (BDT), and extreme random tree (ERT) algorithms, and determined that their overall accuracies (OAs) 
were 85.21%, 80.85%, and 78.93%, respectively. Xu et al.4 used a support vector machine model (SVM) to evalu-
ate the karst rocky desertification areas in Liujiang, Changshun, and Zhenyuan. The overall accuracies in these 
areas were 85.50%, 84.00%, and 84.86%, respectively; and the kappa coefficients reached 0.8062, 0.7917, and 
0.8083, respectively. Obviously, the differences in the research areas and the setting of the model parameters have 
a certain influence on the accuracy of the prediction model45. Some scholars have proposed that among many 
machine learning algorithms, the RF algorithm has the advantages of simple training, high computational effi-
ciency, and high stability in the changing of parameter values in a classification model51. Although RF algorithm 
was faster to train and more stable, The accuracy of the random forest model depends on the settings of the 
internal parameters52. So, in our study, an iterative backward feature elimination procedure was used to reduce 
the number of less relevant variables until the internal accuracy (calculated on the basis of the OOB error) no 
longer varies. Using this approach significantly increases classification accuracy53. In addition, another limitation 
of the random forest model is that the accuracy of the model depends on the quality of the samples. Previous 
studies have reported that the sizes of the training samples sets were found to influence the performance of the 
RF classifier54. So, in order to reduce misclassification, the sensitivity of RF classification to the sampling design 
also needs to be considered53. According to the results of many experiments, the model has the highest accuracy 
when the training set is total of 75% and the test set is 25% in this study. In this study, the RF model, which was 
optimized via iteration, was used to map the KRD in the peak-cluster depression basin in southwest Guangxi 
based on machine learning. The overall accuracy of identifying the karst rocky desertification was 94.7%, and 
the kappa coefficient was 0.92. Therefore, this study provides an effective method of KRD monitoring.

Although quantitative analysis of the driving factors of karst rocky desertification development and evolution 
was conducted in this study, the in-depth relationships and causality between the different influencing factors 
need to be explored further. Therefore, in future research, it is necessary to comprehensively consider more 
factors affecting karst rocky desertification to better reveal the development and evolution mechanisms of karst 
rocky desertification. In addition, hyperspectral images with a high spectral resolution and rich texture features 
would be very suitable for the study of karst rocky desertification areas, and they have been widely used in other 
fields. Thus, a machine learning model based on hyperspectral data, combined with optimized algorithms, is a 
new way to extend remote sensing image information extraction techniques in karst rocky desertification areas.

Conclusions
Based on RF classifiers and using multisource remote sensing imagery, the spatio-temporal patterns of karst 
rocky desertification in the peak-cluster depression basin in southwest Guangxi, China, were monitored. The 
main conclusions are as follows:

In this study, six feature factors were identified using an MIC value of > 0.4 as the selection standard, and the 
Pearson correlation method was sued to filter the variable set. Concurrently, based on the results of these two 
filters, nine factors (RE, FVC, SLOPE, LAI, FPAR, ET, P, DEM and LST) were selected as the optimal factors for 
the inversion of the karst rocky desertification.

According to the nine feature factors, the RF algorithm was optimized via iteration. The optimized RF model 
was then used to predict the KRD in 2001, 2011, 2016, and 2020. The overall accuracy of the RF model was 94.7%, 
and the kappa coefficient was 0.92.

In general, the karst rocky desertification in the study area exhibited a positive trend of improvement. Specifi-
cally, both the area and the degree of karst rocky desertification decreased. Despite the remarkable effect of the 
comprehensive management of karst rocky desertification, areas of light and moderate karst rocky desertification 
are still widely distributed in the study area.

The RF method with the feature selection would be a better method for karst rocky desertification mapping 
compared with the common method. So, the accuracy of the optimal monitoring scheme in the peak-cluster 
depression basin in southwest Guangxi, China, could also be investigated for other regions. In addition, our 
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research provides technical support and data sources for the implementation of projects such as returning farm-
land to forests, soil and water conservation, and rocky desertification prevention and control.

Materials and methods
Study area.  The peak-cluster depression basin in southwest Guangxi is located in the slope zone from the 
Guizhou Plateau to Guangxi Basin, in which karst landforms are widely developed. This region is characterized 
by a fragile ecosystem, large area, wide distribution, and diverse geomorphological types of carbonate rocks. As 
a typical peak-cluster depression karst area in southwestern China55, the geographical position of the study area 
is 104° 33′–108° 43′ E and 21° 35′–24° 39′ N, covering an estimated area of 61,485.16 km2, and its altitude ranges 
from 500 to 1700 m. In addition, it possesses a typical tropical and subtropical humid and hot monsoon climate, 
with a mean annual temperature of 13–14 °C and a mean annual precipitation of 900–1600 mm56.

Furthermore, this area is not only an important ecological barrier in the Pearl River Basin, but also an 
important water conservation area and biodiversity priority protection area in China, as well as one of the areas 
where ethnic minorities mostly live in the Guangxi Zhuang Autonomous Region3. In addition, as a border area, 
the bilateral political relationships and the situations in neighboring countries have a significant impact on the 
sustainable development of the ecological environment in the border area. Moreover, the study area is the most 
convenient sea and land route from China to Vietnam and even Association of Southeast Asian Nations (ASEAN) 
countries and is an important hub of the “One Belt, One Road” initiative (Fig. 6).

Data sources and preprocessing.  Measured data, as well as a great deal of MODIS remote sensing data 
and auxiliary data, were employed in this study. Specifically, five MODIS products (MOD09A1, MOD13Q1, 
MOD11A2, MOD16A3, and MOD15A2) were used (Table 4), and the auxiliary data included elevation, slope, 
aspect, precipitation, lithology, soil type, drought index, and population data (Table 5).

MODIS data.  MODIS data products are widely used in the fields of land use/cover research, natural disaster 
monitoring and analysis, and marine ecological environment, and they play an important role in ecological envi-
ronment research and applications at global and regional scales. In this study, the MODIS datasets (tiles h27v06 
and h27v062) for 2001, 2006, 2011, 2016, and 2020 were used to calculate the karst rocky desertification. They 
were all downloaded from the United States Geological Survey (https://​earth​data.​nasa.​gov/). To begin this pro-
cess, the MODIS Reprojection Tool (MRT) was used for the data extraction, mosaicking, and reprojection. Spe-
cifically, the fraction of photosynthetically active radiation (FPAR) and the leaf area index (LAI) products were 
acquired from MOD15A2. In the same way, the land surface temperature (LST) and evapotranspiration (ET) 
were retrieved from the MOD11A2. In the follow-up phase, of the seven bands of the MOD09A1 product, only 
bands 2 and 7 were used to generate the corresponding rock exposure rate (Table 6). After this, the fractional 

Figure 6.   The location of the study area. Maps were generated using QGIS 3.26.2 (https://​www.​qgis.​org/​en/​
site/).

https://earthdata.nasa.gov/
https://www.qgis.org/en/site/
https://www.qgis.org/en/site/
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vegetation cover (FVC) was calculated using the NDVI data from MOD13Q1, which provides a 16-day compos-
ite with 250 m spatial resolution data, including NDVI products (Table 6). Finally, before further analysis, the 
above product datasets were uploaded to QGIS3.26.2 (https://​www.​qgis.​org/​en/​site/), where they were projected 
to the World Geodetic System (WGS) 1984, Universal Transverse Mercator (UTM) zone 48 N projected coordi-
nate system. They were further resampled to a spatial resolution of 250 m for uniformity. The boundary of the 
study area was used as a mask for cutting to ensure the same processing extent.

Auxiliary data processing.  The sources and details of the auxiliary data are shown in Table 5. These data 
were processed using the following methods. First, using the QGIS3.26.2 (https://​www.​qgis.​org/​en/​site/), the 
soil type, population, precipitation, digital elevation model (DEM), slope, and slope direction data were resam-
pled to the same spatial resolution as the MODIS product data using a nearest neighbor algorithm and by repli-
cating the pixels. Second, the drought index datasets, which were derived from the product data of the Climate 
Research Unit self-calibrated Palmer Drought Severity Index (CRUscPDSI) with a 1 km spatial resolution, were 
converted to a point layer. Then, the datasets were interpolated to raster files using the Kriging technique to be 
consistent with the spatial resolution of the other data.

In particular, the vector data of the lithology data were converted to a raster layer with a 250 m × 250 m spatial 
resolution for this study. In addition, for uniformity, all of the auxiliary data were further transformed to the 
World Geodetic System (WGS) 1984, Universal Transverse Mercator (UTM) zone 48 N projected coordinate 
system. Finally, the auxiliary data were extracted using the study area boundary as a mask to generate the rocky 
desertification impact factor data.

Karst rocky desertification survey data.  The field data were collected during the spring and summer of 
2020 (March–August). A total of 527 sampling plots, 30 × 30 m each17, were established. They were located ran-
domly along the road so that they would be easy to reach. Within each plot, the longitude, latitude, and elevation 
of the sample centroids were recorded using a high accuracy global navigation satellite system (GNSS). Then, 
the area of bare rock and vegetation coverage were measured using a high-precision handheld global positioning 
system (GPS) measuring instrument. In addition, the vegetation type, landscape type, and surrounding environ-
ment were also recorded according to visual observations. Ultimately, the indexes of the vegetation coverage and 
the rock exposure rate were calculated to determine the classification of the karst rocky desertification (Fig. 7).

Table 4.   Detailed specifications of the remote sensing datasets.

Data Sources Data type Variables Temporal resolution Spatial resolution Coverage

MODIS

MOD09A1 Surface reflectance B2, B7 8 days 500 m Global

MOD13Q1 NDVI 16 days 250 m Global

MOD11A2 LST Monthly 1 km Global

M0D16A3 ET Yearly 500 m Global

MOD15A2 LAI/ FPAR 8 days 500 m Global

Table 5.   Relevant parameters and sources of the auxiliary data.

Data Temporal Resolution Spatial Resolution Sources

Soil type (ST) 1 km https://​www.​resdc.​cn/

DEM 90 m http://​www.​gsclo​ud.​cn/#​page1/2

Slope (S) 90 m http://​www.​gsclo​ud.​cn/#​page1/2

Slope aspect (SP) 90 m http://​www.​gsclo​ud.​cn/#​page1/2

Drought index (DI) Yearly 0.05 http://​clime​xp.​knmi.​nl/​selec​tfield_​obs2.​cgi?​id=​someo​ne@​somew​
here

Lithology (L) Shp http://​www.​karst​data.​cn/

Population (POP) 1 km https://​www.​world​pop.​org/​geoda​ta/​listi​ng?​id=​64

Precipitation (P) Monthly 1 km http://​data.​cma.​cn/

Table 6.   FVC and RE were extracted using QGIS3.26.2 (https://​www.​qgis.​org/​en/​site/). NDRI normalized 
difference rock index.

Factor Formula References

RE NDRI = B7−B2
B7+B2  RE =

NDRI−NDRIr
NDRIr−NDRIo

Zhu57

FVC FVC =
NDVI−NDVIsoil

NDVIveg−NDVIsoil
Mishra and Chaudhuri58

https://www.qgis.org/en/site/
https://www.qgis.org/en/site/
https://www.resdc.cn/
http://www.gscloud.cn/#page1/2
http://www.gscloud.cn/#page1/2
http://www.gscloud.cn/#page1/2
http://climexp.knmi.nl/selectfield_obs2.cgi?id=someone@somewhere
http://climexp.knmi.nl/selectfield_obs2.cgi?id=someone@somewhere
http://www.karstdata.cn/
https://www.worldpop.org/geodata/listing?id=64
http://data.cma.cn/
https://www.qgis.org/en/site/
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Based on the vegetation coverage, rock exposure rate, and rock distribution obtained from the survey, based 
on previous studies59, and combined with the landforms in the study area, the karst areas in this study were 
classified into five types: non-rocky desertification, light karst rocky desertification, moderate karst rocky deser-
tification, severe karst rocky desertification, and extreme karst rocky desertification. The classification standard 
is shown in Table 7.

Feature selection method.  The maximal information coefficient (MIC), which was introduced by Reshef 
et al. in 201160, is a powerful approach for detecting various relationships between variables, and it was devel-
oped on based on mutual information. The larger the MIC value between the two variables is, the stronger the 
correlation is, and vice versa. And, the Pearson’s correlation coefficient, a statistical method that captures the 
dependence of two variable correlations, is frequently used for the decorrelation of variables and for feature 
extraction61.

Figure 7.   Field data survey map of karst rocky desertification. Map was generated using QGIS 3.26.2 (https://​
www.​qgis.​org/​en/​site/).

Table 7.   Field classification standard for karst rocky desertification.

Classification of KRD Exposure rate of bedrock (%) Vegetation and soil coverage (%)
Distribution character of the exposed 
rock

NKRD  < 30 70 None

LKRD 30–50 50–70 Point

MKRD 50–70 30–50 Point, line

SKRD 70–90 20–30 Line, patch

ESKRD  > 90 20 Patch

https://www.qgis.org/en/site/
https://www.qgis.org/en/site/
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Random forest classifier.  The random forest (RF) classifier is a non-parametric ensemble classification 
method based on a large number of regression trees, especially with two important parameters as the number of 
decision trees and the number of split nodes62. The disadvantage of RF was that the split rules for classification 
are unknown63. However, because of its high stability and its ability to perform efficient processing of large-scale 
data64, the random forest classifier is a more practical integrated learning method, and it can effectively reduce 
the error of a single classifier and improve the classification accuracy using multiple classifiers for voting classifi-
cation. Random forest algorithms have randomness in sample and feature selection, which makes it difficult for 
random forest to fall into overfitting and gives it a good antinoise ability65,66. In this study, a bagging integrated 
random forest classification algorithm was used to predict the degree of karst rocky desertification.

The specific steps were as follows.
First, the degree of karst rocky desertification was defined as the dependent variable, and the vegetation 

coverage, the rock exposure, and other factors were used as explanatory variables to select the optimal number 
of leaf nodes by setting RFLeaf = 5, 10, 20, …, 500.

Second, ① the entire dataset was randomly split into calibration (70%) and validation (30%) datasets to model 
the KRD. The calibration dataset was used to train the models with all of the relevant variables identified by the 
MIC. The independent validation sets were used to evaluate the predictive performance of the RF model. ② The 
kappa and classification accuracy indexes were calculated for the validation datasets. ③ If the kappa coefficient 
was greater than 0.95, the trained model was saved. Otherwise, steps ① and ② were repeated.

Finally, based on the karst rocky desertification characteristic data, the trained RF model was employed 
to monitor the karst rocky desertification dynamics during1990–2020 in the peak-cluster depression basin in 
southwest Guangxi.

Accuracy assessment.  The stability and reliability of the model algorithm are the basis of the subsequent 
research, so it is very important to measure the accuracy of the model. In this study, to test the effectiveness of 
the RF algorithm, performance measurement metrics, including the overall accuracy, users’ accuracy, producers’ 
accuracy, and kappa coefficient, were adopted.

Technical route and workflow.  A flowchart of the entire process used in this study is shown in Fig. 8, 
which can be divided into three parts.

(1)	 Data preprocessing and the extraction of desertification indicators
	   Based on the MODIS data and auxiliary data, the karst rocky desertification factor data were extracted, 

including the vegetation coverage, bedrock exposure rate, surface temperature, leaf area index, photosyn-
thetic utilization efficiency, elevation, slope, slope direction, lithology, soil type, evapotranspiration, popula-
tion density, and annual precipitation data. The optimum characteristics of the karst rocky desertification 
factors were selected via the MIC and Pearson’s correlation coefficient.

(2)	 RF model setting
	   The purpose of this step was to adjust the model parameters. The optimal numbers of trees and leaves 

for the RF classifier were determined by plotting the Out of Bag (OOB) error versus the number of trees 
and by determining the threshold number of trees for which the error was stable. The number of trees to be 
used in the RF classifier was chosen as 250, which is not too computationally expensive but is large enough 
to stabilize the model error among the ensemble of the decision trees. Similarly, the number of leaves used 
in the RF classifier was 5, and the OOB error was the smallest.

(3)	 Karst rocky desertification mapping.
	   Finally, based on karst rocky desertification feature sets, the trained RF model was used to monitor the 

karst rocky desertification dynamics during 2001–2020 in the peak-cluster depression basin in southwest 
Guangxi.
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Figure 8.   Flow chart of karst rocky desertification mapping in peak cluster depression in Southwest Guangxi, 
China.
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Data availability
The data that support the findings of this manuscript are available from the corresponding author, T.Y, upon 
reasonable request.
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