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Abstract: Background: Parkinsonian syndrome (PS) is a broad category of neurodegenerative movement
disorders that includes Parkinson disease, multiple system atrophy (MSA), progressive supranuclear palsy,
and corticobasal degeneration. Parkinson disease (PD) is the second most common neurodegenerative dis-
order with loss of dopaminergic neurons of the substantia nigra and, thus, dysfunction of the nigrostriatal
pathway. In addition to the motor symptoms of bradykinesia, rigidity, tremors, and postural instability,
nonmotor symptoms such as autonomic dysregulation (AutD) can also occur. Heart rate variability
(HRV) has been used as a measure of AutD and has shown to be prognostic in diseases such as diabetes
mellitus and cirrhosis, as well as PD. I-123 ioflupane, a gamma ray-emitting radiopharmaceutical used
in single-photon emission computed tomography (SPECT), is used to measure the loss of dopaminergic
neurons in PD. Through the combination of SPECT and HRV, we tested the hypothesis that asymmetrically
worse left-sided neuronal loss would cause greater AutD. Methods: 51 patients were enrolled on the
day of their standard of care I-123 ioflupane scan for the work-up of possible Parkinsonian syndrome.
Demographic information, medical and medication history, and ECG data were collected. HRV metrics
were extracted from the ECG data. I-123 ioflupane scans were interpreted by a board-certified nuclear
radiologist and quantified by automated software to generate striatal binding ratios (SBRs). Statistical
analyses were performed to find correlations between the HRV and SPECT parameters. Results: 32
patients were excluded from the final analysis because of normal scans, prior strokes, cardiac disorders and
procedures, or cancer. Abnormal I-123 ioflupane scans were clustered using T-SNE, and one-way ANOVA
was performed to compare HRV and SBR parameters. The analysis was repeated after the exclusion of
patients taking angiotensin-converting enzyme inhibitors, given the known mechanism on autonomic
function. Subsequent analysis showed a significant difference between the high-frequency domains of
heart rate variability, asymmetry of the caudate SBR, and putamen-to-caudate SBR. Conclusion: Our
results support the hypothesis that more imbalanced (specifically worse left-sided) neuronal loss results in
greater AutD.

Keywords: HRV; Parkinson disease; heart rate variability; I-123 ioflupane; DaTscan; autonomic
dysregulation; autonomic dysfunction; neurodegeneration
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1. Introduction

Parkinsonian syndrome (PS) is a broad category of neurodegenerative movement
disorders that includes Parkinson disease, multiple system atrophy (MSA), progressive
supranuclear palsy, and corticobasal degeneration [1]. Differentiating between these dis-
orders can be challenging and requires a combination of symptoms, physical exams, neu-
rological exams, and imaging findings. Specifically, Parkinson disease (PD), which is the
second most common neurodegenerative disorder, the most researched, and the most
common PS, will, therefore, be preferentially discussed. PD is diagnosed according to the
Movement Disorder Society Clinical Diagnostic Criteria for PD [2]. PD results from the
loss of dopaminergic neurons in the substantia nigra, which project to the striatum [3].
The pathologic hallmark is intracellular aggregates of the toxic α-synuclein protein, which
accumulates not only in neurons of the brainstem but also in the gut, olfactory bulb, and cor-
tex [3–5]. PD can often be diagnosed clinically by the characteristic bradykinesia, unilateral
rigidity, resting tremor, and postural instability [4].

A lesser-known but common non-motor symptom of PD is autonomic dysregulation
(AutD) [6]. Symptoms associated with AutD can be debilitating and carry a host of potential
non-motor dysfunctions, including cardiovascular and gastrointestinal problems [7]. The
relationship between AutD and PD is not well understood; however, earlier development
of AutD in PD patients led to more rapid progression of the disease and shorter survival [7].
However, it must be noted that the life expectancy of an individual with PD varies based
on several factors, including the patient’s medical history.

Heart rate variability (HRV) measures the variations between heartbeats [8]. Various
HRV parameters can be calculated, such as the standard deviation of the normal-to-normal
beat intervals (SDNN), very low frequency (VLF), low frequency (LF), high frequency (HF),
and total power (TP). A relatively higher HRV is found in normal, healthy people, while
lower HRV is described in several disease processes [8]. HRV has also been implicated as a
predictive measure of the severity of certain diseases, where a lower HRV is indicative of a
worse prognosis. A decreased HRV was seen in diabetes mellitus [9] and cirrhosis, where
a lower HRV was correlated with more severe disease and higher overall mortality [10].
Similarly, HRV has also been shown to be associated with a worse prognosis in PD. In a
prospective cohort study, patients with a decreased HRV were associated with a higher
risk of developing PD [11]. In another study, impaired HRV was shown to be strongly
correlated with the duration of PD [6]. Studies have demonstrated the association of AutD
with PD severity, progression, and survival [12] and that earlier AutD, demonstrated by
reduced HRV, additionally predicts greater severity of PD and shorter survival.

Right and left sympathetic innervation of the heart have different effects on the QT
interval. Blocking the right stellate ganglion increases the QT interval, while in contrast
blocking the left stellate ganglion decreases the QT interval. Thus, it has been postulated
that the left stellate ganglion may be a factor in arrhythmogenesis [13]. Indeed, a left
stellate block has been used for ventricular arrhythmia treatment under certain clinical
scenarios [14,15]. The asymmetry in cardiac innervation is important in the parasympathetic
nervous system as well. The right vagus nerve predominantly regulates the sinoatrial
node and the atria, while in contrast the left vagus nerve predominantly regulates the
atrioventricular node and the ventricles [13].

In diagnostically challenging cases of possible PD, imaging with FDA-approved iodine-
123 (I-123) ioflupane can be helpful. After injecting I-123 ioflupane, a gamma ray-emitting
analog of cocaine with a high affinity for dopamine transporters in the striata, patients
are imaged by single-photon emission computed tomography (SPECT) [16]. Normal I-
123 ioflupane SPECT scans show radiotracer uptake in the striata, which are shaped like
commas in the axial plane. Just as PD symptoms usually present initially on one side
(hemi-Parkinsonism), the I-123 ioflupane SPECT imaging is also often asymmetric with
greater loss of uptake contralateral to the side with worse symptoms [16]. Interestingly,
studies have shown that the posterior putamen is the first to show decreased I-123 ioflupane
uptake, and as the disease progresses, the decreased binding also progresses anteriorly [17].
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Our objective was to explore the connection between neurodegeneration in the brain
and AutD in PD. To accomplish this, quantitative parameters from dopamine transporter
SPECT imaging were correlated with HRV parameters. Since PD causes asymmetric neu-
ronal loss in the brainstem and cardiac autonomic innervation (also from the brainstem) is
also asymmetric, we can divide the patient population into subgroups based on these differ-
ing patterns. We hypothesized that more severe left-sided neuronal loss would imbalance
the autonomic innervation more severely, which would be reflected by worse HRV.

2. Materials and Methods
2.1. Patient Recruitment and Selection

Patients were recruited from the nuclear medicine clinic at the University of Arizona
Medical Center on the day of their standard of care I-123 ioflupane SPECT scans, which
were ordered to aid in the evaluation of suspected PS or PD. To minimize bias and simulate
typical clinical practice, this pilot trial was an all-comers study in a real adult patient
population referred for dopamine transporter imaging for movement disorders. Inclusion
criteria were either a known or suspected diagnosis of PS or PD and an abnormal (by an
expert radiologist read) I-123 ioflupane scan. The patients were presented with details of the
study, risks and benefits were explained, and informed consent was obtained. The patients
were then interviewed, and demographic information was collected. In addition, electronic
medical records for each patient were reviewed to extract additional data such as current
diagnosis of PS or PD (either definitively diagnosed or suspected), comorbidities, and
current medications. Fifty-one patients initially consented; however, for various reasons,
such as heart rate sensor malfunction, voluntary withdrawal from the study, and data
corruption, six patients’ data could not be acquired. The exclusion criteria included medical
comorbidities (such as a history of myocardial infarction, cardiac surgery or procedure,
stroke, diabetes, hypertension, and cancer due to known confounding effects on HRV) and
normal (by an expert radiologist read) I-123 ioflupane scans. None of the patients had a
known diagnosis of dystonia or functional neurological disorders, which can often mimic
PD [18,19] and would have been exclusion criteria if they were relevant. After applying the
initial exclusion criteria, 13 patients’ data were analyzed. Subsequently, six patients taking
angiotensin-converting enzyme (ACE) inhibitors were also excluded, and the final analysis
was performed on seven patients.

These demographic data are outlined in Table 1. Table 2 presents patient-reported
medications and the number of patients taking them.

Table 1. Demographics and comorbidities of the entire patient population. The patients that were
analyzed have been identified by colored boxes, and those of the analyzed patients taking angiotensin-
converting enzyme (ACE) inhibitors are marked by asterisks. Blue box—Group A; Orange box—
Group B; Green box—Group C. Six patients’ data could not be acquired and are, thus, not included
in this table (patients 4, 6, 10, 14, 15, and 28). PD—Parkinson disease; HTN—hypertension; PS—
parkinsonian syndrome; COPD—chronic obstructive pulmonary disease; MSA—multiple system
atrophy; GERD—gastroesophageal reflux disease; ADHD—attention deficit/hyperactivity disorder;
BPH—benign prostatic hyperplasia; CABG—coronary artery bypass graft; MI—myocardial infarction;
CKD—chronic kidney disease.

Patients

Sex (M/F) Age (years) Weight (kg) Height (m) BMI (kg/m2) Co-Morbidities

1 F 75 116.12 1.74 38.36 PD, Headaches, Cancer, COPD, HTN
2 M 84 77.11 1.83 23.06 Diabetes, Cancer

3 F 68 81.65 1.7 28.19 Asthma, Vertigo,

* 5 M 74 77.56 1.73 26 PD, Neuropathy, HTN, Pain

7 M 73 95.25 1.8 29.29 MSA, GERD, Hypercholesterolemia

8 M 53 81.65 1.83 24.41 ADHD, Anxiety, Seizures
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Table 1. Cont.

Patients

Sex (M/F) Age (years) Weight (kg) Height (m) BMI (kg/m2) Co-Morbidities

* 9 M 70 69.4 1.78 21.95 Hypercholesterolemia, Diabetes,
HTN, Dementia

* 11 M 71 86.18 1.78 27.26 PD, GERD, HTN, COPD, BPH

12 F 62 63.5 1.6 24.8 Pain, ADHD, Anxiety, Mental Health,
Depression, GERD, Cancer, Pancreatitis

13 M 62 71.67 1.75 23.33 PD

16 M 78 83.91 1.78 26.54 PS, HTN, Mood Disorder, Dementia,
Sleep Apnea, Neuropathy

17 F 76 63.5 1.63 24.03
PS, Cancer, HTN, Depression, Colitis,

Raynaud’s Syndrome,
Hypercholesterolemia, Pain

18 F 81 53.52 1.55 22.3 Depression, Lupus, Stroke, HTN,
Hypercholesterolemia

19 M 69 104.33 1.83 31.19

20 M 80 73.48 1.68 26.15 Hypercholesterolemia, Diabetes, HTN

21 F 53 108.86 1.65 39.94 Angina, HTN

22 F 75 61.23 1.68 21.79 GERD, Pain, Fibromyalgia,
Hypercholesterolemia

23 M 75 86.18 1.65 31.62

24 M 82 99.79 1.75 32.49 HTN, Osteoarthritis, BPH, GERD, Gout

25 M 73 83.01 1.8 25.52 GERD, Heart Disease,
Hypercholesterolemia, Asthma

* 26 F 84 64.41 1.6 25.15 Pain, Arthritis, HTN

27 F 73 56.7 1.5 25.2 PS, Supranuclear Palsy,
Depression, Arthritis

29 M 65 72.57 1.68 25.8 HTN, Stroke, Neuropathy, Lymphoma

30 M 83 60.33 1.73 20.2 HTN, Hyperlipidemia, Seizures

31 M 74 77.11 1.63 29.2 Depression, Tremors, HTN

32 F 71 81.65 1.57 32.9 Hypothyrodism, Migraines, Sleep Apnea,
GERD, Depression, Hypercholesterolemia

33 F 71 58.51 1.68 20.8
PS, Cancer, Hypercholesterolemia, HTN,

Dementia, Depression, Anxiety,
Hypothyroidism

34 M 73 86.18 1.75 28.1 HTN, Depression, GERD

35 M 72 73.48 1.68 26.1 HTN, GERD, BPH, Depression,
Hypercholesterolemia

* 36 M 41 102.97 1.85 29.9 PS, HTN

37 F 71 52.16 1.65 19.1
Dementia, Tremors,

Hypercholesterolemia,
Neuropathy, Diarrhea

38 M 73 127.01 1.88 35.9 HTN, BPH, Hypercholesterolemia, Sleep
Apnea, CABG

39 M 77 84.82 1.75 27.6
Tremor, Achalasia, Cancer, CABG,

Hypothyroidism,
Hypercholesterolemia, Osteoporosis

40 F 66 95.25 1.52 41
MI, Diabetes, Osteoarthritis, CKD,

Hypothyroidism, Depression,
Hypercholesterolemia, GERD, BPH
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Table 1. Cont.

Patients

Sex (M/F) Age (years) Weight (kg) Height (m) BMI (kg/m2) Co-Morbidities

41 M 64 108.86 1.78 34.4 PS, HTN, Hypercholesterolemia,
Hypothyroidism

* 42 M 76 85.28 1.7 29.4 HTN, Neuropathy, Pain, Gait Instability

43 M 69 81.65 1.73 27.4 PD, Stroke, HTN, Hypercholesterolemia,
BPH, Depression, Arthritis, Diabetes

44 M 84 81.65 1.78 25.8 BPH, Pain, Dementia,
Neuropathy, Glaucoma

45 M 75 87.54 1.85 25.5 Diabetes, Glaucoma, GERD

46 M 77 62.5 HTN

47 F 60 67.59 1.63 25.6 HTN, Dystonia, Arthritis

48 M 78 76.2 1.7 26.3 HTN, Stroke, Abdominal Aneurysm

49 M 68 72.57472 1.73 24.3

50 M 74 123.83062 1.75 40.3

51 M 75 89.36 1.73 29.7 HTN, Cancer, Hypothyroidism

Table 2. Patient-reported medications with number of total patients and analyzed patients taking
each medication.

Medications Number of Patients Number of Analyzed Patients

Antihypertensives
β-blocker 14 1

ACE-I/ARB 19 6
Other 12 2

PD/Parkinsonian/Dementia
Levadopa/Carbidopa 12 4

Cholinergic 4 2
Other 6 1

Additional Medications

Gabapentin/Anti-seizure 12 4
Opiate/Opioid 5 1

Psychiatric Medications 20 2
β-agonist 2 2

Steroid 3
NSAIDs 17 5

2.2. HRV Data Acquisition

Once demographic data were collected, the patients were given a wearable biometric
monitoring sensor, BioHarness3TM (Figure 1, Zephyr Technology Corp, Annapolis, MD,
USA). The BioHarness3 sensor was placed over the patient’s xiphoid process and adhered
to the patient’s skin via electrocardiogram (ECG) pads (Figure 1). The sensor enables
recording uni-channel ECG (250 Hz), respiration rate, accelerations, and approximate core
body temperature [20,21]. Once the sensor adhered to the skin, the patients were instructed
to lay in a supine position for 30 min, relax, and refrain from moving or speaking. ECG
data were collected over the course of 30 min. The first and the last 5-min of the data stream
were excluded for better signal quality. All ECG data were then processed to extract HRV
features using Neurokit2, a Python script-based, user-friendly, open-source package [22],
to ensure reproducibility. The obtained R-R intervals were then used to calculate the
HRV time-domain measurements, including SDNN and RMSSD (root mean square of
successive differences). SDNN is a global index of HRV and reflects longer-term circulation
differences and circadian rhythms. Lower SDNN values indicate higher physiological
stress responses, and higher SDNN values are linked to better wellbeing [21]. RMSSD is
another method to quantify HRV, which reflects vagal tone. Higher values equate to higher
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parasympathetic activities or more relaxation [23]. Additionally, the R-R intervals were
transformed by a Fourier transform to extract frequency-domain HRV features, such as HF
power (0.15–0.4 Hz), LF power (0.04–0.15 Hz), and LF/HF ratio [17]. (Figure 2). The HF
represents the parasympathetic regulations (relaxation indicator) of the heart. The LF/HF
ratio indicates the balance between the sympathetic and parasympathetic activity of the
heart. The higher LF/HF ratio, higher LF, and lower HF represent a higher balance toward
sympathetic activation or a stressful condition [23]. We calculated both time and frequency
domain parameters in every 5-min interval according to the guidelines of the European
Society of Cardiology and the North American Society of Pacing and Electrophysiology [23].
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2.3. I-123 Ioflupane SPECT Protocol and Quantification

Before injection, the patients were premedicated with Lugol solution to block the
uptake of any free radioiodine by the thyroid gland. Three to four hours after the in-
jection of approximately 185 MBq of I-123 ioflupane, projection data were obtained in
a 128 × 128 matrix on a 2-head camera (ECAM SPECT from Siemens Medical Systems
or Optima 640 SPECT/CT from General Electric Healthcare) mounted with low-energy
high-resolution parallel-hole collimators. Projection data were acquired over 120 angles
for approximately 30 min. The standard brain protocol was used, whereby the data
were reconstructed using filtered back-projection without attenuation correction for the
SPECT-only scanner and iterative reconstruction with CT attenuation correction for the
SPECT/CT scanner.

Automated quantification was performed with the commercially available software
DaTQUANTTM (GE Healthcare; Chicago, IL, USA). The striatal binding ratios were cal-
culated by determining the ratio of specific-striatal to nonspecific binding: [(mean counts
in the striatal area—mean counts in the occipital cortex)/(mean counts in the occipital
cortex)]. The software generates for each side the striatal binding ratios (SBR) for whole
striatum, caudate, whole putamen, anterior putamen, and posterior putamen. Additional
parameters included right and left asymmetry of the striatum, caudate, and putamen and
the caudate to putamen ratio (Figure 3). I-123 ioflupane images were interpreted by a
board-certified nuclear radiologist with 10 years of extensive experience interpreting I-123
ioflupane imaging.
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Figure 2. Extraction of HRV metrics from the ECG data collected from the biosensor. (A) Time
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2.4. Statistical Methods

Each subject’s data, a high dimensional dataset consisting of HRV parameters and
I-123 ioflupane quantitative parameters, was unsuitable for visualization on a 2D map or for
directly examining the correlation between specific HRV parameters and the I-123 ioflupane
quantitative parameters. Therefore, we introduced T-distributed stochastic neighborhood
embedding (t-SNE) [24], a dimension reduction and clustering visualization technique, to
classify the subjects into different groups based on the subject data features.
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Figure 3. DaTQUANT output for patient 16, as an example. (Top): SPECT images with region of
interest (ROI) over the striata and background ROIs over occipital region. (Bottom left): Table of
quantitative parameters. (Bottom right): Graph of quantitative measures compared to a population
of normal subjects. The red dot denotes the patient’s striatal value, which is abnormally decreased
(solid line represents the average for normal subjects and dashed lines represent 2 standard deviations
for normal subjects).

t-SNE can convert a data set with hundreds of dimensions (high-dimensional) into
a two/three-dimensional image by catching the local similarities in high-dimensional
space while preserving the global structures as much as possible. Specifically, we first
normalized all HRV and I-123 ioflupane scan parameters for the purpose of equal weights.
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Next, similarities between subjects in the high dimension were calculated based on the
Gaussian distribution and the parameters’ Euclidean distances. The subjects were then
randomly projected in a 2D space where similarities were measured with the Student t-
distribution and the parameters’ Euclidean distances. Further, t-SNE continuously adjusted
the distribution of subjects in 2D space to optimize the inconsistency between the pairwise
similarities between corresponding subjects in the high dimension and those in the low
dimension. Eventually, subjects with similar parameters are closer to each other and
further from the separated clusters in the 2D map, revealing patterns in the data that were
previously hidden. Different HRV variables and I-123 ioflupane scan parameters were
selected until bright clusters formed in the t-SNE output. The t-SNE was implemented using
Python v3.7 with the packages Scikit-learn v0.22 and SciPy v1.4. After the classification,
the bootstrap method was utilized to estimate the mean of HRV measurements and I-123
ioflupane scans due to the limited sample size. The bootstrap method was performed
in R, an open-source statistical programming language, and the seed was assigned as a
constant to ensure reproducibility. The observed dataset was randomly resampled with a
replacement 10,000 times. The resampled datasets are the same size as the observed dataset.
Finally, the p-value was calculated based on the probability that the mean of the resampled
datasets exceeds that of the observed dataset. Differences were considered significant at
p-value < 0.05.

Therefore, the analyses were performed in two steps. First, the subjects were
categorized into groups by the t-SNE algorithm. Second, bootstrapping was performed
to test correlations between caudate symmetry and HRV measurements across the
classified groups.

3. Results
3.1. Patients

A total of 51 patients provided their consent to participate in the study and were
enrolled. However, over the course of the study, multiple patients were excluded from the
analysis due to medical comorbidities such as a history of myocardial infarction, cardiac
surgery or procedure, stroke, diabetes, hypertension, and cancer. These demographic data
are outlined in Table 1. Table 2 presents the patient-reported medications and the number
of patients taking them. After exclusion criteria, 13 patients’ data with abnormal (by an
expert radiologist read) I-123 ioflupane scans were utilized in the final analysis.

3.2. Heart Rate Variability

The mean value of HRV was obtained (Figure 4), the time and frequency domain HRV
features were extracted, and the quantitative data obtained from the I-123 ioflupane scan
were compared using various statistical methods.

One of the measures tested was the lower value of the posterior putamen since the
posterior putamen is the earliest affected in PD compared to the different HRV metrics.
The data showed a linear fit with a 95% confidence interval with all the metrics. Of these,
caudate asymmetry and the HF power metric had the highest R2 value and were significant,
while posterior putamen and HF power did not show a significant correlation (Figure 5).

The data from patients with abnormal I-123 ioflupane were clustered using T-SNE. The
HRV parameters were compared to all the available striatal binding quantitative data via
one-way ANOVA. Most of the quantitative SBR values were not found to be significantly
different across the clustered groups. However, the HRV parameters were found to have
significant differences between the groups. Before comparison, patients with a history
of myocardial infarction, cardiac procedures, diabetes, stroke, hypertension, and cancer
were excluded from the analysis. Subsequently, the data was reclassified by T-SNE and
reanalyzed via one-way ANOVA with similar results (Figure 6: Group A, n = 6; Group B,
n = 4; and Group C, n = 3). Given the often-severe loss of uptake in the posterior putamen
even in cases of early PD, the analysis was repeated using the anterior putamen, caudate,
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and, finally, the entire striatum. However, no significant difference was found in any of
these measures.

Subsequently, in order to minimize the confounding effects of medications on au-
tonomic function, the patients taking angiotensin-converting enzyme (ACE) inhibitors
were excluded. These patients were clustered using T-SNE, and the patients taking ACE
inhibitors were excluded. The remaining patients were then analyzed (Group A, n = 5;
Group B, n = 2; Group C, all three excluded). The high-frequency domain of the heart
rate variability, right versus left asymmetry of the caudate uptake on the I-123 ioflupane,
and putamen-to-caudate striatal binding ratio on the right showed a significant correlation
with the HF-power p-value of 0.0456 (Figure 7a), caudate asymmetry p-value of 0.0165
(Figure 7b), and right putamen/caudate ratio p-value of 0.0341 (Figure 7c). The remainder
of the computed metrics did not show a significant difference between the two groups.
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Figure 7. Groups were clustered first using T-SNE. Subsequently, patients taking ACE inhibitors were
excluded from the analysis to minimize confounding effects on autonomic function (which included
all the patients in Group C, and thus, only Groups A [blue] and B [orange] are shown). The analysis
shows significant difference between the two groups for all parameters. (a): HF (high frequency;
p-value = 0.0456) power; (b): caudate asymmetry (p-value = 0.0165); (c): right putamen/caudate ratio
(p-value = 0.0341). Error bars indicate the standard deviation, * indicates p-value < 0.05.

The raw data showed most patients’ left caudate SBR to be lower than the right, and
only two patients’ right caudate SBR was lower than the left.

4. Discussion

The autonomic dysfunction in PD has been found to have a laterality bias and hemi-
spheric dominance [16,17,25]. Similarly, asymmetric cardiac autonomic innervation has
also been shown and utilized clinically [13–15]. In our study, the HRV parameters were
fitted to the SBR of the posterior putamen, the first region of the striatum to be affected in
PD. All HRV metrics had a positive correlation to posterior putamen (PP), but the highest
correlation was with HF-power. Cluster analysis showed three distinct clusters with HF-
power, RSMMD, and PP. Initial ANOVA did not show a statistically significant difference
in PP across all three groups (A, B, and C) but was statistically different between groups A
and B. This led us to examine the subjects in group C, and it was uncovered that all three of
the subjects in group C were taking an ACE inhibitor (some subjects from groups A and B
were also taking ACE inhibitors and were also excluded). After this exclusion, only subjects
in groups A and B remained for the analysis. Subsequent ANOVA showed a statistically
significant difference between all groups. The initial lack of significance was likely due
to the confounding mechanism of action of ACE inhibitors on autonomic function and,
thus, logically could be used as an exclusion criterion in future studies. The significant
difference between the right putamen/caudate ratio is likely explained by the advanced
disease of these patients, where the disease had progressed beyond the posterior putamen
and had involved the anterior putamen. The caudate to putamen ratio was significant only
on the right side. Most patients’ left caudate SBR value was lower than the right, and the
putaminal asymmetry was lower than the caudate asymmetry. We believe this was because
the patients’ disease was advanced enough to markedly affect the putamen bilaterally, but
since the caudate is affected last, it represents the most robust marker of asymmetry. The
more severely affected left side supports our hypothesis that more severe neuronal loss on
the left would have a more profound effect on the HRV.

Many lessons were learned from this trial for future research. We demonstrated the
feasibility of recruiting patients presenting for their standard of care I-123 ioflupane imag-
ing. This recruitment method has both advantages and disadvantages. A major advantage
is the convenience for the patient since the HRV measurements are accomplished during
the one-hour period of waiting after drinking the iodine solution and before the radiophar-
maceutical injection, but this limits the amount of ECG time. The HRV measurements and
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the I-123 ioflupane imaging are also performed near-simultaneously, ensuring that the HRV
measurements are coupled temporally to the imaging. This recruitment strategy likely
has less bias than recruiting from neurology clinics since little is known about the patients
being recruited, but the yield of confirmed PD patients is much lower. Also, it is difficult
to pre-screen for confounding factors like stroke, arrhythmias, heart failure, and the use
of ACE inhibitors. Our recruitment method also required a nuclear medicine clinic with a
busy I-123 ioflupane imaging program and, thus, a strong referral base.

Future work could include ECG measurements for longer periods, perhaps even
continuous 24-h monitoring, which could provide more accurate HRV analyses. HRV could
also be combined with other measures of AutD to provide a more complete assessment
of the sympathetic/parasympathetic balance. Artificial intelligence methods could also
be used to further study the connection between neurodegeneration in PD and AutD.
Convolutional neural networks could be used to analyze images without restriction to
pre-specified regions in quantification software. Another potential avenue for future work
could include the evaluation of additional clinical data (such as the time from symptom
onset) and their effect on disease severity.

An important limitation of this trial was the small sample size, especially after exclu-
sion criteria were applied. Another limitation was patients’ medications for their preexisting
comorbidities, such as ACE inhibitors. The importance of excluding patients who were
taking ACE inhibitors was shown during our analysis. Other medications may also influ-
ence the autonomic function and could thus also be confounding factors. However, an
important caveat of medications is that patients cannot practically be asked to stop the use
of these medications without putting patients at risk. Another challenge faced was the
presence of comorbidities. Several confounding medical problems that are known to affect
HRV and require exclusion, such as stroke, prior cardiac surgery, cardiac arrhythmias, and
heart failure, are frequently encountered in the age group where PD is most prevalent. In
addition to cerebrovascular and cardiovascular comorbidities, neuropsychiatric comorbidi-
ties such as dementia or mood disorders could also be confounding factors and should
be stratified in future studies with larger patient populations. Another challenge faced
during HRV measurement was that there was no way a priori to identify which patients
were going to be abnormal before the I-123 ioflupane scan.

Despite these limitations and challenges, the trial highlighted several possible avenues
for further research. Since I-123 ioflupane SPECT could potentially stratify the severity
of AutD in PD patients, imaging could be incorporated into the clinical management
of PD patients beyond the initial diagnostic work-up. The pathophysiology of PD is
heterogeneous with the involvement of nigrostriatal and other neural pathways [26]. There
may be input from the right hemisphere-limbic system into the autonomic system, which
could be affecting the autonomic regulation of the heart. Similarly, complex input from
cortical and subcortical structures involved in emotional responses may also influence
autonomic balance and can be researched in the future.
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