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Two novel methanesulfonate-degrading bacterial strains of “Candidatus Filomicrobium marinum” (strains Y and W) were iso-
lated from a marine water enrichment, and their complete genome sequences are presented here. These are the first full genomes
reported for the genus Filomicrobium and for methanesulfonate (MSA)-degrading bacteria.
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Methanesulfonate (MSA) is quantitatively a very relevant
compound in the biogeochemical sulfur cycle (1–6). MSA

can be used aerobically as a sulfur source by some bacteria (6),
while several methylotrophic species isolated from different envi-
ronments can grow using MSA as the sole source of carbon and
energy (7–15). The strains analyzed at the molecular level contain
an inducible MSA monooxygenase that oxidizes MSA to the cen-
tral methylotrophic intermediate formaldehyde (7–13).

The complete genomic sequences of two such novel marine
methylotrophs are described here. They were isolated from an
enrichment from North Atlantic surface seawater with MSA as
sole source of C (16); one produced white colonies (“Candidatus
Filomicrobium marinum” strain W), and one produced yellow
colonies (“Candidatus Filomicrobium marinum” strain Y). The
genomes were sequenced by Molecular Research LP (Shallowater,
TX, USA) using the MiSeq Illumina sequencing platform. The
coverages were 294� and 381�, respectively. Sequence reads were
assembled using the NGen assembler (DNAStar, Inc.). The num-
bers of assembly contigs generated were 2 for strain Y and 4 for
strain W. Gaps were closed by PCR and Sanger sequencing. The
two sequences were reconstructed into circular genomes of
3,969,942 bp (strain Y) and 3,969,936 bp (strain W). Both ge-
nomes were analyzed and annotated using the MicroScope
platform (https://www.genoscope.cns.fr/agc/microscope/home
/index.php) (17).

The two 16S rRNA genes are identical to each other, and
BLASTn (http://www.ncbi.nlm.nih.gov/BLAST/) (18) and Ribo-
somal Database Project (RDP) (http://rdp.cme.msu.edu/) (19)
analyses show a very clear association with other Filomicrobium
organisms (highest identity with Filomicrobium insigne strain
SLG5B-19, 97.9%). These are the first genomes reported for the
Filomicrobium genus and for MSA-degrading bacteria.

The 2 genomes are almost identical, differing in only 29 single-
nucleotide polymorphisms (SNPs) (of which 5 are ambiguously
scored bases) and a large 1,205,437-bp inversion (20); for conve-
nience, we will describe strain Y only. The genome included 4,112
genomic objects (4,045 coding sequences [CDSs], 8 fragments of
CDS, 8 genes for miscellaneous RNA, 3 genes for rRNA [one 16S,

one 23S, and one 5S], and 48 tRNAs). The G�C genomic content
is 57.29%. Of the CDSs, 2,886 (71%) are categorized in at least one
COG group.

Genes involved in most major metabolic pathways were found,
such as those for the tricarboxylic acid (TCA) cycle, pentose phos-
phate pathway, amino acid metabolism, and biosynthesis. Genes
coding for an electron transport chain and oxidative phosphory-
lation are also present, as well as those encoding dimethyl sulfox-
ide (DMSO) reductase and nitrate reductase. However, the glyco-
lytic pathways are not complete, and no pathways for CO2 fixation
were found.

As expected, methylotrophic genes are present: methanol de-
hydrogenase encoded by the mxa and xox genes (21), methyl-
amine dehydrogenase mau genes (22), a MSA monooxygenase
operon (msmABCD) (7), and a MSA transport operon (msmE-
FGH) (23). Two open reading frames (ORFs) were found down-
stream of msmH encoding a SoxDC sulfite dehydrogenase (24).

Genes involved in the serine cycle are present. Isocitrate lyase
was not found, but most of the enzymes required for the
ethylmalonyl-coenzyme A (CoA) pathway (25, 26) were pre-
dicted. Regarding formaldehyde dissimilation, both the tetrahy-
drofolate and tetrahydromethanopterin pathways were found.
Genes encoding formate dehydrogenase are also present.

These features bring new insights into the genomic potential of
members of the genus Filomicrobium and MSA-degrading bacte-
ria in general.

Nucleotide sequence accession numbers. The complete ge-
nome sequences of strains Y and W were deposited in the Euro-
pean Nucleotide Archive under BioProject number PRJEB8348
and accession numbers LN829119 and LN829118, respectively.
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