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Abstract
Background: Structure conservation constrains evolutionary sequence divergence, resulting in
observable sequence patterns. Most current models of protein evolution do not take structure into
account explicitly, being unsuitable for investigating the effects of structure conservation on
sequence divergence. To this end, we recently developed the Structurally Constrained Protein
Evolution (SCPE) model. The model starts with the coding sequence of a protein with known
three-dimensional structure. At each evolutionary time-step of an SCPE simulation, a trial sequence
is generated by introducing a random point mutation in the current coding DNA sequence. Then,
a "score" for the trial sequence is calculated and the mutation is accepted only if its score is under
a given cutoff, λ. The SCPE score measures the distance between the trial sequence and a given
reference sequence, given the structure. In our first brief report we used a "global score", in which
the same reference sequence, the ancestral one, was used at each evolutionary step. Here, we
introduce a new scoring function, the "local score", in which the sequence accepted at the previous
evolutionary time-step is used as the reference. We assess the model on the UDP-N-
acetylglucosamine acyltransferase (LPXA) family, as in our previous report, and we extend this
study to all other members of the left-handed parallel beta helix fold (LβH) superfamily whose
structure has been determined.

Results: We studied site-dependent entropies, amino acid probability distributions, and
substitution matrices predicted by SCPE and compared with experimental data for several
members of the LβH superfamily. We also evaluated structure conservation during simulations.
Overall, SCPE outperforms JTT in the description of sequence patterns observed in structurally
constrained sites. Maximum Likelihood calculations show that the local-score and global-score
SCPE substitution matrices obtained for LPXA outperform the JTT model for the LPXA family and
for the structurally constrained sites of class i of other members within the LβH superfamily.

Conclusion: We extended the SCPE model by introducing a new scoring function, the local score.
We performed a thorough assessment of the SCPE model on the LPXA family and extended it to
all other members of known structure of the LβH superfamily.

Background
Protein structure is more conserved than protein sequence

during molecular evolution [1-3]. Remote homologous
proteins constitute an extreme example of sequence
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divergence where proteins with similar function and no
apparent sequence similarity present almost the same fold
[4]. However, protein sequences are far from being ran-
dom. Rather, they are selected through evolution in such
a way that functional constraints modulate sequence var-
iability. Usually, only a few residues are directly related to
the protein function. However, these residues must main-
tain adequate spatial relationships for the protein to
remain functional, so that the whole 3D structure is con-
served. In turn, structure conservation constrains
sequence variability in such a way that residue substitu-
tion does not disturb the overall 3D structure of the pro-
tein. This results in emergent non-random sequence
patterns.

The restrictions imposed by the environment of a given
protein site onto its pattern of amino acid substitutions
have been largely discussed [2,5-9]. Briefly, highly con-
strained positions are more conserved. Furthermore, each
site has a biased composition related to its structural envi-
ronment. Models of protein evolution that take this into
account outperform other, simpler, models [10-13].
Recently, a number of models of protein evolution have
been developed that take explicit account of protein struc-
ture, stability, and/or foldability [14-22]. Even though
such models have not been used yet for phylogenetic
inference purposes, they are useful to gain insight into the
detailed mechanism of protein evolution. Noteworthy,
some of these models have been able to reproduce quan-
titatively observed amino acid substitution patterns
[12,14,23].

To study how protein structure conservation modulates
sequence divergence, we recently developed the Structur-
ally Constrained Protein Evolution (SCPE) model [14].
The starting point of an SCPE simulation is the coding-
sequence of a protein of known three-dimensional struc-
ture, which we shall call the "ancestral sequence". At each
evolutionary time-step, a new "trial sequence" is gener-
ated by random mutation, at DNA level, of the "current
sequence" (accepted at the previous time-step). Then, the
trial DNA is translated using the universal genetic code
and a "score" that estimates the protein structure pertur-
bation introduced by the mutation is evaluated. The trial
sequence is accepted, becoming the new current sequence,
only if its score is below a certain "cut-off", λ, that meas-
ures the amount of structural perturbation allowed by nat-
ural selection. In this way, for λ = 0 only synonymous
mutations are accepted, whereas for λ ~ ∞ all mutations
are accepted. The procedure is repeated until a desired
number of mutations are reached. In the present work the
DNA is mutated using the Jukes-Cantor model, so that
each nucleotide substitution occurs with the same
probability.

The model depends on one parameter, the cut-off λ, that
must be fit by comparison to actual sequence data. Differ-
ent properties could be used to fit the cut-off. As we will
show below, the model is quite robust with respect to the
property used. Therefore, we have used the simplest way,
which is to fit λ such that the acceptance rate, ω, inferred
for actual sequences is reproduced. The acceptance rate is
the probability that an amino acid mutation is accepted.
Thus, it can be estimated by the ratio between the number
of amino acid substitutions (accepted mutations) and the
total number of trial amino acid mutations. The accept-
ance rate has been extensively used to characterize the
strength of the selective pressure under which proteins
evolve [24-27]. If all mutations were neutral they would
be accepted and ω would be 1. In general the ω values are
usually below 0.5 due to the deleterious effects of most
amino acid mutations [28]. In proteins under very strong
selective pressure ω can take values very close to zero.

One of the main factors determining the quality of the
SCPE model is the scoring function. Given the structure of
the ancestral protein, which we assume constant through-
out the simulation, the score of a given trial sequence is
defined as the RMSD between the mean-field energy pro-
file of the trial sequence and that of a reference sequence.
In our previous work, the same reference sequence, the
ancestral one, was used for each time-step. Therefore, the
score of each trial sequence was a measure of the dissimi-
larity between the trial sequence and the ancestral
sequence, given the structure. Such a score depends only
on the trial sequence and the ancestral sequence, but not
on the particular sequence mutated to obtain the trial.
Hence, it does not depend on the precise evolutionary
path between the ancestral and the trial. Therefore, this
will be called from now on "global score".

Even though the global score has been proved to be very
good at reproducing the sequence patterns of a test case, it
also shows some problems. Mainly, at the beginning of a
simulation most mutations fall below the optimum cut-
off. This results in too high values of the acceptance rate.
Only after about 5% of the sites have been substituted, the
cut-off is purifying enough to reproduce the acceptance
rate inferred for the actual family. From a more qualitative
point of view, since at the beginning of global-score sim-
ulations almost all mutations are accepted, erroneous
amino acids, which are not found in the natural sequences
of the family studied, can be introduced with relatively
high probability during the first few steps of a global-score
simulation. We shall see below that these are unwanted
artefacts of the global-score SCPE simulations.

To tackle the problems described in the previous para-
graph, in this paper we introduce a "local score", in which
the reference sequence for a given trial is that accepted in
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the previous evolutionary time step, the current sequence,
rather than the ancestral one. Thus, the local score meas-
ures the mutational perturbation introduced in a given
time-step, rather than the global difference between the
trial and ancestral sequences.

The new approach is compared with the previous one on
the same test system studied before: UDP-N-acetylglu-
cosamine acyltransferase (LPXA) from Escherichia coli. A
portion of this protein presents a left-handed parallel beta
helix (LβH), a fold generally associated with transferase
activity and broadly distributed in different taxons [29-
31] (see Figure 1a). All the LβH proteins contain a hexa-
peptide-repeat motif which is closely related with the
topology of the fold (Figure 1b). This superfamily is char-
acterized by the high conservation of the fold that con-
trasts with an elevated sequence and functional
divergence.

We shall show below that when the local score is used, the
acceptance rate averaged over independent runs does not
depend on the amount of divergence from the ancestral
sequence. Furthermore, no erroneous amino acids are
accepted during the simulations. Thus, these artefacts of
the global-score simulations are absent when the new
scheme is used. To further compare both schemes, other
properties were analysed. Specifically, we evaluated and
compared structure conservation, entropy profiles, amino
acid distributions, and substitution matrices. We show
that SCPE simulations that use the LPXA from E. coli as
ancestral sequence can be used to estimate site-dependent
amino acid substitution matrices [32,33] which outper-
form the usually used JTT model [34]. Moreover, we con-
sider the applicability of the SCPE substitution matrices
obtained from LPXA simulations to other protein families
which adopt the LβH fold.

Results and discussion
Acceptance rates
In Figure 2 we show the number of nonsynonymous sub-
stitutions versus the number of nonsynonymous muta-
tions averaged over several independent simulations.
Note that nonsynonymous substitutions (mutations) at
DNA level are amino acid substitutions (mutations) at
protein level. The slope of each plot is the acceptance rate
ω. Figure 2 shows that for the global-score case, ω
decreases from ω = 1 when the simulation begins to a con-
stant asymptotic value ω < 1 for longer times. In an actual
case, such behaviour could be due to a sequence that for
some reason is particularly robust with respect to muta-
tions. In the present case, however, this is an unintended
artefact of our model. It happens because the global score
of the mutations introduced in the first steps of a simula-
tion lie below the global cut-off, no matter how noncon-
servative the mutation is. Thus, at the beginning of a

global-score simulation almost all amino acid mutations
are accepted, leading to an acceptance rate ω = 1. Further-
more, clearly wrong amino acids, that will irreversibly
upset the structure, can be introduced. In contrast, the
local-score simulations display a constant average ω,
which we think is more consistent with a neutral model,
such as SCPE, with constant selection pressure λ. We
should mention that despite the constancy of the average
ω, the acceptance rate ω of a single simulated run changes
from sequence to sequence. This is expected, since any
substitution at a given site changes the scores of the sites
that are in contact with it in the 3D structure. This could
account for features such as overdispersion of the molec-
ular clock and rate-shifts in substitution rates
(heterotachy).

Determination of optimal λ
As discussed in Methods, we have chosen to determine the
optimum value of the SCPE model parameter λ so that the
acceptance rate of the simulations matches that inferred
from actual sequences. For the SCPE simulations, the
value of ω is easily estimated by just counting the number
of amino acid substitutions accepted throughout the sim-
ulations and dividing by the number of trial amino acid
mutations. For the reference alignment, however, one has
to estimate ω using some inference method. These meth-
ods tend to overestimate the actual ω. This can be seen in
Figure 3, where we show two different ω inferences for a
set of SCPE simulations as a function of the cut-off λ,
together with the value calculated by counting the propor-
tion of accepted mutations (see Methods). The inferences
were made with the module yn00 of PAML [35] as
explained in Methods. It is worthwhile to note that the
inferred ω departs from the calculated ω as λ increases.
This behaviour is expected since, for a given number of
mutations, for larger λ there are more accepted nonsynon-
ymous substitutions, which results in loss of sequence
signal.

Using the method yn00+w+f, which best estimates the cal-
culated ω, we obtained the ω of the reference alignment of
25 sequences homologous to the UDP-N-acetylglu-
cosamine acyltransferase from Escherichia coli (LPXA refer-
ence alignment). The average ω for this alignment is 0.22.
Using this value in Figure 3a and 3b the optimal values of
λ obtained are 1.10 and 7.00 for local and global score,
respectively.

We note here that the optimal λ values for local and glo-
bal score are very different. Thus, for the sake of compari-
son, we take advantage of the one-to-one relationship
between λ and ω, shown in Figures 3a and 3b, and use the
calculated acceptance rate ω instead of λ as model param-
eter. In Figure 3c we plot the inferred ω versus the calcu-
lated ω for local-score and global-score simulations.
Page 3 of 17
(page number not for citation purposes)



BMC Evolutionary Biology 2004, 4:41 http://www.biomedcentral.com/1471-2148/4/41
(a) Structure of the UDP-N-acetylglucosamine acyltransferase (LPXA)Figure 1
(a) Structure of the UDP-N-acetylglucosamine acyltransferase (LPXA). This protein forms a Left-handed parallel β Helix (LβH). 
(b) Detail of one coil of the helix. Each coil is formed by three hexapeptides (shown in different colours). Note that hexapep-
tide positions i and i+4 point towards the inside of the prism whereas the other positions point outwards.

a

L H
fold

b

i+5 i+1

i+3

i+2

i+3

i+4

i+2 i+4 i

i

i+1 i

i+5

i+4

i+5 i+1

i+3

i+2
Page 4 of 17
(page number not for citation purposes)



BMC Evolutionary Biology 2004, 4:41 http://www.biomedcentral.com/1471-2148/4/41
Using this plot and the inferred ω value for the LPXA ref-
erence alignment, ω = 0.22 ± 0.11 (0.11 is the standard
deviation of ω), we calculate an optimal ω of 0.15 (0.12–
0.27) for local score and 0.19 (0.12–0.26) for global
score.

Assessment of structure conservation
It is important to assess if the SCPE models are able to pre-
serve protein structure. To this end we used THREADER 3
to analyze the percentage of sequences that recognize the
correct structure using different models. Results are shown
in Table 1. Clearly, JTT is unable to conserve structure
even for relatively low amounts of divergence: at Ka = 0.28
only 20% of sequences obtained from JTT simulations

recognize the correct structure. In contrast, a significant
proportion of sequences simulated with SCPE recognize
the correct structure even after long simulations of 1.7
substitutions per site: 62% for local-score SCPE and 39%
for global-score SCPE.

When both SCPE schemes are compared, Table 1 shows
that local-score simulations perform better than global-
score ones. This result is counterintuitive, because one
might expect, a priori, that in the long term the global-
score would be better at conserving structure than the
local-score, since in the later case the reference sequence is
reset at each step so that it would be easier to lose memory
of the ancestral protein. One of the reasons of the global-

Number of nonsynonymous (amino acid) substitutions observed as a function of the number of nonsynonymous (amino acid) mutation trials for local-score and global-score SCPE simulationsFigure 2
Number of nonsynonymous (amino acid) substitutions observed as a function of the number of nonsynonymous (amino acid) 
mutation trials for local-score and global-score SCPE simulations. Results are averaged over 300 independent runs. Note that 
global-score simulations present a definite change in slope (acceptance rate ω) between the first steps of the simulations and 
longer times. In contrast, local-score simulations present a constant slope (acceptance rate ω).
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Inferred and calculated acceptance rates of data sets simulated with SCPEFigure 3
Inferred and calculated acceptance rates of data sets simulated with SCPE. (a) local-score simulations. (b) global-score simula-
tions. yn00 and yn00+w+f are two different methods to infer acceptance rates included in PAML (see Methods). The average 
acceptance rate inferred in the LPXA reference alignment (obtained with yn00+w+f) is 0.2246 ± 0.11. Using this value in (a) 
and (b) the optimal local and global λ obtained are 1.10 and 7.00, respectively. In (c) we plot the ω inferred using yn00+w+f 
versus the calculated value for SCPE runs from (a) and (b). The value inferred for the observed LPXA family is shown as a dot-
ted line. Using this value the optimal ω for local score is 0.15(0.12–0.27) and for global score is 0.19(0.12–0.26).
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score SCPE being worse at conserving structure could be
the erroneous amino acid substitutions introduced at the
beginning of the simulations (see above). To gain more
insight into this issue, further work involving much longer
simulations would be needed. However, for long enough
evolutionary time it is not longer reasonable to assume
that structure remains constant. In this limit, any model
based on assuming structural conservation will break
down.

Entropy profiles
To evaluate the capacity of the SCPE model to reproduce
the sequence patterns found in the LPXA family, the vari-
ability of each site was analysed. The different protein
positions were accumulated into 6 structural classes. For
each class, we calculated the entropies corresponding to
the equilibrium distributions of SCPE models. These
entropies represent the average structural constraints of
each structural class and do not depend on simulation
time. SCPE entropy profiles are compared with those
obtained from the reference alignment of the LPXA fam-
ily. One could argue that these are not only determined by
structure, but also contain historical information. How-
ever, since we are accumulating over several sites of the
same class, which would have independent evolutionary
histories, we expect such information to be somewhat
averaged out. For the sake of comparison we also calcu-
lated the entropy profiles of JTT simulations of 0.28
amino acid substitutions per site (see Methods). The
resulting entropy profiles are shown in Figure 4. It can be
seen from this figure that both, the local-score and the glo-
bal-score schemes reproduce very well the variability pat-
tern of the LPXA family. Also, in Figure 4 we show that
simulations performed using the JTT model produce less
accurate results, especially for the most conserved (low
entropy) structural classes i and i+4.

To further study the effect of varying the model parameter,
we calculated an "error" which quantifies the difference
between simulated and observed entropy profiles (see
Methods). In Figure 5 this error as a function of ω is

shown. Comparing Figures 5 and 3, we see that the ω for
which the entropy error is minimum is consistent with the
value at the optimum cut-off for both the local and the
global score schemes.

Probability distributions
Although entropy is commonly used to evaluate sequence
conservation in an alignment [36-38] and to compare
simulated data with natural sequences [39,40], it is not
enough for a thorough assessment of the sequence pat-
tern. An entropy value of 0 at a given site, for example,
means that there is only one amino acid, but it could be
any one out of twenty. Thus, to perform a more complete
evaluation of the SCPE model, we looked into the amino
acid probability distributions. To this end, we calculated a
similarity score between the asymptotic SCPE distribu-
tions and those obtained from observed sequences. We
used the similarity score used by Yona and Levitt to per-
form sequence profile-profile comparisons [41]. In Figure
6 we show the similarity score between observed and
SCPE equilibrium amino acid distributions as a function
of the calculated acceptance rate ω. We also show results
for a simulation performed using the JTT model [34] of
evolution. Overall, it can be seen that the local-score SCPE
performs somewhat better than the global-score SCPE,
and that both SCPE models clearly outperform JTT for a
significant range of parameter ω around the optimum
value.

A more detailed analysis shows that the maximum of the
local-score plot corresponds to a ω = 0.12, that is in good
agreement with the optimum cut-off determined from the
acceptance rates, as explained previously. In contrast, for
the global-score case the cut-off at the maximum of the
similarity score plot is significantly below the optimum ω
value previously obtained. This difference would be due
to the wrong behaviour of the global-score scheme for
small amounts of divergence (see Figure 2), which will
affect the SCPE substitution pattern and, therefore, the
amino acid probability distributions. The same behav-
iour, though less marked, is found in the plots of Figure 5.

Table 1: Evaluation of structure conservation. The table shows the percentage of output sequences that recognize correctly the LβH 
fold for local-score SCPE, global-score SCPE, and JTT for two different amounts of amino acid substitutions per site (Ka).

Amount of Divergence

Model Ka = 0.28 Ka = 1.7
Local-score SCPE λ = 1.10, ω = 0.15 87% 62%
Local-score SCPE λ = 8.00, ω = 0.92 19% 4%
Global-score SCPE λ = 7.00, ω = 0.19 68% 39%
Global-score SCPE λ = 90.00, ω = 0.95 8% 0%
JTT 20% 0%
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Finally, it is interesting to note that the similarity score for
ω = 0 is much better than JTT. Since ω = 0 corresponds to
a simulation where no nonsynonymous substitutions are
accepted, this is the score obtained using just the initial
sequence. Memory of this sequence might favour the
good agreement observed for SCPE. However, it is note-
worthy that the actual agreement increases for ω > 0,
showing that the good fit is not due exclusively to a mem-
ory effect. The substitution matrix assessment described in
the next section should be less sensitive to memory
effects.

Substitution matrices
Even though it has long been recognized that substitution
patterns are site-specific and depend on protein family, it

is in general very difficult to estimate site-specific and fam-
ily-specific substitution matrices due to a lack-of-data
problem. As we reported previously, a possible strategy to
overcome this obstacle is to obtain site-specific substitu-
tion matrices from SCPE simulations [12]. To further eval-
uate how the SCPE model is able to reproduce the
substitution pattern of the LPXA family, a maximum like-
lihood analysis was used. SCPE runs were used to obtain
a substitution matrix Qc for each structural class. Then,
these matrices were used to calculate the maximum likeli-
hood of the LPXA reference alignment using a given topol-
ogy (see Methods).

In Figure 7a we show the likelihood vs. ω plots obtained
using local-score and global-score SCPE substitution

Entropy profilesFigure 4
Entropy profiles. Each structural class corresponds to a particular position in the hexapeptide motif found in the LβH proteins. 
Structural classes i and i+4 are the most conserved while the other classes present a more variable composition. SCPE profiles 
correspond to equilibrium amino acid distributions (see Methods). The SCPE parameters were fit to the minimum of the 
entropy error (see Figure 5). The profile obtained from JTT simulations of 0.28 substitutions per site is shown for comparison.
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matrices. The global-score likelihood peaks near ω = 0.18
in good agreement with the previous determinations,
showing that it reproduces quite well the amino acid
substitution patterns found in real sequences. The best ω
of the local-score SCPE likelihood (see Figure 7a) corre-
sponds to ω = 0.4, larger than that determined previously
(Figures 3, 5, and 6). To understand this behaviour, we
analysed the log likelihood components for each struc-
tural class, which are shown in Figure 7b. It is seen from
this figure, that the local-score maximum likelihood peaks
near ω = 0.4 mainly because of the contributions of struc-
tural classes i+1, i+2, i+3, and i+5, which, being the least
structurally constrained sites, are not expected to be very
well reproduced by SCPE. In contrast, for those sites that
point towards the inside of the LβH helix, which are the

ones the model should best describe (conserved classes i
and i+4) the maximum likelihood peaks near ω = 0.2, in
better agreement with Figures 3, 5, and 6. In the global-
score case, from Figure 7b, the maximum likelihood plots
for different classes behave more evenly: for all classes, the
maximum likelihood peaks near ω = 0.15.

Figure 7a shows that for LPXA, local-score simulations
lead to better substitution matrices than global-score
ones. Inspection of Figure 7b reveals that this is mainly
due to the local-score SCPE giving better results for sites
i+4 and, to a lesser degree, i+2. Figure 7a also reveals that
both, local and global, SCPE models outperform JTT (dot-
ted line of Figure 7a) for almost the whole ω range stud-
ied. This is due to the fact that site-specific amino acid

Error in entropy profiles between observed and equilibrium SCPE amino acid probability distributions versus calculated accept-ance rateFigure 5
Error in entropy profiles between observed and equilibrium SCPE amino acid probability distributions versus calculated accept-
ance rate. Results for local-score and global-score SCPE simulations are shown, together with those obtained from JTT simula-
tions of 0.28 amino acid substitutions per site.
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substitution patterns, especially for constrained structural
classes i and i+4, are not well described by general models
such as JTT.

Other LβH families
As a further example of the applicability of the SCPE
model, we considered other families of the LβH super-
family (see Table 2). We used the local-score and global-
score schemes with the optimum cutoffs estimated using
acceptance rates, as explained previously, to obtain site-
dependent probability distributions and substitution
matrices for the six different structural classes.

In Figure 8 we show the probability distributions of the
LβH families considered (Figure 8a) and the equilibrium
distributions obtained using the local-score and global-
score SCPE models (Figure 8b). It can be seen that both
SCPE schemes perform quite well in reproducing the
sequence pattern of our test system.

To test the substitution matrices, we performed maximum
likelihood calculations on each family of Table 2. Since
the models compared have the same number of parame-
ters, they can be compared using Maximum Likelihood
(ML) values obtained using a reasonable phylogenetic

Similarity score between observed and equilibrium SCPE amino acid probability distributions versus calculated acceptance rateFigure 6
Similarity score between observed and equilibrium SCPE amino acid probability distributions versus calculated acceptance rate. 
Results for local-score and global-score SCPE simulations are shown, together with those obtained from JTT simulations of 
0.28 amino acid substitutions per site. For ω = 0, the distribution is that obtained from the ancestral sequence, LPXA of Ecoli 
by grouping sites of the same class, since in this case no substitution is accepted and therefore it is impossible to obtain the 
SCPE substitution matrices. For SCPE we used equilibrium distributions, which do not depend on time. JTT results become 
worse for longer times (Ka>0.28).
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Maximum likelihood as a function of calculated acceptance rateFigure 7
Maximum likelihood as a function of calculated acceptance rate. (a) Likelihood obtained using local-score and global-score 
SCPE substitution matrices as a function of ω. We also show the likelihood obtained using JTT. (b) Likelihood for the six struc-
tural classes using local-score and global-score SCPE matrices.
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tree topology [42,43] (see Methods). In Table 3 we show
the ML values per site for local-score SCPE, global-score
SCPE, and JTT, applied to different sets of sites. Better
models have larger ML values.

For LPXA, SCPE (both local and global) are clearly better
than JTT for all sites considered. CAT and SATA behave
similarly, though the advantage of SCPE over JTT is less
marked. For other families, SCPE (local and global) is
better than JTT for class i sites. For other structural classes
there is no definite advantage of SCPE over JTT.

Table 2: LβH superfamily members studied.

Gene name or synonym Function PDB ID Number of sequences aligned

LPXA UDP-N-acetylglucosamine acyltransferase 1lxa 25
SATA Streptogramin A Acetyltransferase 1kk6 48
LACA Galactoside O-Acetyltransferase 1kru 43
CAT Xenobiotic Acetyltransferase 1xat 39
DAPD Tetrahydrodipicolinate-N-Succinlytransferase 1tdt 50
CAM Carbonic Anhydrase 1qre 26
GLMU N-Acetylglucosamine-1-Phosphate Uridyltransferase 1g97 50

Amino acid frequency distributions for the hexapeptide sitesFigure 8
Amino acid frequency distributions for the hexapeptide sites. (a) 7 LβH families of Table 2. (b) Local-score (grey) and global-
score (black) SCPE equilibrium distributions (see Methods).
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When comparing local-score SCPE with global-score
SCPE one finds no definite advantage of either one over
the other. For sites i, where the more meaningful results
are expected, local and global give very similar results for
all families except for LACA where global is better than
local.

Conclusion
We presented in full detail the Structurally Constrained
Protein Evolution Model (SCPE), developed recently. We
improved on our previous model by introducing a new
scoring function. Our previous work was based on a "glo-
bal" score, which measures how a trial sequence differs
from the ancestral sequence in its ability to fit a reference
structure assumed constant. In contrast, the "local" score
measures the perturbation introduced by a given muta-
tion with respect to the previously accepted sequence,
rather than the ancestral one.

Both schemes, global and local, were compared in their
ability to match the substitution patterns of the protein
family LPXA. We performed a thorough assessment

comparing structure conservation, entropy profiles,
amino acid distributions, and substitution matrices. LβH
proteins were found to be particularly suited for such a
detailed characterization of the sequence pattern, because
of the fact that most of their sites belong to one of only six
different structural classes. Furthermore, these properties
were studied as a function of the single parameter of the
model: a cutoff that measures selection pressure against
structural divergence. Finally, we applied the model to all
other members of the LβH superfamily whose structure is
known, extending previous studies performed only on the
LPXA family.

In general, we found that the local-score SCPE behaves
either similarly or better than the global-score scheme,
depending on the property considered. Furthermore, for
LPXA, and for sites of the structurally constrained class i of
all other families studied, both SCPE models clearly out-
perform the widely used JTT model, showing the power of
the SCPE model to account for substitution patterns con-
ditioned by structural constraints.

Table 3: Comparison of models on 7 families of the LβH superfamily. Logarithm of the Maximum Likelihood per site obtained with 
different models for the families studied. Better models lead to larger ML values. The three numbers reported for each case correspond 
to structural classes i and i+4, considered separately, and to the average over the six structural classes.

Family Local score Global score JTT model

LPXA -19.9 -20.0 -23.7
-21.7 -22.7 -24.9
-28.0 -28.1 -29.3

SATA -16.2 -16.1 -18.7
-20.1 -19.2 -20.2
-25.2 -24.7 -25.9

LACA -35.7 -34.2 -36.3
-36.4 -35.0 -35.9
-38.0 -37.0 -37.4

CAT -13.8 -13.7 -16.4
-15.8 -15.9 -17.4
-19.3 -19.0 -19.8

DAPD -17.0 -17.1 -19.6
-22.0 -23.8 -23.2
-18.7 -20.0 -19.4

CAM -13.9 -14.1 -15.9
-20.3 -18.5 -18.6
-23.1 -21.2 -20.4

GLMU -38.1 -38.0 -39.9
-39.0 -38.1 -38.1
-49.3 -47.8 -47.9
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Currently, we are using the SCPE model to investigate sev-
eral issues important in protein evolution, such as overd-
ispersion of the molecular clock, correlation between the
evolution of different sites, and heterotachy. Also, we are
testing the applicability of the SCPE model to other pro-
tein families, in order to assess its generality. Nevertheless,
we should mention that since most protein families do
not display the regularity of LβH proteins, it is more diffi-
cult to perform a detailed quantification of sequence
patterns, which makes such tests at the same time more
difficult and less demanding than the LβH superfamily.

Methods
Test system
The LPXA family belongs to a large and diverse group of
proteins [31], the LβH (Left-handed parallel β Helix)
superfamily. All the sequences of this superfamily contain
an imperfect tandem-repetition of a hexapeptide motif
[29]. This motif is typically described by [LIVMA]-X3-
[ASCVTN]-X. The first position of the hexapeptide is
called i, and the following i+1, i+2, up to i+5. The
sequence forms a left-handed parallel β helix, forming an
equilateral triangular prism [44] (Figure 1a). Each coil of
the helix is formed by three hexapeptides. Equivalent
positions of different hexapeptides fall into similar struc-
tural environments. Residues at positions i and i+4, for
example, point towards the inside of the β helix (Figure
1b). Thus, each site of the hexapeptide pattern corre-
sponds to a different structural class. In this study we did
not analyse sites that are at loop regions. Also, the first and
last coils of the β helix of LPXA were not considered, since
the structural environments of sites in these coils are not
exactly the same as those of the other coils. Although all
the LβH members have a homo-trimeric active form, we
only use the monomer form in this study. We also analyse
other LβH families, which are summarized, with a brief
description, in Table 2.

SCPE score
The first step in the calculation of the SCPE score is the cal-
culation of a profile of mean energies per position. In the
present case we used the Cβ-Cβ potential of the program
PROSA II [45]. The original coordinates of the ancestral
sequence were modified in order to provide with Cβ coor-
dinates to those residues without them. Thus, all the GLY
residues were substituted for ALA residues and an ade-
quate rotamer was chosen using the program SCWRL
[46]. Later, the substituted ALA residues were converted
back to the original GLY, keeping the Cβ coordinate of
ALA to use when a GLY mutates to a residue with Cβ.
Once the energy per position is obtained the score is cal-
culated using:

where N is the length of the protein sequence, Emut(p) is
the mean-field energy of position p in the trial (mutated)
sequence and Eref(p) is the corresponding value of the ref-
erence sequence. The "global score" is calculated using the
ancestral sequence as reference. The "local score" is calcu-
lated using the sequence accepted in the previous step in
the simulation (i.e. the sequence that is mutated to obtain
the trial).

SCPE simulations
The ancestral sequence was the UDP-N-acetylglucosamine
acyltransferase (LPXA) from Escherichia coli. The coordi-
nates were obtained from the PDB database [47] (ID code
1lxa). The cutoff range covered was 0–2.00 with a step of
0.1 for local score and 0–20 with a step of 1.00 for global
score. For each cutoff value we performed 300 independ-
ent simulations, each one of 2500 mutational steps.

Sequence analysis
Using the LPXA from Escherichia coli as the reference pro-
tein, we recovered 25 homologous sequences using
sequence similarity searches. This set constitutes the refer-
ence LPXA family. For each of the other members of the
LβH superfamily for which at least one member has
known structure, we used this member's sequence to char-
acterize putative homologous proteins. See Table 2 for
details. All the similarity searches were performed using
the program BLASTP [48] at the NCBI server and the
sequence alignments were obtained using Clustal X [49].

Estimation of acceptance rates
To assess the optimal selective pressure in our SCPE sim-
ulations, we inferred the mean ω value in the homologous
LPXA family. Also, we inferred the ω in our SCPE simula-
tions for different cut-offs. All the ω inferences were made
using the program yn00 from PAML [35]. We used
options "w", which applies a weighting scheme between
codons, and "f", which takes into account the codon fre-
quencies of the data.

In the SCPE simulations, we also estimated ω directly by
counting: ω is the ratio between the number of amino
acid substitutions (accepted mutations) and the total
number of amino acid mutation trials. We use "calcu-
lated", as opposed to "inferred" to designate the accept-
ance rates obtained in this way.

Estimation of the amount of divergence
Some of the comparisons performed depend on the
amount of divergence. For these cases, we estimated the
average divergence of the LPXA family using the program

Score E p E pmut ref
p

N
= −

=
∑{ ( ( ) ( )) } /2

1

1 2
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PAML[50]. Maximum likelihood distances were esti-
mated using the JTT model with the frequencies estimated
from the data and a gamma distribution with 8 categories
to estimate the relative rates (JTT+F+Γ). The average time
calculated was Ka = 0.28 amino acid substitutions per site.

Assessment of structure conservation
We evaluated whether sequences produced by evolution-
ary simulations using SCPE recognize the correct structure
using THREADER 3 [51]. We considered the following
schemes: local-score SCPE with λ = 1.10 (ω = 0.15); local-
score SCPE with λ = 8.00 (ω = 0.92); global-score SCPE
with λ = 7.00 (ω = 0.19); global-score SCPE with λ = 90.00
(ω = 0.95). To compare, we also ran simulations using
JTT. For each model, we performed 50 independent runs
of lengths Ka = 0.28 and Ka = 1.7 amino acid substitutions
per site. For each sequence, structure recognition using
THREADER 3 was performed. The ability of models to
conserve structure was measured by the percentage of
sequences which recognized correctly (Z-score > 2.7) the
LβH fold.

Substitution matrices
Site-specific replacement matrices are obtained straight-
forwardly by "counting" substitutions in SCPE simula-
tions. For the test system considered, sites can be classified
into c = 1,2,...6 site classes. Then, for each class we set up

a matrix of counts: for i ≠ j,  is half the number of

mutational steps that result in either i → j or j → i amino-

acid replacements at site class c, and  is the number of

mutational steps for which amino acid i remains constant
(i → i replacement). Then, for each class, the matrix of
substitution rates, Qc, is obtained using:

Given the rate matrices, Qc, the probability matrices are
obtained using

Pc = exp(tQc)

The vector of amino acid equilibrium frequencies of class
c is, then, obtained with

Since there are some substitutions that do not occur dur-
ing the simulations (very low probabilities), we have
found it convenient to re-calculate each Qc using a pseu-

docounts procedure similar to that developed by Tatusov
[52] as follows

where  and  are, respectively, the substitution

matrix elements and equilibrium frequencies of a refer-
ence model. Here we used JTT [34] and α = 0.01. Accord-
ingly, equilibrium frequencies were also corrected using

Entropies and amino acid distributions
To study the sequence variability profile, we calculated the
entropy for each structural class using:

where  is the probability of finding residue i at struc-
tural class c.

For SCPE, we used the equilibrium probabilities obtained
from the substitution matrices, as described in the previ-
ous section. For the reference alignment, we grouped all
columns of the same structural class together, counted the
number of times each amino acid occurred in each class,
and obtained the corresponding amino acid frequencies.

The difference between the entropy profiles obtained

from the SCPE models, , and the profile of the

observed reference family, , was quantified by the fol-

lowing "error" function:

To assess the similarity between the equilibrium SCPE
amino acid distributions and those obtained from the ref-
erence alignment, we used the similarity score based on
information theory proposed by Yona and Levitt [41]. The
score is calculated by adding together the similarity scores
of the six structural classes.

JTT distributions and entropies
The equilibrium SCPE distributions and their correspond-
ing entropies were compared with JTT distributions and
entropies. In contrast to SCPE, the equilibrium JTT distri-
bution does not depend on structural class. Therefore,
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instead of the equilibrium distributions, we chose to use
the distributions and entropies from the alignment of
sequences obtained from simulations with the JTT model.
To this end, we performed 100 independent simulations
using the JTT substitution matrix. The simulation length
was set to the average number of substitutions obtained
for the LPXA family (Ka = 0.28). We aligned the 100 out-
put sequences, grouped all columns of the same structural
class together, counted the number of times each amino
acid occurred in each class, and obtained the correspond-
ing amino acid frequencies.

Maximum likelihood calculations
In order to assess the SCPE substitution patterns, we per-
formed Maximum Likelihood (ML) calculations using the
site-dependent SCPE substitution matrices, Qc. The maxi-
mum likelihood of a model, Q, given the data, s, for topol-
ogy, T, is obtained by maximizing the probability L =
Pr(s|T, Q).

For the SCPE model, the reference alignment was parti-
tioned into 6 sub-alignments corresponding to the 6
structural classes. Using these sub-alignments and the cor-
responding SCPE Qc matrices, we calculated the maxi-
mum likelihood using PAML. In all cases a gamma
distribution was used to take into consideration the rate
heterogeneity among sites of the same class. Similarly, we
performed ML calculations using the JTT substitution
matrix with gamma distribution of rates (JTT+Γ), for each
of the six structural classes. The ML values obtained for
each class were added together to obtain the total ML, as
was done with the SCPE models.

It has been shown that as long as the tree topology is rea-
sonable, model comparison is robust with respect to vari-
ations in topology [43]. In the present case, topologies
were obtained using the program FITCH [53] of PHYLIP
3.57c [54] with ML distances obtained using JTT with
PAML.

All the models compared here have the same number of
parameters. Therefore, models were compared by com-
paring ML values. One should note, however, that when
models with different number of parameters are com-
pared, one should use a statistic that takes explicit account
the number of parameters of each model [42,43].
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