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A B S T R A C T   

Background: The immune response associated with periprosthetic joint infection (PJI) is an 
emerging but relatively unexplored topic. The aim of this study was to investigate immune cell 
infiltration in periprosthetic tissues and identify potential immune-related biomarkers. 
Methods: The GSE7103 dataset from the GEO database was selected as the data source. Differ-
entially expressed genes (DEGs) and significant modular genes in weighted correlation network 
analysis (WGCNA) were identified. Functional enrichment analysis and transcription factor pre-
diction were performed on the overlapping genes. Next, immune-related genes from the ImmPort 
database were matched. The protein-protein interaction (PPI) analysis was performed to identify 
hub genes. CIBERSORTx was used to evaluate the immune cell infiltration pattern. Spearman 
correlation analysis was used to evaluate the relationship between hub genes and immune cells. 
Results: A total of 667 DEGs were identified between PJI and control samples, and 1847 PJI- 
related module genes were obtained in WGCNA. Enrichment analysis revealed that the com-
mon genes were mainly enriched in immune and host defense-related terms. TFEC, SPI1, and 
TWIST2 were the top three transcription factors. Three hub genes, SDC1, MMP9, and IGF1, were 
identified in the immune-related PPI network. Higher levels of plasma cells, CD4+ memory 
resting T cells, follicular helper T cells, resting mast cells, and neutrophils were found in the PJI 
group, while levels of M0 macrophages were lower. Notably, the expression of all three hub genes 
correlated with the infiltration levels of seven types of immune cells. 
Conclusion: The present study revealed immune infiltration signatures in the periprosthetic tissues 
of PJI patients. SDC1, MMP9, and IGF1 were potential immune-related biomarkers for PJI.   
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1. Introduction 

Periprosthetic joint infection (PJI) is a feared complication following total joint arthroplasty (TJA) and places a significant financial 
burden on the healthcare system due to its complex treatment strategy. Although PJI occurs in only about 1–3% of TJA cases, the 
growing number of TJA procedures makes it an increasingly important issue to address [1]. Unfortunately, the surgical failure rates for 
PJI remain high, ranging from 10 to 20% for two-stage exchange arthroplasty to approximately 30–50% for irrigation and debridement 
procedures [2,3]. Moreover, the treatment success rate of PJI has not experienced any substantial improvement over the past two 
decades [4]. Given the significant harm it causes, considerable effort has been devoted to understanding its pathological processes, as 
evidenced by the nearly thirty-fold increase in PJI-related publications between 2001 and 2021 [5]. 

Recently, there has been a growing focus on the critical role of the immune system in infection defense and bone homeostasis [6,7]. 
Biofilm formation in PJI could help pathogens resist antibiotics and evade the host immune response, making PJI eradication more 
difficult [8,9]. The combination of a prosthesis and infection can complicate the immune response. Therefore, understanding the 
immune system’s involvement in PJI has emerged as a challenging yet promising research field. Korn et al. [10] analyzed the immune 
cell composition of joint fluid using high-dimensional flow cytometry and found it to be a promising PJI screening tool. Furthermore, 
soluble immunomodulatory markers such as sCD28, sCD80, sCTLA-4, and sBTLA were identified as potential diagnostic and thera-
peutic markers for PJI [11]. More recently, Fisher et al. [12] performed bioinformatic prediction on immune cell profiles using RNA 
sequencing results from synovial fluid. However, all of the aforementioned studies focused on joint fluid, neglecting the fact that dry 
aspiration occurs in nearly half of the hips, which hinders the generalization of these immunologic findings [13]. Investigating the PJI 
immune microenvironment using periprosthetic tissues offers a promising alternative; however, relevant studies are still lacking. 
Further evaluation of the contribution of the immune system in different lesion samples could provide additional insight into the 
diagnosis and treatment of PJI. 

In the present study, we aimed to identify immune-related genes (IRGs) in the periprosthetic tissues of patients with PJI using 
bioinformatics approaches and to investigate potential associations between hub genes and immune infiltration patterns. The results of 
our research will establish a foundation for a deeper understanding of the immune response associated with PJI. 

2. Material and methods 

2.1. Data preparation 

Fig. 1 depicts the workflow of the present study. The gene expression data of periprosthetic tissue (GSE7103) were obtained from 
the Gene Expression Omnibus (GEO) repository. It included ten periprosthetic tissue samples from five patients with aseptic loosening 
[one woman/four men; mean age 70 years (range, 58–81 years)] and five patients with PJI [four women/one man; mean age 70 years 
(range, 57–88 years); Streptococcus orales was detected in one patient, Staphylococcus aureus in two, and Staphylococcus epidermidis in 
two]. Detailed demographic information is presented in Table S1. There were no statistically significant differences in age (Mann- 

Fig. 1. The workflow of the present study.  

Z. Li et al.                                                                                                                                                                                                               



Heliyon 10 (2024) e26062

3

Whitney U test, p = 0.917, Z = − 0.105) or sex (Fisher’s exact test, p = 0.206) between the two groups. These ten patients primarily 
received cemented total hip arthroplasty with metal-on-polyethylene bearings because of osteoarthritis. Then, the gene expression 
matrix was preprocessed, and the “probe ids” were configured into “symbols” using the gene annotation file obtained from GENCODE. 
Missing values were filled using the “impute.knn” function from the “impute” package. If a probe matched multiple genes, it was 
removed; and if multi-probes matched one gene, the average was taken. The data were further normalized using the “normal-
izeBetweenArrays” function from the “limma” package and then log-transformed. The normalized matrix file was provided as 
Appendix A. 

2.2. Identification of differentially expressed genes (DEGs) 

The DEGs between the control (aseptic loosening) and PJI groups were screened using the R package “limma”, which was based on 
linear model modeling. The screening criteria were defined as |log2 fold change (FC)| >1 and adjusted p < 0.05. Furthermore, the DEGs 
were visualized by volcano and heat plots. 

2.3. Weighted gene co-expression network analysis (WGCNA) 

We used the “WGCNA” package to explore the gene interactions and identify potential modules associated with PJI [14]. The 
correlation adjacency matrix was constructed and outliers were removed. Additionally, the “pickSoftThreshold” function was 
employed to calculate the adjacency based on the soft threshold power β and convert it into a topological overlap matrix. Modules were 
detected by hierarchical cluster analysis and the dynamic tree-cutting algorithm. Consistent with previous studies [15,16], the abline 
was set to 0.25 to merge similar modules on the clustering tree. Subsequently, the gene significance (GS) and module membership 
(MM) of the modules were assessed. Eventually, the eigengene network was visualized. The genes that overlapped between the sig-
nificant module of identified by WGCNA and the DEGs were considered as common genes (CGs). 

2.4. Functional enrichment analysis and pathway enrichment analysis 

The well-established DAVID [17] and KOBAS [18] databases were selected for gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis associated with CGs. The GO analysis included three components: biological 
process (BP), cellular component (CC), and molecular function (MF). The top five most significant GO and KEGG terms were visualized. 

2.5. Transcription factors prediction 

The ChEA3 tool was utilized to predict transcription factors for CGs [19]. The integrated MeanRank method was used to rank the 
transcription factors, as it considered results from all libraries, with lower scores indicating higher relevance. 

2.6. Determination of IRGs and construction of protein-protein interaction (PPI) networks 

The ImmPort is widely regarded as one of the most comprehensive collections of human immunology databases [20]. In order to 
obtain PJI-related IRGs, the CGs were matched to 2483 genes in the ImmPort database. The STRING database was used to develop an 
immune-related PPI network for IRGs with an interaction score of ≥0.4 as the threshold. The PPI network was visualized using 
Cytoscape and the core network was identified via the MCODE plugin [21]. Subsequently, the hub genes of the PPI network were 
detected using cytoHubba [22]. 

2.7. Assessment of immune cell infiltration 

The CIBERSORT was employed for immune cell infiltration analysis. The LM22 dataset from this public platform was used as a 
signature matrix, consisting of 547 immune cell signature genes that allow the identification of 22 human immune cells in the 
microenvironment [23]. One thousand permutations were performed to predict the absolute abundance of various immune cells, while 
the relative abundance was also calculated. The correlation between different immune cell functions was assessed. Additionally, 
principal component analysis (PCA) was conducted for the composition of immune infiltrating cells. 

2.8. Association between hub genes and infiltrating immune cells 

To further investigate the potential association between key genes and immune cells, we performed Spearman correlation analysis 
using the “cor.test” function to examine the correlation between gene expression and immune cell abundance. 

2.9. Statistical analysis 

All statistical analyses in this study were performed using R software (version 4.1.0). The Mann-Whitney U test and Fisher’s exact 
test were used to detect differences in demographics between PJI and control groups. GO and KEGG enrichment analyses were per-
formed by hypergeometric distribution tests using the DAVID and KOBAS databases. The adjusted p-value threshold was set at 0.05, 
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and the gene number threshold was set at three. The top five items in each category were displayed. All statistical tests were two-tailed 
and p-values less than 0.05 were considered to indicate statistical significance. Moderately and strongly correlated were defined as r 
values greater than 0.7 and 0.9, respectively, in the correlation analyses. 

3. Results 

3.1. Identification of DEGs 

Six hundred and sixty-seven DEGs, including 357 upregulated and 310 downregulated genes, were identified between PJI and 
control groups. The volcano (Fig. 2A) and heat (Fig. 2B) plots demonstrate significant differences in gene expression between two 
groups. The top five most significantly up-regulated genes were CHIT1 (log2 FC = 6.74), TMEM255A (log2 FC = 5.98), MCOLN3 (log2 
FC = 4.54), SLC47A1 (log2 FC = 4.26), and INSM1 (log2 FC = 4.17), while the top five down-regulated genes were IGKV1OR2-108 (log2 
FC = − 5.84), MLIP (log2 FC = − 4.88), EGFL6 (log2 FC = − 4.20), TBX3 (log2 FC = − 3.88), and IGK (log2 FC = − 3.86). Summary 
statistics of the DEGs are presented in Table S2. 

3.2. WGCNA and identification of modules 

Genes with more than 25% variation across samples in the normalized expression dataset were imported into WGCNA. We found 
eight modules consisting of genes with similar co-expression profiles by creating a cluster dendrogram and merging similar modules 
(Fig. 3A). The WGCNA analysis allowed us to further explore the correlations between different modules and clinical phenotypes. 
Among these modules, the turquoise module exhibited the highest positive correlation with PJI and was the only statistically sig-
nificant module (r = 0.94; p = 5E-5, Fig. 3B). Consequently, the turquoise module, which contained 1847 genes, was established as the 
PJI-associated module. Correlation analysis revealed a strong positive correlation between MM and GS in this module (cor = 0.94, p <
1e− 200, Fig. 3C). Then, we got 432 CGs by crossing DEGs with genes in the PJI-associated module (Fig. 3D). 

3.3. Enrichment analyses and transcription factors prediction of the CGs 

Enrichment analyses were performed to discover the underlying biological functions and pathways of PJI-associated genes in 
periprosthetic tissues (Fig. 4A). The GO analysis revealed that the CGs were predominantly enriched in signal transduction, integ-
rin− mediated signaling pathway, adaptive immune response, cell adhesion, and extracellular matrix organization for BP; extracellular 
region, integral component of the plasma membrane, extracellular exosome, plasma membrane, and extracellular space for CC; 
proteoglycan binding, amino acid binding, receptor binding, collagen binding, and integrin binding for MF. Many CGs were involved 
in two or more immune-related GO terms, suggesting that they were closely related to immune response (Fig. 4B). Additional KEGG 
pathway analysis revealed enrichment for the Rap1 signaling pathway, lysosome, and phagosome. 

The top 10 potential transcription factors are listed in Table S5 and the contribution of each library to the integrated ranks is shown 
in Fig. S1. TFEC (score = 5.3), SPI1 (score = 13.2), and TWIST2 (score = 18.5) were the top three most significant transcription factors. 

3.4. Construction of immune-related PPI networks and identification of hub genes 

After matching genes with those in the ImmPort database and removing isolated nodes, the immune-related PPI network comprised 

Fig. 2. Volcano (A) and heat (B) plots for the DEGs identified from GSE7103. DEG, differentially expressed gene.  
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of 30 upregulated and 20 downregulated nodes (Fig. 5A). Using the MCODE plugin, a core cluster consisting of 16 nodes and 53 edges 
was obtained (Fig. 5B). Detailed information for each cluster is provided in Table S3. We then evaluated the scores of each node by the 
MCC algorithm in the cytoHubba plugin, and SDC1, MMP9, and IGF1 were identified as potential hub genes (Table S4). 

3.5. Immune cell infiltration analysis 

The infiltration abundance of eosinophils was found to be zero. Consequently, we proceeded to assess the infiltration of the other 21 
immune cells. The bar plot (Fig. 6) illustrates the infiltration pattern of these 21 immune cells in each periprosthetic tissue sample, with 
different colors indicating the proportion of immune cells. It was evident that macrophages were the predominant infiltrating immune 
cells. Besides, the violin plot indicated higher concentrations of plasma cells (p = 0.011, Z = − 2.643), CD4 memory resting T cells (p =
0.010, Z = − 2.649), resting mast cells (p = 0.008, Z = − 2.611), neutrophils (p = 0.005, Z = − 2.009), and follicular helper T cells (p =
0.016, Z = − 2.403) in PJI samples, while lower concentrations of M0 macrophages were observed (p = 0.008, Z = − 2.611, Fig. 7A). 
Correlation analysis demonstrated that the most significant positive correlations were found between neutrophils and dendritic cells 
activated (cor = 0.98), CD8 T cells and M1 macrophages (cor = 0.93), whereas negative associations were found between resting mast 

Fig. 3. Weighted gene co-expression network analysis. (A) Different colors indicate gene co-expression modules under the gene tree. (B) The 
turquoise module is significantly correlated with PJI. Numbers in and out of parentheses represent p-values and correlation coefficients, respec-
tively. (C) A strong correlation between module memberships (X-axis) and gene significance (Y-axis). (D) Venn diagram indicating the common 
genes between DEGs and turquoise module genes. PJI, periprosthetic joint infection; DEG, differentially expressed gene. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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cells and M0 macrophages (cor = 0.94), and between follicular helper T cells and M0 macrophages (cor = 0.93, Fig. 7B). Moreover, the 
PJI cases can be distinguished by PCA analysis according to their immune cell composition (Fig. 7C). 

3.6. Correlation of hub genes and immune cells 

The levels of SDC1, MMP9, and IGF1 were found to correlate with the abundance of seven different immune cells. SDC1 exhibited a 
negative correlation with resting mast cells, M1 macrophages, plasma cells, follicular helper T cells, CD8 T cells, and CD4 memory 
resting T cells, but a positive correlation with M0 macrophages (Fig. 8A). MMP9 expression was positively correlated with neutrophils, 
follicular helper T cells, plasma cells, monocytes, resting mast cells, and CD8 T cells, but negatively correlated with M0 macrophages 
(Fig. 8B). IGF1 was negatively correlated with CD8 T cells, follicular helper T cells, M1 macrophages, resting mast cells, CD4 memory 
resting T cells, and plasma cells, but positively correlated with M0 macrophages (Fig. 8C). 

Fig. 4. (A) The top five terms of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The GO 
terms involved three components: biological process (BP), cellular component (CC), and molecular function (MF). (B) The chord plot shows the close 
association between immune-related GO items and common genes. 
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4. Discussion 

PJI is a rare but catastrophic complication following TJA, which imposes a substantial burden on the healthcare system due to its 
high cost and tendency to reoccur [1]. Although the understanding of the molecular mechanisms underlying PJI is limited, recent 
studies have suggested that immune pathways may play a critical role in PJI, and the identification of novel immune-related profiles 
could lead to the development of new diagnostic and therapeutic strategies [6,9,12,24]. To the best of our knowledge, the present 
research represents the first investigation of immune cell infiltration patterns in periprosthetic tissues of PJI. In general, 667 DEGs were 
identified, and 1847 PJI-related module genes were obtained in WGCNA. Enrichment analysis revealed that these common genes were 
mainly enriched in immune and host defense-related terms. Higher levels of plasma cells, CD4+ memory resting T cells, follicular 
helper T cells, resting mast cells, and neutrophils were found in PJI group, while levels of M0 macrophages were lower. Moreover, 
SDC1, MMP9, and IGF1 were identified as potential immune-related biomarkers using a series of bioinformatics approaches. These 
findings could greatly contribute to our understanding of novel immune-related signatures in PJI. 

Our enrichment analyses identified several immune-related terms. Apart from adaptive immune responses, integrin-mediated 
signaling pathways and integrin binding were also significantly enriched. The critical role of integrins in immune regulation has 
been well investigated and could be responsible for the recruitment of lymphocytes from lymph nodes to sites of infection or 
inflammation [25–29]. Integrin activation has been proven to be an essential component of several infections, including SARS-CoV-2, 
human immunodeficiency virus (HIV), and human papillomavirus [30–32]. T lymphocyte-expressed integrins can mediate commu-
nication between T cells and other cells, as well as regulate signaling. Our study further validates prior findings that the development of 
PJI involves an immune response, which is consistent with our research objective. 

Transcription factors are key regulators of gene expression. TFEC is highly specifically expressed in macrophages [33] and can form 
a positive IL-4/TFEC/IL-4R feedback to promote M2 polarization. Recent research has shown that TFEC upregulation, induced by PJI, 

Fig. 5. (A) Immune-related protein-protein interaction network. (B) Identification of core networks by MCODE and subsequently screening of hub 
genes by cytoHubba. Red nodes indicate up-regulated genes, while blue nodes indicate down-regulated genes. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 
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can lead to inflammatory fibroblast differentiation, thereby triggering immune cell migration [34]. Additionally, SPI1 has been 
demonstrated to be closely associated with tumor cell survival and growth [35]. Another study found that SPI1 was also a potential 
core gene in the peripheral blood of sepsis patients, and its high expression increased the patient mortality [36]. TWIST2, a basic 
helix-loop-helix transcription factor, is involved in bone development [37] and can attenuate the inflammatory response in infant 
pneumonia via the NLRP3 inflammasome [38]. These findings suggest that these transcription factors may play a significant role in 
inflammatory and immune functions in PJI. 

Although the significant infiltration of leukocytes, particularly neutrophils, in PJI is well documented, knowledge of other immune 
cell profiles in PJI remains limited. The CIBERSORT analysis revealed that PJI samples had higher concentrations of plasma cells, CD4 
memory resting T cells, resting mast cells, neutrophils, follicular helper T cells, and lower concentrations of M0 macrophages. 
Conversely, a previous study that relied on sonicate fluid yielded slightly different results. It predicted higher levels of neutrophils, 
activated mast cells, CD8 T cells, eosinophils, resting NK cells, and activated CD4 memory T cells in PJI cases, while the aseptic failure 
group had higher levels of M0 macrophages, M2 macrophages, plasma cells, regulatory T cells, naive B cells, and follicular helper T 
cells [12]. The reason for this discrepancy is unclear. A potential explanation is that immune infiltration in PJI may be tissue specific, 
and different immune cell infiltration profiles may be present in different samples. Another possible explanation could be the het-
erogeneity among PJI samples, which may be caused by pathogenic bacteria, duration of infection, etc. Identifying such differences 
could improve our understanding of the immune alterations in PJI. In particular, the infiltration of mast cells in PJI tissues is an 
intriguing but uncharacterized issue. Tissue-resident mast cells could secrete antimicrobial peptides, recruit neutrophils, and partic-
ipate in antigen presentation to mediate antimicrobial inflammation, possibly acting as a type of sentinel cell [39,40]. Furthermore, the 
activation of joint-specific mast cells was also associated with enhanced inflammation [41]. These findings emphasize the crucial 
function of mast cells in the immune response to PJI. 

Although immunotherapy is a promising therapeutic strategy for chronic implant-related infections, there is a severe paucity of 
immune-related markers for PJI. In this study, we have identified SDC1, MMP9, and IGF1 as potential PJI markers for the first time. 
SDC1, a major proteoglycan present in epithelial cells, is targeted by numerous pathogens during the initial stages of pathogenesis 
[42]. Some pathogens can bind to SDC1 heparan sulfate to facilitate attachment and internalization [43]. In addition, SDC1 has been 
shown to facilitate infection progression by shedding extraterritorial domains and suppressing innate defense mechanisms [44,45]. 
Previous studies have also focused on the role of SDC1 in the endothelial glycocalyx [46], which can be degraded in sepsis by 
inflammation-related mechanisms such as metalloproteinases [47]. Studies on sepsis have shown a correlation between blood levels of 
glycocalyx components and disease severity or mortality [48–50]. Additional investigation on the role of SDC1 in PJI may provide 
more valuable insights. In addition, mining the associations between these potential markers and immune cell infiltration could assist 
us in understanding their function in the immune microenvironment. Our analysis revealed a strong positive correlation between SDC1 
expression and resting mast cells. Although few previous studies have investigated their relationship, a recent study found that both 
SDC1 and resting mast cell levels may be prognostic factors for patients with glioblastoma [51]. Furthermore, the strongest negative 
correlation between SDC1 and macrophages M0 was observed in our study. In contrast, there was a strong positive correlation between 
them in aortic valve calcification [52]. More data would be needed to interpret these findings, and further investigation of the role of 
SDC1 in PJI may provide more valuable insights. 

MMP9 is an essential regulator of neutrophil migration and plays a role in maintaining the dynamic homeostasis of the extracellular 
matrix. It is involved in various pathological processes [53]. Although its specific role in PJI remains unclear, several studies have 
reported its potential as a biomarker for sepsis [54–56]. Besides, matrix metalloproteinases can interact with integrin receptors on the 

Fig. 6. The bar plot shows the composition of the 21 types of infiltrating immune cells in each sample.  
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cell surface to promote the migration of inflammatory cells to the site of infection. In a murine model, Daghighi et al. observed that 
Mmp and integrins were upregulated when both pathogenic bacteria and implants were present, while the immune system was still 
struggling to eradicate the infection [57]. The aforementioned findings highlight the potential of MMP9 as a novel marker for in-
fectious diseases. Correlation analysis revealed that the immune cells most positively correlated with MMP9 were macrophages M0. 
Macrophage morphological plasticity and migration were Rac signaling and MMP9 dependent [58]. Recent studies have shown that 
macrophage-derived MMP9 can induce the development of various diseases such as renal fibrosis and cerebral aneurysms [59,60]. Our 
results highlighted their potential role in PJI. Neutrophils could release MMP9 to promote angiogenesis and tumor cell dissemination 
[61]. Neutrophil extracellular traps were also enriched with high levels of MMP9 and neutrophil elastase [62]. However, a negative 
correlation between MMP9 expression and neutrophils was found in PJI. The reasons for this phenomenon remain to be investigated. 

IGF1 plays a significant role in regulating bone remodeling and metabolism, and is critical for preserving bone density throughout 
an individual’s lifespan [63]. A recent study revealed a close association between reduced IGF1 levels and the development of oste-
oporosis and sarcopenia in the elderly [64]. In addition, it has emerged as a potential biomarker for postmenopausal osteoporosis [65]. 
Infectious osteomyelitis can induce secondary osteoporosis by affecting osteoclast function, and the infected bone loss has recently 
been proven to be present in PJI [66,67]. However, bone mass in PJI patients has not received much attention [67]. Hence, there is an 

Fig. 7. Visualization and comparison of immune cell infiltration. (A) The violin plot demonstrates the difference in immune cell subtypes between 
the PJI and control groups. Green and red represent control and PJI group samples, respectively. (B) The correlation heat map of immune cells. (C) 
PCA analysis can distinguish PJI from controls based on the composition of infiltrating immune cells. PJI, periprosthetic joint infection. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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immediate requirement for more comprehensive research to explore the clinical significance of infection-induced osteolysis in PJI. In 
the present study, IGF1 was found to be positively correlated with plasma cells and negatively correlated with macrophages M0. It was 
demonstrated that IGF1 can mediate proliferative and anti-apoptotic signaling in plasma cells [68]. These data suggested their po-
tential synergistic role in the development of PJI. In addition, IGF1 and macrophages M0 were simultaneously identified as 
immune-related molecular prognostic indicators in bladder cancer [69]. In HIV-infected patients, IGF1 and monocyte/macrophage 
activation markers (sCD163, sCD14) were negatively correlated [70]. Therefore, future studies should investigate the mechanisms and 
prognostic significance of these molecular markers in PJI. 

Several limitations should be noted when interpreting our findings. First, only one dataset was used for the bioinformatic analysis. 
However, PJI-related datasets were scarce, making our results an important foundation for future immune-related studies of PJI. 
Second, the small sample size of the present study prevented us from assessing the effect of confounding factors such as age and gender 
on gene expression and immune infiltration levels. Third, specific inclusion or exclusion criteria for patient selection remained unclear. 
Fourth, we did not find statistical differences in most immune cell types. This may be due to the considerable heterogeneity among PJI 
patients, and the present sample size was insufficient to detect potential differences. In addition, patient medication history, such as 
systemic or topical antibiotic administration, was not available, and information on risk factors for PJI, such as smoking, alcohol 
consumption, and local soft tissue disease [71,72], was lacking, making it impossible for us to assess their potential impact. Therefore, 
larger and more detailed studies would be needed to more comprehensively investigate the immune microenvironment in patients 
with PJI. Finally, future in vitro and in vivo experiments are still needed to validate the findings of our study. 

5. Conclusion 

In conclusion, the present study unveiled, for the first time, immune infiltration signatures in PJI periprosthetic tissues. Three hub 
genes, SDC1, MMP9, and IGF1, were identified as potential novel immune-related biomarkers for PJI. Our findings could provide a 
basis for researchers to gain a deeper understanding of the immune response associated with the development of PJI. 

Fig. 8. Correlation between SDC1 (A), MMP9 (B), or IGF1 (C) and infiltrating immune cells.  
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