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Abstract

Background: Amino acid substitution models play an important role in inferring phylogenies from proteins.
Although different amino acid substitution models have been proposed, only a few were estimated from
mitochondrial protein sequences for specific taxa such as the mtArt model for Arthropoda. The increasing of
mitochondrial genome data from broad Orthoptera taxa provides an opportunity to estimate the Orthoptera-
specific mitochondrial amino acid empirical model.

Results: We sequenced complete mitochondrial genomes of 54 Orthoptera species, and estimated an amino acid
substitution model (named mtOrt) by maximum likelihood method based on the 283 complete mitochondrial
genomes available currently. The results indicated that there are obvious differences between mtOrt and the
existing models, and the new model can better fit the Orthoptera mitochondrial protein datasets. Moreover,
topologies of trees constructed using mtOrt and existing models are frequently different. MtOrt does indeed have
an impact on likelihood improvement as well as tree topologies. The comparisons between the topologies of trees
constructed using mtOrt and existing models show that the new model outperforms the existing models in
inferring phylogenies from Orthoptera mitochondrial protein data.

Conclusions: The new mitochondrial amino acid substitution model of Orthoptera shows obvious differences from
the existing models, and outperforms the existing models in inferring phylogenies from Orthoptera mitochondrial
protein sequences.
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Background
Amino acid substitution models (models for short) play
an important role in many aspects of protein analyses
such as measuring the genetic distance, aligning protein
sequences or inferring phylogenies [1, 2]. The first mo-
lecular sequences to be used for phylogenetic inference
were proteins [3].

The standard amino acid substitution model consists
of two components: a 20 × 20 instantaneous substitution
rate matrix and a vector of 20 amino acid frequencies.
There are two main approaches to estimate amino acid
substitution models, the parsimony approach and the
maximum likelihood approach [2]. The first parsimony
method was proposed by Dayhoff et al. [4] to estimate
the PAM model (Dayhoff model). Then, on the basis of
Dayhoff model, other alternative models based on parsi-
mony method, such as JTT [5], BLOSUM62 [6], VT [7],
were proposed successively. The parsimony methods are
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fast, but they are limited to only pairwise protein align-
ments and closely related amino acid sequences. The
maximum likelihood (ML) method was proposed by
Adachi and Hasegawa [8] to estimate the mtREV model
with fully utilizing the information contained in multiple
protein alignments and the corresponding phylogenetic
trees, which must be estimated from the data [4, 5, 9–
11].
As more protein sequences accumulated, a number of

models have been determined for general interest pro-
teins, such as WAG [10], LG [11]. Although these gen-
eral models have been calculated from broad taxonomic
groups, it has been shown that models specific to certain
protein groups (e.g. mitochondrial) or life domains (e.g.
viruses) differ significantly from general models, and
thus perform better when applied to the data to which
they are dedicated [12]. A number of specific amino acid
substitution models have been introduced, e.g. cpREV
(chloroplast proteins model) [13], rtREV (retrovirus-spe-
cific model) [14], HIV-specific models [15], FLU (influ-
enza proteins model) [2] and DEN (dengue viruses
model) [16].
Mitochondrial genome (mitogenome) encodes proteins

have been used extensively as molecular markers for the
inference of phylogeny [17–21]. Few groups have esti-
mated empirical models from mitochondrial proteins
(mt models). The first mt model is mtREV [8] from 20
vertebrate mitogenomes. Following the observation that
differences exist between taxonomic groups, mt models
specific to a given lineage have also been developed,
such as mtMam [22, 23], MtArt [24], mtPan [25]/
mtPan2013 [26], MtZOA [27], mtFish [23], and mtMet,
mtVer, mtInv, mtPro and mtDeu [28].
A problem with existing empirical models is that they

are based on the comparison of restricted datasets. The
mt models might over-fit to training data due to a large
number of free parameters of the amino acid substitu-
tion model (precisely 208 free parameters) and not fit
for other lineages [2, 9, 27, 28]. Orthoptera is the most
diverse order of polyneopteran insects, and the number
of Orthoptera mitogenome sequences increased rapidly.
This provides the opportunity to estimate amino acid
substitution model that best fits the Orthoptera mt pro-
tein sequences. Here, 54 new mitochondrial genome se-
quences were determined, and a new mitochondrial
amino acid substitution model for Orthoptera was esti-
mated by maximum likelihood method based on 283
Orthoptera mitochondrial genomes. We then compared
the differences between the new model and the existing
model, and the fitting of the mtOrt to the Orthoptera
datasets. Finally, we used mtOrt and existing models to
explore the phylogenetic relationships of the major
Orthoptera lineages and evaluate the performance of the
new model in phylogenetic analyses.

Results
Fifty-four new mitogenomes
The 54 newly determined mitogenome sequences are
available from GenBank (Additional file 1: Table S1), in-
cluding 53 Caelifera species and 1 Ensifera species. The
size of the complete mitogenome sequences of 54 spe-
cies ranges from 14,957 bp to 16,437 bp. The mitogen-
omes of all species contain a conserved set of 37 genes,
including 13 PCGs, large and small rRNAs (rrnL and
rrnS), 22 transfer RNAs (tRNAs) and a large non-coding
region called the A + T-rich region or control region.
Among all the Caelifera mitogenomes sequenced in this
study, there is an arrangement order translocation of
trnK and trnD (KD rearrangement) was found in 52 spe-
cies except Yunnantettix bannaensis (Caelifera: Tetrigi-
dae). The KD rearrangement was also not found in
Ruidocollaris convexipennis (Ensifera: Tettigoniidae), but
trnY-CR-cox1 rearrangement occurred.

The new model and its fit to training dataset
The amino acid exchangeability rates and amino acid
frequencies of the new model are shown in Table 1. The
exchangeability rates between different amino acids var-
ies widely. The highest exchangeability rate (between
Asp (aspartic acid) and Glu (glutamic acid), 10.55) is
196,311 times higher than the lowest (between Arg (ar-
ginine) and Phe (phenylalanine), 0.00005). The amino
acid frequencies of different amino acids are also differ-
ent, from 0.01 (Arg) to 0.16 (leucine, Leu).
We evaluated the fit of the new model on the training

dataset. Table 2 shows significant likelihood improve-
ments of the new models (Q’) over the initial model dur-
ing the model training process. The first iteration
contributed about 98% of the total likelihood improve-
ment. The optimization process of the new model was
terminated after the third iteration, as the gain from the
third iteration was insignificant. It is obvious that likeli-
hood and AIC improvements of the final model (Q’ =
mtOrt) over the initial model (mtInv) are significant (i.e.,
1943.112 and 3470.224, respectively). Compared with
the initial model (Q), the new model (mtOrt) fit the
training dataset better, which is confirmed by the likeli-
hood improvement and better AIC score of the new
model [29]. The score guarantee that the likelihood gain
of the new model comes from their genuine fit and over-
whelm the penalty of free parameters [9, 28].

Model evaluation
The robustness of new model
The mtOrt model was estimated from the training data-
set containing 89.4% of the Orthoptera mt protein se-
quences. To examine the robustness of the mtOrt
model, we estimated additional models from three other
datasets, namely mtOrt_O, mtOrt_C and mtOrt_E
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(Additional file 2: MtOrt_4.nexus.txt). MtOrt_O esti-
mated from the dataset consisting of all Orthoptera mt
protein sequences (283 species). MtOrt_E estimated
from the dataset containing all Ensifera mt protein se-
quences (91 species). MtOrt_C estimated from the data-
set containing all Caelifera mt protein sequences (192
species). The correlation of frequency vectors between
mtOrt and mtOrt_O is equal to 1 and the other are
close to 1. The correlations of exchangeability matrices
between these four models (Table 3) are significantly
higher than that between mtOrt and existing models
(Table 4), especially the correlation between mtOrt and
mtOrt_O is almost 1. The comparison of frequency vec-
tors of the four models estimated by different datasets

revealed that there was no significant difference in the
amino acid frequencies between all models, and the p-
value range is from 0.437 (MtOrt_E - MtOrt_C) to 0.973
(MtOrt - MtOrt_O) (p > 0.05). The comparison of ex-
changeability matrices of the four models also showed
that there was no significant difference in the amino acid
exchangeability rates between all models, and the p-
value range is from 0.999998 (MtOrt - MtOrt_E and
MtOrt_E - MtOrt_C) to 1 (MtOrt - MtOrt_C) (p > 0.05).
These results further indicate that mtOrt model fits the
orthopteran mt protein dataset better than the existing
models and is a robust model with parameters stability.

Model comparisons
We measured the correlations between mtOrt and other
11 widely used existing models (Table 4). For the ex-
changeability rate matrices, the lowest correlation among
the 12 models is between mtPan2013 and LG models,
and the highest is among JTT, mtDeu and mtPro
models. Compared with the new model, mtInv is the
closest model to mtOrt in terms of exchangeability rates
and LG has the lowest correlation. For the frequency
vectors, the lowest correlation among the 12 models is
between Dayhoff and mtInv models, and the highest is
among JTT, mtDeu and mtPro models. MtPan2013

model is the closest to the amino acid frequency of

Table 1 The mtOrt model

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Exchangeability rates Ala

Arg 0.04

Asn 0.03 0.22

Asp 0.14 0.09 6.01

Cys 0.64 1.63 0.57 0.24

Gln 0.09 3.01 1.44 0.30 0.25

Glu 0.20 0.03 1.64 10.55 0.25 2.50

Gly 1.05 0.21 0.69 1.13 1.25 0.08 1.24

His 0.07 1.43 2.55 0.46 0.24 5.73 0.12 0.08

Ile 0.08 0.04 0.44 0.05 0.28 0.05 0.06 0.04 0.10

Leu 0.06 0.07 0.07 0.02 0.28 0.23 0.05 0.03 0.14 1.59

Lys 0.00 1.43 3.95 0.13 0.00 3.98 3.33 0.13 0.25 0.08 0.07

Met 0.41 0.02 0.43 0.05 0.27 0.25 0.29 0.17 0.14 2.95 3.98 0.80

Phe 0.06 0.00 0.12 0.02 1.50 0.06 0.07 0.09 0.17 1.00 2.16 0.03 0.63

Pro 0.52 0.42 0.27 0.06 0.00 0.95 0.11 0.01 0.73 0.07 0.29 0.43 0.07 0.08

Ser 3.26 0.25 2.51 0.49 4.04 0.45 0.57 2.47 0.20 0.18 0.45 3.04 0.75 0.62 1.51

Thr 4.04 0.09 1.77 0.07 0.34 0.15 0.24 0.03 0.24 2.14 0.27 0.71 3.35 0.09 1.11 3.91

Trp 0.03 1.21 0.10 0.19 2.09 0.01 0.18 0.25 0.02 0.07 0.42 0.32 0.21 0.52 0.06 0.34 0.02

Tyr 0.02 0.22 1.44 0.41 3.73 0.75 0.27 0.09 4.15 0.17 0.21 0.39 0.30 3.90 0.22 0.52 0.13 0.78

Va 2.31 0.06 0.09 0.13 1.69 0.01 0.32 0.54 0.00 9.41 0.84 0.05 2.49 0.66 0.08 0.38 1.51 0.14 0.16

Amino acid frequencies 0.04 0.01 0.06 0.02 0.01 0.02 0.02 0.04 0.01 0.11 0.16 0.03 0.09 0.09 0.03 0.10 0.06 0.02 0.05 0.05

Table 2 Log-likelihood of the target function on training
dataset

mtInv (initial model) − 438,493.411

First iteration − 436,598.238

Second iteration −436,551.677

Third iteration (final model) −436,550.299

AIC improvement 3470.2240000001

AIC/site 0.804

Note: AIC/site are the AIC improvement per site of the final model in
comparison to the initial model mtLnv, respectively
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mtOrt model and Dayhoff has the lowest correlation.
MtInv, mtMet and mtPan2013 are most highly correlated
with mtOrt and have significant correlations, both in ex-
changeability matrix and frequency vector (p < 0.01).
Based on the results of correlation analysis, we com-

pare the differences between the new model and the
existing models. The amino acid exchangeability rates of
mtOrt, mtInv, mtPan2013 and mtMet models were plot-
ted in Fig. 1. In mtInv and mtMet models, the exchange-
ability rates between Val (valine) and His (histidine) are
the lowest (0.008 and 0.004), and that between Val and
Ile (isoleucine) are the highest (8.543 amd 10.953). The
rates between Glu and Asp (asparagine) are the highest
in Pan2013 (10.819) and mtOrt (10.552), but the lowest
rate in Pan2013 is between Arg and Asp (0.00000001),
while the lowest rate in mtOrt is between Arg and Phe
(0.00005). The change of amino acid exchangeability
rates between different models is basically the same.
However, they differ considerably when we look in their
relative differences (Fig. 2). For example, the coefficients
on Ala (alanine) row are notably different among

models, most of them are mtOrt < mtPan2013/mtInv.
The 15 out of 190 coefficients in mtOrt are at least 10
times as large as corresponding ones in the mtPan2013

model. MtInv and mtMet models have 4 and 3 coeffi-
cients that are at least 10 times larger than mtOrt,
respectively.
Amino acid frequencies of the four models, mtOrt,

mtInv, mtMet and mtPan2013, are nearly identical (Fig. 3,
correlation > 0.98), their correlation being much higher
than other models (Table 4). We observed some notable
differences between frequencies of these models. For in-
stance, the frequency of Met in mtOrt (0.09) is higher
than other three models and is 1.3 times than that in
mtMet (~ 0.07), while Gly (glycine) frequency is only
0.04 in mtOrt, which is the lowest in all models.

Phylogenetic performance
We assessed the performance of the new model and the
existing models on building maximum likelihood phy-
logenies. For each dataset, we optimized parameters of
the rate heterogeneity model, including proportion of in-
variable sites and shape of Gamma distribution with 4
categories, but fixed the exchangeability rates and base
frequencies of the models.
We calculated the mean differences of the log-

likelihood and the AIC score of per site (AIC/site) for
testing datasets between mtOrt and other 11 models. It
is clear that the mean differences of AIC/site between
mtOrt and other models are negative, and the differ-
ences of log-likelihood are positive, which indicate that
mtOrt outperform the existing models for testing data-
sets, followed by mtInv, mtMet, mtPan2013, mtArt,
mtZoa (Fig. 4). Furthermore, we compared the perform-
ance of new model to LG4X and C60 (site-

Table 3 The correlations between mtOrt, mtOrt_O, mtOrt_C
and mtOrt_E. MtOrt_O models

mtOrt mtOrt_O mtOrt_C mtOrt_E

mtOrt 1.000** 0.998** 0.998**

mtOrt_O 0.999** 0.998** 0.998**

mtOrt_C 0.990** 0.990** 0.992**

mtOrt_E 0.986** 0.985** 0.954**

Note: The values in the top triangle represent the correlations between
frequency vectors, while values in the low triangle are the correlations
between exchangeability matrices. The greater the absolute value of the
Pearson correlation coefficient, the higher the correlation. **: p < 0.01,
extremely significant correlation

Table 4 The Pearson’s correlations between 12 models: mtOrt and 11 widely used models

Dayhoff JTT LG mtArt mtDeu mtInv mtMet mtPan2013 mtPro mtZoa WAG mtOrt

Dayhoff 0.903** 0.812** 0.397 0.903** 0.292 0.365 0.34 0.903** 0.495* 0.93** 0.252

JTT 0.896** 0.961** 0.559* 1.000** 0.444 0.523* 0.517* 1.000** 0.643** 0.975** 0.436

LG 0.854** 0.914** 0.541* 0.961** 0.457* 0.527* 0.538* 0.961** 0.619** 0.912** 0.457*

mtArt 0.767** 0.789** 0.866** 0.559* 0.941** 0.965** 0.964** 0.559* 0.981** 0.491* 0.948**

mtDeu 0.895** 1.000** 0.914** 0.789** 0.444 0.523* 0.517* 1.000** 0.643** 0.975** 0.436

mtInv 0.024 −0.015 0.028 0.091 −0.014 0.976** 0.968** 0.444 0.875** 0.363 0.981**

mtMet −0.025 −0.018 0.056 0.109 −0.017 0.959** 0.982** 0.523* 0.929** 0.439 0.983**

mtPan2013 −0.035 −0.025 0.002 0.054 −0.024 0.956** 0.897** 0.517* 0.931** 0.434 0.988**

mtPro 0.896** 1.000** 0.914** 0.789** 1.000** −0.015 −0.018 −0.025 0.643** 0.975** 0.436

mtZoa 0.821** 0.825** 0.894** 0.982** 0.852** 0.072 0.086 0.037 0.852** 0.578** 0.892**

WAG 0.919** 0.934** 0.961** 0.809** 0.934** 0.003 0.017 −0.016 0.934** 0.850** 0.347

mtOrt −0.046 −0.046 − 0.011 0.047 − 0.440 0.952** 0.929** 0.927** −0.046 0.025 −0.024

Note: The values in the top triangle represent the correlations between frequency vectors, while values in the low triangle are the correlations between
exchangeability matrices. The greater the absolute value of the Pearson correlation coefficient, the higher the correlation. *: p < 0.05, significant correlation; **: p <
0.01, extremely significant correlation
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heterogeneous models) [29]. The results illustrate that
the new model outperformed LG4X and C60 models.
The whole dataset, which include 283 Orthoptera mt

protein sequences, was divided into sub-datasets with
two algorithm, and different k values targeting sub-
dataset sizes of 16, 24, 32, 64 and 120 sequences [9].
Using the random splitting algorithm, 43 sub-datasets
(RSDs) were obtained and the tree-based splitting algo-
rithm obtained 42 sub-datasets (TSDs). First, we evalu-
ated the best-fit model for 85 sub-datasets by
ModelFinder [30]. The results show that the best-fit
models for all RSDs are mtOrt. Most of the best-fit
models of TSDs are mtOrt, but there are six TSDs
where the best-fit models are mtMet, and two of them
are obtained by k = 32, four are obtained by k = 16.
Next, we evaluated the performance of mtOrt and

other five models (mtInv, mtPan2013, mtMet, mtArt and

mtZoa) by comparing the log-likelihood of trees (each
sub-dataset has six trees, involving a total of 510 trees),
which were inferred from each sub-dataset by IQ-TREE
1.7 with different models. The performance of the mt
models at the individual dataset were estimated by ap-
proximately unbiased test (AU test) for phylogenies [29,
31, 32]. The CONSEL program was used to assess the
confidence levels of the site log-likelihoods for phyloge-
nies with the different models of each sub-dataset. The
results of AU test show that among the 85 sub-datasets,
the best log-likelihood of trees of 77 datasets are con-
structed by mtOrt model, and these 77 sub-datasets
(90.6%) only accept the topologies constructed by mtOrt,
while significantly rejecting the topologies built by five
existing mt models, and 68.8% of them have a confi-
dence level of 0.9 (Fig. 5). The mtMet are the best-fit
models for 7 out of 85 sub-datasets, but only

Fig. 1 Amino acid exchangeability rates of mtOrt, mtInv, mtPan2013 and mtMet models
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significantly better for three datasets at the 0.9 confi-
dence level, while the mtInv only significantly better for
one sub-dataset at the 0.9 confidence level, and they are
all smaller data sets. The other five existing models were
not the best-fit model for any datasets.
We investigated the topological quality of phylogenies for

each testing datasets and sub-datasets with six mt models
(mtOrt, mtInv, mtPan2013, mtMet, mtArt and mtZoa) by
measuring their topological distances from the best phylog-
enies. Specifically, we used the Matching Split distance
(MS) metric to measure the distance between two phyloge-
nies by TreeCmp 2.0 [33]. Although no difference was de-
tected in the topologies of the testing datasets built by
different models, Fig. 6 discloses remarkable topological
distances from the phylogenies of sub-datasets with existing
models to the new model. For 85 sub-datasets, the phyloge-
nies built by mtInv and mtOrt have the same topologies for
67 sub-datasets, and the phylogenies of 64, 54, 51 and 43
sub-datasets inferred by mtMet, mtPan2013, mtZoa and

mtArt have the same topologies as that constructed by
mtOrt, respectively. The topologies inferred by mtArt are
different from that constructed by mtOrt in 49.4% of sub-
datasets, and the phylogenies of 40.0%, 36.5, 24.7 and 21.2%
sub-datasets inferred by mtZoa, mtPan2013, mtMet, and
mtInv are different from that constructed by mtOrt, re-
spectively. We also compared the node support values of
the trees constructed by different models for testing data-
sets and sub-datasets. The results showed that the new
model did not improve the node support values, and the
node support values of mtOrt_trees are not significantly
different from those of the existing models (p > 0.05).
We used Polyneoptera mitogenomes dataset to test

whether the new model would be used in phylogenetic
estimation of other closely related taxa. For the trees of
Polyneoptera constructed by different models, mtOrt_
tree, mtInv_tree, mtMet_tree and mtPan2013_tree have
the same topology (Additional file 3: Figure S1). Al-
though mtOrt_tree does not have the optimal likelihood

Fig. 2 The ratio of exchangeability rates between mtOrt and mtMet/mtPan2013/mtInv models. The size of one circle represents the
exchangeability rate between mtOrt and other models. The solid (unfilled) circles represent exchangeability rates where mtOrt is bigger (smaller)
than the three models. For visualization, the large ratios are trimmed at 10 and marked with dotted circles
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and AIC, it has the optimal node support value, and
there is no significant difference between different
models (p > 0.05). The results indicated that the new
model is also applicable in the study of phylogenetic re-
lationship of Polyneoptera.

Phylogenetic analysis of Orthoptera
The 14 Orthoptera phylogenetic trees (inferred by the
new model, 11 existing models and two site-
heterogeneous models (LG4X and C10)) show that
mtOrt (+R10) resulted in a likelihood advantage over

Fig. 3 Amino acid frequencies of mtOrt, mtInv, mtPan2013 and mtMet models

Fig. 4 The mean difference of log-likelihood and AIC scores of per site between mtOrt and the existing models on testing datasets
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other models (1812.897 log-likelihood advantage over
the second-best model, mtInv (+R10)). The AU test sup-
ports that mtOrt_tree is optimal (au = 1.000 and p <
0.01), and significantly rejects the topologies of other
trees (the au values of the other 13 trees are less than
0.01, and the p values are less than 0.01). By comparing
the topologies, the abnormal result of the clustering of
grylloid (include Grylloidea and Gryllotalpoidea of Ensi-
fera) and Caelifera is found in all the nine trees (mtArt_
tree, mtZoa_tree, LG_tree, mtPro_tree, JTT_tree,
mtDeu_tree, WAG_tree and Dayhoff_tree). The top-
ology constructed by site-heterogeneous models (LG4X
and C10) also performs poorly.

The comparisons between mtOrt_tree and mtMet_
tree, mtInv_tree and mtPan2013_tree shows that the rela-
tionships between higher-level taxa are identical and
very stable (Fig. 7). The MS metric was used to measure
the distance between four phylogenies. The result shows
that the four topologies are very similar to each other,
The MS distances range from 0.0025 (Pan2013_tree vs
mtMet_tree) to 0.0201 (mtMet_tree vs mtInv_tree). The
most similar to mtOrt_tree is mtInv_tree (0.0062),
followed by mtMet_tree (0.0161) and mtPan2013_tree
(0.0175).
Overall, Orthoptera is divided into two large branches:

Ensifera and Caelifera (Fig. 7). Within the Ensifera, the

Fig. 5 The number and confidence levels of different models that build the optimal topology for each sub-dataset

Fig. 6 The topological distances between trees inferred using mtOrt and five existing models. The horizontal axis indicates the topological
distance between 2 tree topologies, whereas the vertical axis indicates the number of datasets
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relationships among the seven superfamilies were
((((Tettigonioidea + ((Stenopelmatoidea + Hagloidea) +
Rhaphidophoroidea)) + Stenopelmatoidea) + Schizodacty-
loidea) + (Grylloidea + Gryllotalpoidea)). Within the
Caelifera, the relationships among the seven superfam-
ilies were ((((((Pyrgomorphoidea + Pneumoroidea) +
Acridoidea) + Tanaoceroidea) + Eumastacoidea) + Tetri-
goidea) + Tridactyloidea). By comparing the topological
structure of four trees (mtOrt_tree, mtMet_tree, mtInv_
tree and mtPan2013_tree), we found eight differences
(two in the branch of Ensifera and six in the branch of

Caelifera), and all of them appeared in the lower classifi-
cation level (Additional file 4: Figure S2).

Discussion
Differences between different models
Through the comparison of different models, the low
correlations of the 12 models are found, which confirm
high variation among the models. We observed remark-
ably low correlations between mt models and general
models (e.g., the 0.002 correlation score between
mtPan2013 and LG) (Table 4). Thus, general models are

Fig. 7 The phylogenic relationships among the higher taxa of Orthoptera
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not an appropriate choice in inferring phylogenies from
mt protein data [28]. The low pairwise correlations of
exchangeability rate matrices (or frequency vectors) be-
tween mtOrt and other models mean that mtOrt is sig-
nificantly different from existing models. As expected,
mtInv is the closest model to mtOrt in terms of ex-
changeability rates, with a 0.952 correlation score, as
both were trained from the invertebrate data. Interest-
ingly, mtOrt is closer to mtInv than mtArt, which indi-
cate diverse evolutionary processes among different
lineages.
For different models, the change trend of amino acid

replacement rates between different amino acids and
amino acid frequency is basically the same [2, 16, 26,
28]. In general, most values distributed in a similar trend
due to biological constraints [2, 24, 28], such as the high
exchange rate between Lys (lysine) and Arg (two posi-
tively charged, polar amino acids), aspartic acid and
glutamic acid (two negatively charged, polar amino acid)
or the low exchange rate between Lys and Cys (cysteine)
(a neutral, nonpolar amino acid). Ile is frequently
substituted by Val, Met (methionine), Leu, Thr (threo-
nine) and Phe (hydrophobic amino acids), while other
amino substitution rarely happen as their corresponding
rates are relatively small (Fig. 1) [2, 34]. However, we
still find some obvious differences of exchangeability
rates and amino acid frequencies between mtOrt and
mtInv, mtMet and mtPan2013 models (Fig. 2 and Fig. 3),
which indicate that mtOrt represents the exchangeability
rates and amino acid frequencies of Orthoptera mt pro-
teins more accurately than other models.

Phylogenetic improvement of the new model
Likelihood improvement on different datasets
For the testing datasets, compared with the existing
model, the likelihood improvement indicates that mtOrt
model can not only fit the training dataset participating
in the construction of the new model, but also better fit
the testing datasets that are not involved in building the
new model (Fig. 4).
For the 85 sub-datasets, from the results of ModelFin-

der, the new model also demonstrates a better fit for al-
most all sub-datasets in comparison with the existing
models, the proportion of mtOrt reaches 93% in all sub-
datasets. Although the best-fit models of six TSDs are
the existing model (mtMet), all the species in these rela-
tively small sub-datasets are part of Tettigoniidae, which
indicates that the evolutionary patterns of different line-
ages of Orthoptera are also different. The AU test and
confidence level results of the log-likelihoods for phylog-
enies constructed by different models of each sub-
dataset are congruent with that of model selection by
ModelFinder, which confirms the significantly superior-
ity of the new model with high confidence levels in

inferring phylogenies for all sub-datasets than existing
models (Fig. 5).
In order to verify that the likelihood improvement of

the new model is derived from the parameters of mtOrt
model rather than other factors, the AU test was also
used to examine the parameters of the different models
that have been re-optimized by the best-fit models. We
used ModelFinder to select the most suitable model
from 12 models (mtOrt and 11existing models) without
any model parameter optimization for the testing dataset
of 30 species. The result shows that the best-fit model is
mtOrt+R5, so we assume that mtOrt+R5 is the optimal
model for all sub-datasets and use that model to build
the ML tree for all sub-datasets. Then, IQ-TREE 1.7 was
used to recalculate the log-likelihood of the trees, which
were built from the different models in the previous ana-
lysis for each sub-dataset, based on the estimated param-
eters done for the ML tree. That is to say, we use mtOrt
(+R5) to fix the topology of the trees and use the param-
eters of mtOrt (+R5) to re-optimize other parameters
(branch lengths, parameters of rate heterogeneity model)
of the trees constructed by other models [28, 29]. Then
we used the CONSEL program for assessing their confi-
dence levels. The results reveal that the number of dif-
ferent models that are superior to the other five models
for 85 sub-datasets are 18 (mtOrt), 16 (mtInv), 15
(mtPan2013), 15 (mtZoa), 14 (mtMet), 7 (mtArt), and
most of them have lower confidence levels (Fig. 8). It
is reveals that the trees built with the new models are
still better than that with the existing models in term
of likelihood, but the proportion is reduced (from
90.6 to 21.2%) and with lower confidence. Although
the proportion of existing models has increased (from
9.4 to 78.8%), they have lower confidence levels. In
the AU test, it is not found that any sub-dataset only
accept the topology constructed by mtOrt, while
rejecting the topology built by five existing mt
models. The increase of the proportion shows that
the parameters of the existing models re-optimized by
mtOrt (+R5) are improved, and they fit better with
the corresponding datasets, which further indicates
that the parameters of the new model are better than
the existing models. The significant drop of confi-
dence levels of all models reveals that a large propor-
tion of likelihood gain is due to the new models
other than tree topologies [28, 32].
We further investigated the performance of the new

model for individual mt protein dataset. In the 13 pro-
tein datasets, most of the best-fit models are mtOrt,
followed by mtInv, mtMet and mtPan2013 and the worst
performer was Dayhoff model. Only the optimal models
for ND4 and ND5 are mtInv, followed by mtOrt, and
there is little difference between the values of log-
likelihood, AIC and BIC.
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Topology improvement on different datasets
We use MS distance to estimate the topology differences
between the new model and the existing models for all
datasets. One of the advantages of the MS distance is its
natural character; i.e., the definition is based on splits,
similarly to the Robinson-Foulds (RF) metric. On the
other hand, the MS distance is more sensitive than RF
and is resistant to displacement of a small number of
leaves [35]. The normalized MS distances divided by
pre-computed empirical average values for random trees
(generated according to Yule and uniform models) can
help in an interpretation of the similarity level of ana-
lyzed trees in chosen metric [33]. Although the testing
datasets and more than half of the sub-datasets (50.6%
(mtArt) ~ 78.8% (mtInv)) have the same topologies in-
ferred using existing models as the mtOrt tree, the re-
sults also show that topologies of other sub-datasets
inferred using mtOrt are different from those inferred
using other models. For example, the MS distance be-
tween mtOrt trees and mtPan2013 is 0 ~ 0.1 (0.1 ~ 0.2)
for about 20% (10.6%) of sub-datasets (Fig. 6). The re-
sults reconfirm the advantage of the new model in im-
proving the topology inference of phylogeny and the
essential role of model selections in inferring phyloge-
nies as a poor model selection would lead to low quality
phylogenies [28].

Phylogenetic relationships of Orthoptera lineages
The phylogeny of Orthoptera has been contentious over
the years and numerous hypotheses have been proposed
based on different character systems [18, 28, 36]. The

AU test confirmed that the phylogeny of Orthoptera in-
ferred by mtOrt model is the best among the 14 trees.
The results of topology comparison of 14 trees show
that the occurrence of abnormal branches in the phylog-
enies constructed by 11 existing models (mtArt, mtZoa,
LG, mtPro, JTT, mtDeu, WAG, Dayhoff, LG4X and
C10) further reflect the importance of choosing appro-
priate models to construct correct evolutionary relation-
ships. Only four models (mtOrt, mtMet, mtInv and
mtPan2013) accurately inferred the phylogenetic relation-
ship at the suborder level, and the MS distances divided
by pre-computed empirical average values for random
trees (generated according to Yule) show that the top-
ology of mtOrt model is at a high similarity level with
that of the three existing models.
In mtOrt_tree, Orthoptera is divided into two subor-

ders: Ensifera and Caelifera (Fig. 7), and this result is sup-
ported by many morphological characteristics and
molecular data [17, 18, 37–41]. Ensifera is consist of two
clades, grylloid and non-grylloid. Within grylloid clade,
Grylloidea and Gryllotalpoidea are sister group. Within
non-grylloid clade, the basal group is Schizodactyloidea.
The monophyly of Stenopelmatoidea and Schizodactyloi-
dea (only one mitochondrial genome of one species is
available in GenBank database) is not supported, and the
other five superfamilies are monophyletic [17, 18]. The re-
lationships between these families are agree with previous
studies [17, 41, 42]. Caelifera is also divided into two
groups. Tridactyloidea formed the basal clade, as a sister
group of all the other caeliferan superfamilies [17, 41, 43].
The monophyly of Pneumoroidea and Tanaoceroidea

Fig. 8 The number and confidence levels of different models optimized by mtOrt (+R5) that build the optimal topology for each sub-dataset
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could not be tested, the other five superfamilies are mono-
phyletic. Among the 20 families of Caelifera examined, only
Pamphagidae, Pyrgomorphidae, Chorotypidae, Tetrigidae
and Tridactylidae are supported as monophyletic. Due to
the involvement of two newly determined Dericorythidae
species (Conophymacris viridis and Dericorys annulata),
the monophyly of Acrididae is not supported (Additional
file 4: Figure S2), which is inconsistent with previous studies
[17, 41, 43–45], in which did not sampled Dericorythidae
species. Dericorythidae was once treated as a subfamily
within the Acrididae, but Eades (2000) elevated it to the
family level on the basis of the presence of a deep groove in
the endophallic sclerite and the presence of a pseudoarch
in the phallic structures, both of which make members of
this family distinct from the other species of the Acrididae
[45, 46]. The topological inconsistencies of the four trees
only show up in a small branch of Acrididae at the subfam-
ily level. The main reason is that the relationship between
Catantopinae and three other subfamilies (Calliptaminae,
Cyrtacanthacrdinae and Eyreproclonemidinae) is controver-
sial (Additional file 5: Figure S3). Members of the Catanto-
pinae are highly diverse in terms of morphology and often
assumed being a monophyletic taxon based on morpho-
logical traits [47]. Molecular results appear to confirm earl-
ier suspicions that the subfamily is not monophyletic.
Stenocatantops and Xenocatantops form a sister group,
which was also confirmed by the other studies [48–51].
The remaining inconsistencies between mtOrt_tree and
mtMet_tree, mtInv_tree and mtPan2013_tree are all concen-
trated on inter-generic and intra-generic relationships
(Additional file 4: Figure S2).

Conclusions
In this work, 54 mitochondrial genomes have been de-
termined. Based on the mt proteins data from newly de-
termined and existing Orthoptera mitogenomes, we
constructed the mtOrt model that has been specifically
modeling the evolution properties of Orthoptera mt pro-
teins. Analyses revealed significant differences between
mtOrt and existing models in both amino acid frequen-
cies and exchangeability rates. Moreover, the new model
is better than existing models in fitting the Orthoptera
mt proteins data and inferring the phylogenetic relation-
ship. Multiple phylogenetic analyses show that mtOrt is
robust, and better characterizes the evolutionary pat-
terns of Orthoptera mt proteins than existing models.
The phylogeny of 283 Orthoptera species inferred from
mt proteins with the new model is better than existing
models and shows that the relationships between
higher-level relationships are very stable and strong sup-
port for the phylogeny-based natural classification
scheme that proposed by Song et al. (2015). We suggest
that mtOrt should be used for the mt proteins analysis
of Orthoptera datasets.

Methods
Sample collection and DNA extraction
The information on the samples and sequencing tech-
nology used in the present study was shown in Add-
itional file 1: Table S1. The samples were preserved in
100% ethanol and stored in a − 20 °C freezer at the Insti-
tute of Zoology of Shaanxi Normal University. Total
genomic DNA was extracted from the muscle tissue of
every individual specimen by a DNeasy Blood and Tissue
Kit ((50)-QIAGEN 69504), and then stored at − 20 °C.

DNA sequencing, annotations and analyses
An Illumina HiSeq 2500 system was used to sequence
the DNA of the 54 orthopteran insects (Additional file 1:
Table S1) with a 150-bp read length. DNA library con-
struction and sequencing were conducted by the Bio-
marker Company. Mira 4.0.2 and MITObim 1.7 [52, 53]
were used with default parameters to assemble the mito-
genomes. Transfer RNAs were identified by MITOS2
(http://mitos.bioinf.uni-leipzig.de/index.py) [54]. The
other genes were determined in Geneious Prime [55]
(available from http://www.geneious.com) by compari-
son with other related and reference mitogenomes, and
then checked manually.

Datasets
A total of 283 Orthoptera mitochondrial genomes, included
54 newly determined and 229 published sequences from
the NCBI (National Center for Biotechnology Information)
(Additional file 6: Table S2). To estimate a substitution
model, the 283 mitochondrial genomes are divided into
training and testing datasets containing 253 and 30 of se-
quences, respectively. We used Geneious Prime to extract
gene sequences from mitochondrial genomes and trans-
lated each protein-coding gene into an amino acid se-
quence in MEGAX with invertebrate mtDNA genetic code
[56]. Amino acid sequences were aligned using MUSCLE
program [57], and the alignments of individual genes were
concatenated using SequenceMatrix v.1.7.8 [58]. The train-
ing dataset was used to estimate new mt model.

Model estimation
FastMG [9] was used to estimate the new mt model. We
assumed that the standard model for the amino acid
substitution process over the tree is a Markov process
with time-homogeneous, time-continuous, and time-
reversible properties and references therein [19, 28]. The
standard model is represented by a 20 × 20 rate matrix
Q = {qxy} [22], where qxy (x ≠ y) is the number of substi-
tution from amino acid x to amino acid y per time unit.
The diagonal elements qxx are assigned such that the
sum of each row equals zero. The matrix Q can be decom-
posed into symmetric exchangeability rate matrix R= {rxy}
and amino acid frequency vector Π= {πx} such that qxy=
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rxyπy and qxx=−Σy≠ xqxy. The frequency vector Π has 19 free
parameters and can be directly approximated from the data.
However, the rate matrix Q has 190 free parameters and
much more difficult to be estimated from the data [10, 59].
In this study, we applied the maximum likelihood method to
estimate Q. The training dataset was divided into sub-
datasets of at most 16 sequences using the tree-based split-
ting algorithm. Previous studies revealed that the FastMG
procedure was an order of magnitude faster than without
splitting [9]. The FastMG algorithm starts from an initial
model (Q) and iteratively optimizes the model until the likeli-
hood improvement is insignificant. The procedure first builds
phylogenetic trees and rates using Q and maximum likeli-
hood tree construction programs such as PhyML, and then
estimates a new exchangeability matrix Q’ using the ap-
proach described by Le and Gascuel [11] and the XRate soft-
ware [60]. Compare Q’ and Q, if they are nearly identical,
return Q’ as the optimal model. Otherwise, assign Q←Q’
and re-estimate phylogenetic trees and rates to start a new it-
eration. Note that mtInv model was assigned as the initial
model. A better model Q can be estimated from alignments
of D using an iterative approach as detailed in the 5-step esti-
mation procedure (see Fig. 9).

Model analysis
The estimation of new model involves 208 additional
free parameters, and its likelihood has to be penalized to
obtain a fair comparison. The Akaike information criter-
ion (AIC) gain is equal to the twice the log-likelihood
gain, minus 416 (= 2 × 208). The penalty (416) is equally
divided between all sites in the input alignments. When
the AIC gain is positive (negative) for a given alignment,
the new model has a better (worse) fit to this alignment
than the starting matrix [9, 12]. So we evaluated the fit-
ting of the new model to the training dataset by compar-
ing the gains of likelihood and AIC scores. The testing
dataset of 30 species was divided into three smaller data-
sets by random split method, and the new model was
analyzed by four different testing datasets that do not
participate in the construction of the new model.
We used IBM SPSS Statistics 20 to compare the correl-

ation between the new model and the 11 existing models
(mtInv, mtMet, mtPro, mtDeu, mtPan2013, mtArt, mtZoa,
LG, JTT, WAG and Dayhoff). The differences of amino acid
frequencies and exchangeability rates between the models
were analyzed by comparing the new model with existing
models.
We evaluated the performance of the new model in differ-

ent datasets. IQ-TREE 1.7 [29] was used to build phylogenies
and estimate the log-likelihood, AIC, AICc (corrected Akaike
information criterion) and BIC (Bayesian information criter-
ion) scores of different models on each dataset. ModelFinder
[30] was used to find best-fit model of different datasets. The
CONSEL program [31] was used for assessing likelihood and

confidence levels of different models. The topology differenti-
ation on different datasets was tested by TreeCmp 2.0 [33].

Phylogenomic analyses
We applied the different models to explore the phylogenetic
relationships of the major Orthoptera lineages by the dataset
of mt protein sequences from 283 Orthoptera species and
outgroup of 3 non-Orthoptera species (GenBank accession
No.: NC_034841, NC_034930 and NC_014695) (Additional
file 6: Table S2). The result of model selection for the data-
set by ModelFinder [30] shows that the models with better
performance are optimized by FreeRate model, so we used
IQ-TREE 1.7 [29] to infer the phylogenies with the new
model, 11 existing models and two site-heterogeneous
models (LG4X and C10) and optimised all the models by
+R10. We use the models to name the corresponding phylo-
genetic tree, such mtOrt_tree, and so on. The topological
differences between mtOrt_tree and the other 13 trees were
compared by the Phylo.io, a web application [61], and evalu-
ated using the CONSEL program [31]. We used the same
method to analyze the mt protein data of 23 Polyneoptera
species and 3 non-Polyneoptera species (GenBank accession
No.: NC_012645, NC_042163 and NC_023232) from Gen-
Bank to explore the applicability of the new model to Poly-
neoptera data (Additional file 6: Table S2).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12862-020-01623-6.

Additional file 1: Table S1. Information on the samples used in the
present study.

Additional file 2. The mtOrt, mtOrt_O, mtOrt_C and mtOrt_E models.

Additional file 3: Figure S1. Phylogenetic tree inferred by mtOrt based
on mitochondrial proteins of Polyneoptera species.

Fig. 9 The maximum likelihood-based process to estimate an amino
acid substitution model for protein sequences
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Additional file 4: Figure S2. Phylogenetic trees inferred by mtOrt
based on mitochondrial proteins of 286 species. Coloured ranges
represent different families. The inconsistent branches between
mtOrt_tree and mtMet_tree, mtInv_tree and mtPan2013_tree are
represented by different colors (Red: mtOrt_tree-mtMet_tree; Green:
mtOrt_tree-mtPan2013_tree; Yellow: mtOrt_tree-mtInv_tree; Orange:
mtInv_tree and mtPan2013_tree are the same but different from
mtOrt_tree; Red dotted lines: mtMet_tree, mtInv_tree and mtPan2013_tree
are the same but different from mtOrt_tree.

Additional file 5: Figure S3. The topological inconsistencies of the four
trees at subfamily level. That is, the position represented by a red dotted
lines as shown in Figure S1.

Additional file 6: Table S2. Taxonomic information and GenBank
accession numbers for the taxa used in this study.
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