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Background: The incidence and mortality rates of colon adenocarcinoma (COAD),
which is the fourth most diagnosed cancer worldwide, are high. A subset of patients with
COAD has shown promising responses to immunotherapy. However, the percentage
of patients with COAD benefiting from immunotherapy is unclear. Therefore, gaining a
better understanding of the immune milieu of colon cancer could aid in the development
of immunotherapy and suitable combination strategies.

Methods: In this study, gene expression profiles and clinical follow-up data
were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases, and molecular subtypes were identified using the
ConsensusClusterPlus package in R. Univariate and multivariate Cox regression
analyses were performed to evaluate the prognostic value of immune subtypes. The
graph structure learning method was used to reduce the dimension to reveal the internal
structure of the immune system. Weighted correlation network analysis (WGCNA)
was performed to identify immune-related gene modules. Finally, western blotting was
performed to verify the gene expression patterns in COAD samples.

Results: The results showed that 424 COAD samples could be divided into three
subtypes based on 1921 immune cell-related genes, with significant differences in
prognosis between subtypes. Furthermore, immune-related genes could be divided into
five functional modules, each with a different distribution pattern of immune subtypes.
Immune subtypes and gene modules were highly reproducible across many data sets.
There were significant differences in the distribution of immune checkpoints, molecular
markers, and immune characteristics among immune subtypes. Four core genes,
namely, CD2, FGL2, LAT2, and SLAMF1, with prognostic significance were identified
by WGCNA and univariate Cox analysis.

Conclusion: Overall, this study provides a conceptual framework for understanding the
tumor immune microenvironment of colon cancer.

Keywords: colon cancer, immunotyping, immunosuppressants, prognosis, TMB

Abbreviations: COAD, colon adenocarcinoma; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; ICIs,
immune checkpoint inhibitors; PFS, progression-free survival; OS, overall survival; TMB, tumor mutation burden; TME,
tumor microenvironment; ICI, immune cell infiltration; MDSCs, myeloid-derived suppressor cells.
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INTRODUCTION

Colon adenocarcinoma (COAD) is the second most commonly
diagnosed cancer worldwide and is the second leading cause
of cancer-related deaths (1). Currently, the primary treatment
methods of COAD include surgery, chemotherapy, and
radiotherapy. The 5-year survival rate of early patients who
had undergone complete treatment can reach 90%; however,
treatment methods for late-stage patients with COAD are limited.
At present, fluorouracil-based treatment is still recommended
if the patient’s physical condition permits (2). Although several
clinical studies on patients with advanced colorectal cancer
have shown that chemotherapy combined with bevacizumab or
cetuximab can improve patients’ prognoses (3–6), the 5-year
survival rate of such patients is only 14% (7).

Immune checkpoint inhibitors (ICIs) have provided patients
with advanced colon cancer with new treatment options. ICIs
are effective in the treatment of a range of malignant tumors
in recent studies (8, 9). Patients with colon cancer, particularly
those with dMMR/MSI-H, who are more sensitive to ICIs than
those with microsatellite stability (MSS)/(MSI-L), may benefit
from immunotherapy (10, 11). In the keynote-016 study, 62%
of patients with MSI-H colon cancer pretreated with ICIs
demonstrated objective efficacy but did not reach the median
of progression-free survival (PFS) or overall survival (OS) (6).
In addition, MSS/MSI-L patients did not achieve objective
response, with median PFS and OS time of only 2.2 and
5.0 months, respectively (10). Therefore, only dMMR/MSI-H is
recommended as a biomarker for assessing the applicability and
efficacy of ICIs (12). However, dMMR/MSI-H patients account
for approximately 15% of all patients with colon cancer, while
they account for approximately 5% of patients with metastatic
colon cancer (13). Moreover, the effective rate of ICIs in patients
with dMMR/MSI-H is only 30–40% (14), which greatly limits
their applicability in colon cancer. In addition to the MSI status,
other potential biomarkers of ICIs include programmed cell
death ligand 1 (PD-L1) expression, tumor mutation burden
(TMB), and BRAF and KRAS gene mutation status (15), but
their effects are not ideal. First, there is temporal and spatial
heterogeneity in PD-L1 expression. Additionally, the predictive
efficacy of the TMB level of ICIs is not accurate. Some patients
with lower TMB can also respond to immunotherapy (16).
Therefore, it is urgent to analyze the tumor characteristics and
immune microenvironment of colon cancer.

The tumor microenvironment (TME) contributes to the
occurrence and development of colon cancer. Studies have
shown that the TME can determine tumor progression by
reprogramming the type and number of immune cell infiltration
(ICI) (17, 18). The TME has an extremely complex constituent
system, including tumor cells, stromal cells, various factors, and
the extracellular matrix (19). As an important component of
the TME, infiltrating immune cells, especially macrophages and
lymphocytes, are highly associated with tumor prognosis (20).
Therefore, the pattern of ICI may have potential prognostic value
and can be used to guide immunotherapy.

In this study, we genotyped 424 COAD samples of The
Cancer Genome Atlas-Colon Adenocarcinoma (TCGA-COAD)

based on 1921 immune cell-related genes and identified
three reproducible immune subtypes of COAD, which
showed significant differences in prognosis. At the same
time, independent data were used for subtype verification
and comprehensive molecular identification. The findings
revealed that distinct gene expression profiles were linked to
different immune subtypes. The composition and functional
orientation of tumor-infiltrating immune cells (immune
activation and inhibition) and cytokine profiles showed a
wide range of patterns, especially in clinical prognosis. This
study provides a conceptual framework for understanding the
tumor immune microenvironment of COAD, which may have
clinical significance for the design and development of novel
immunotherapies and their appropriate combination strategies.

MATERIALS AND METHODS

Expression Profile Data Source and
Preprocessing
RNA sequencing (RNA-Seq) data of TCGA-COAD were
downloaded from the TCGA GDC API.

The RNA-Seq data of TCGA-COAD were preprocessed in the
following steps.

1) Sample data of primary solid tumors were retained.
2) Samples without survival status were removed.
3) Samples with survival time > 30 days were retained.
4) Genes whose expression level (TPM) was equal to 0 in more

than 50% of the samples were removed.
5) Log conversion log2 (TPM + 1) was performed.
6) The expression profiles of 19228 genes were obtained by

matching ENSG with clinical information and Gene Symbol.

After screening, a total of 424 samples were included.
The GEO data were downloaded from Gene Expression

Omnibus (GEO), and the GSE39582 chip data set with survival
time was selected.

The GSE39582 data were preprocessed via the following steps:

1) Samples without survival status were removed.
2) Samples with survival time > 30 days were retained.
3) Probes with empty gene detection values were removed.
4) The probe annotation file was used to map the ChIP probe

to the gene. When multiple probes matched to a gene, the
median value was considered, and the probes matched to
multiple genes were removed. The expression profiles of a total
of 23520 genes were obtained.

Finally, a total of 512 samples were included.

Acquisition of Immune-Related Genes
Expression data from a total of 2,006 immune-related genes were
collected (21; Supplementary Table 1). The following categories
of immune-related genes were collected for follow-up analysis
from the literature: immune cell-specific genes derived from
single-cell RNA-seq data; genes encoding co-stimulatory or co-
inhibitory molecules; cytokine and cytokine receptor genes; genes
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involved in antigen processing and presentation pathways; other
immune-related genes.

Identification of Immune Subtypes and
Immune Gene Modules
The expression profile of 2006 immune-related genes was
obtained from the TCGA database. Among them, 85 genes
were filtered out due to low expression levels or the absence of
annotated gene expression profiles. Finally, 1921 immune-related
genes were obtained. The consistent matrix was constructed
using the ConsensusClusterPlus package in R (22). Using the
PAM algorithm and the “1-Pearson correlation coefficient” as
the metric distance, 500 bootstraps, each involving 80% of the
patients in the training cohort. were performed. The consistency
matrix and the consistency cumulative distribution function were
calculated to identify the best categorization, with the number
of clusters ranging from 2 to 10. The immune-related genes
were grouped by consistent clustering, and the immune gene
modules were obtained simultaneously using the same settings
and parameters as previously reported.

Assessment of Clinical, Molecular, and
Cellular Characteristics Associated With
Immune Subtypes
The prognostic value of immune subtypes with age and sex as
covariates and OS as an endpoint in the training cohort was
evaluated using the log-rank test and univariate and multivariate
Cox regression analyses. Variance analysis was then performed
to assess the correlation between immune subtypes and various
immune-related molecular and cellular characteristics in the
verification cohort.

Elucidation of the Immune Landscape
Considering the dynamic characteristics of the immune system,
the Graph Structure Learning method was used for dimension
reduction to reveal the internal structure of the immune system
and observe the distribution of immune cells in each patient.
Simply, this method projects high-dimension gene expression
data into a lower-dimensional space preserving the local structure
information (23). This algorithm has been previously used to
simulate the progression and definition of cancer using large and
single-cell gene expression data (24, 25). The obtained immune
landscape reflected the relationship between patients in a non-
linear manifold, which may complement the discrete immune
subtypes defined in a linear Euclidean space.

Western Blotting Experiment
Colon adenocarcinoma and adjacent normal tissues were
collected from 3 patients, immediately placed in liquid nitrogen,
and preserved at −80◦C. Take the tumor tissue and normal tissue
adjacent to the cancer into small pieces and put them into the
tube, add lysis buffer RIPA (1% Triton X-100, 50 mM Tris–HCl
pH7.4, 150 mM Na Cl, 10 mM EDTA, 100 mM Na F, 1 mM
Na 3 VO 4, 1 mM PMSF, 2 µg/ml Aprotinin) (1 ml lysate is
added to 250 mg tissue). Use a homogenizer to homogenize at
low speed for 30 s each time, and ice bath for 1 min between

each time until the tissue is completely lysed. Centrifuge at
13,000 rpm for 25 min, take the supernatant, and quantify the
protein by Coomassie brilliant blue method. After mixing with
3× sample buffer, boil for 5 min. The sample (30–50 µg/lane)
was electrophoresed in a 12% SDS-polypropylene gel for 3 h,
and then transferred to a nitrocellulose membrane (voltage:
2 mV/cm2; time: 120 min). After sealing with 5% skimmed
milk for 1 h, cut the transfer film according to the molecular
weight marked by the pre-stained Marker, and add the primary
antibodies separately at 4◦C overnight. After washing 4 times
with TTBS, add secondary antibody (1:2000) for 30 min at room
temperature. After washing 4 times with TTBS again, the color
will be developed by ECL method.

Primary antibodies were as follows: CD2 (1:1000, ab219411,
Abcam), FGL2 (1:1000, ab198029, Abcam), LAT2 (1:1000,
ab75610, Abcam), SLAMF1 (1:1000, ab228978, Abcam). After
rinsing 3 times (10 min each time) with tris-buffered saline,
the membrane was incubated with horseradish peroxidase-
conjugated secondary antibody against rabbit IgG (1:5000,
Amersham Bioscience, Piscataway, NJ, United States) for 1 h at
room temperature. After washout, the membrane was developed
using enhanced chemiluminescence reagents (Pierce, Rockford,
IL, United States) and visualized using a chemiluminescence
system (PTC-200, Bio-Rad Laboratories, Hercules, CA,
United States). All Western blots were repeated three times.

RESULTS

Molecular Subtype Based on
Immune-Related Gene Expression
We first extracted the expression profile of immune-related
genes in colon cancer from the RNA-Seq data of TCGA-COAD
and finally obtained 275 immune-related genes with significant
differences in the prognosis (Supplementary Table 2).

ConsensusClusterPlus is a popular machine learning
algorithm, which was extensively utilized in medical studies
(26–30). Four hundred and four COAD samples were clustered
by ConsensusClusterPlus, and the optimal number of clusters was
determined according to the cumulative distribution function
(CDF). According to the CDF Delta area curve, when the
number of clusters was selected as 3, it has relatively stable
clustering results (Figures 1A,B). Finally, we selected k = 3
to obtain three immune subtypes (IS) (Figure 1C). By further
analyzing the prognostic characteristics of the three immune
subtypes, we observed that they had significant prognostic
differences (Figure 1D). In general, the prognosis of IS3 was
good, while that of IS1 was poor. In addition, we also compared
the correlation between the three molecular subtypes and TNM
stage, and clinical stage (Figure 1E). In addition, we used the
same method for the molecular typing of GSE39582 data. We
observed significant differences in the patient prognosis among
the three immune molecular subtypes (Figure 1F), which was
consistent with the results of the training set. Similarly, we
compared the correlation between TNM stage, and clinical
stage in the three molecular subtypes. We observed significant

Frontiers in Medicine | www.frontiersin.org 3 May 2022 | Volume 9 | Article 827695

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-827695 May 6, 2022 Time: 10:55 # 4

Qi and Zhang Immune Landscape of Colon Cancer

FIGURE 1 | Immune subtypes in TCGA-COAD. (A) The cumulative distribution function (CDF) curve of samples in the TCGA-COAD cohort; (B) The CDF Delta area
curve of samples in the TCGA-COAD cohort. The Delta area curve of consensus clustering, indicating the relative change in area under the CDF curve for each
category number k, compared with k-1. The horizontal axis represents the category number k, and the vertical axis represents the relative change in area under the
CDF curve; (C) Sample clustering heatmap when consumption k = 3; (D) The Kaplan–Meier (KM) curve for the prognosis of three subtypes; (E) The distribution
proportion of different immune molecular subtypes and their association with different clinical features in the TCGA-COAD cohort; (F) Prognostic differences among
the three immune molecular subtypes in the GSE39582 cohort; (G) The distribution proportion of different immune molecular subtypes and their association with
different clinical features in the GSE39582 cohort. The lower part represents the proportion, and the upper part represents the statistical significance of the
distribution difference between two pairs–log10 (P-value).

differences among the three immune molecular subtypes in
terms of the stage (Figure 1G).

To investigate the pathways of different biological processes
in different molecular subtypes, we used the R package "GSEA"
for single-sample GSEA analysis (ssGSEA), and the most
significant top 5 pathway enrichment results are shown in
Supplementary Figure 1. It can be seen that IS1 subtypes
are mainly enriched in ECM RECEPTOR INTERACTION and
FOCAL ADHESION related pathways, while IS3 molecular
subtypes are mainly enriched in APOPTOSIS, PRIMARY
IMMUNOEFFICIENCY related pathways. The differences in the

above pathways affect the prognosis between different molecular
subtypes to some extent.

Relationship Between Immunotyping and
Tumor Mutation Burden and Common
Gene Mutations
We downloaded the mutation dataset processed by Mutect2
software of TCGA-COAD, calculated the TMB, and analyzed
the TMB distribution in three immune molecular subtypes
(Figure 2A). The TMB of IS1 and IS3 was significantly higher
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FIGURE 2 | The relationship between immunophenotyping and TMB and common gene mutations. (A) Differences in the distribution of the tumor mutation burden
(TMB) in three molecular subtypes; (B) Differences in the distribution of the number of gene mutations in the three molecular subtype samples; Rank sum test was
used to determine the P-value, * P < 0.05; ** P < 0.01; *** P < 0.001; (C) The mutation characteristics of significantly mutated genes with the mutation frequency of
the top ten mutated genes in each subtype sample.

than that of IS2, and IS2 has the lowest TMB. In addition, we also
counted the differences in the number of sample gene mutations
in different immune molecular subtypes (Figure 2B). We further
screened genes with mutation frequency greater than 3 in each
subtype, and a total of 12460 genes were included. The Chi-
squared test was used to screen the genes with a significant high-
frequency mutation in each subtype, with the selection threshold
as P < 0.05. Finally, 1553 genes (Supplementary Table 3) were
obtained. Among them, the mutation characteristics of the top

ten genes with a significant high-frequency mutation in each
subtype are shown in Figure 2C.

Expression of Classical Markers and
Immune Checkpoint Genes in Response
to Chemotherapy
To observe the expression and distribution of classical markers of
chemotherapy-induced immune response in the three immune
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FIGURE 3 | Expression of chemotherapy-induced marker and immune checkpoint genes. (A) Differences in the expression and distribution of classical markers in
chemotherapy-induced immune response in the TCGA-COAD cohort; (B) The expression and distribution of classical markers of chemotherapy-induced immune
response were different among samples in the GSE39582 cohort; (C) Differences in the expression and distribution of immune checkpoint genes in the TCGA-COAD
cohort; (D) The expression and distribution of immune checkpoint genes were different among samples in the GSE39582 cohort. The significance was statistically
tested by one-way analysis of variance, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

subtypes, we evaluated the differences in the expression of
these genes in the TCGA-COAD cohort and GSE39582 cohorts.
A total of 21 genes were expressed in the TCGA-COAD
cohort (31), of which the expression of 15 (71.4%) genes was
significantly different in each subtype (Figure 3A). A total of
26 genes were expressed in the GSE39582 cohort, of which the
expression of 21 (80.8%) genes was significantly different in each
subtype (Figure 3B). These results suggest that the expression
of immune response markers induced by chemotherapy varies
in different immune subtypes, which may lead to different
prognoses. In addition, we obtained the expression profile of 47
immune checkpoint-related genes from a previous study (32),
of which 2 genes were filtered out in the data preprocessing
step. We analyzed the differences in the expression of these
genes in each immune subtype and found significant differences
in the expression of 45 genes in the TCGA-COAD cohort
(Figure 3C) and 38 (84.4%) genes in the GSE39582 cohort
(Figure 3D).

Differential Analysis of Tumor Markers in
Different Immune Subtypes
CA19-9 is the most significant prognostic indicator of metastatic
colorectal cancer (33, 34). We extracted the expression profiles
of CA199 from the TCGA-COAD cohort and GSE39582 dataset,
respectively, and analyzed their differential distribution in each
subtype. We observed that the expression of CA199 was
significantly different among subtypes in each cohort (Figure 4).
Among them, differences in the expression of CA199 in the
TCGA-COAD and GSE39582 were consistent.

Immune Characteristics in Different
Immune Subtypes
To compare the distribution of immune cell components in
different immune subtypes, we obtained the marker genes of
28 immune cells from the previous study (35). The ssGSEA
method was used to score each immune cell to determine the
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FIGURE 4 | Differential analysis of tumor markers in different immune subtypes. (A) Differences in the expression of CA199 in each subtype of the TCGA-COAD
cohort; (B) Differences in the expression of CA199 in each subtype of the GSE39582 cohort; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

score of 28 immune cells in each patient. Based on this, we
calculated 28 immune scores of patients in the TCGA-COAD
cohort (Figure 5A). The scores of most of these immune cell
components were different among subtypes, such as activated B
cells, activated CD4 T cells, activated CD8 T cells, central memory
CD4 T cells, central memory CD8 T cells, and myeloid-derived
suppressor cells (MDSCs), which were significantly lower in the
IS2 subtype than in IS1 and IS3 subtypes. In addition, the immune
scores of patients with cancer in the TCGA-COAD cohort
were calculated using the ESTIMATE method (Figure 5B). The
stromal, immune, and estimate scores of IS2 were significantly
lower than those of IS1 and IS3. A similar trend was observed
in immune subtypes in the GSE39582 cohort (Figures 5C,D).
The heatmaps depicting ssGSEA and ESTIMATE immune scores
of TCGA-COAD cohort and GSE39582 cohorts are shown in
Figures 5E,F. To observe the correlation between the three
immune molecular subtypes and the six molecular subtypes
of a previous pan-cancer analysis, we extracted and compared
the molecular subtype data of these samples from the previous
study (36). The results showed that patients in our study mainly
belonged to the C1 and C2 molecular subtypes. In addition, we
observed that the proportion of "C1" subtype of the IS2 subtype
was higher than that of IS1 and IS3 (Figure 5G). Moreover,
we evaluated the correlation between immunophenotypes and
56 previously defined immune molecular characteristics. By
selecting FDR < 0.01, 35 most significant immune-related
features were identified (Figure 5H). The IS1 subtype had
the highest leukocyte fraction, strategic fraction, macrophage
regulation, IFN-gamma response, TGF beta response, and TCR
Shannon. In contrast, the number of segments, Th17 cells, and
activated mast cells were significantly higher in the IS2 subtype
than in IS1 and IS3 subtypes.

Differential Responses of Immune
Subtypes to
Immunotherapy/Chemotherapy
We analyzed the differences in the response of different immune
molecular subtypes to immunotherapy and chemotherapy. Here,
we used the subclass mapping method to compare the similarity
between the three immune subtypes and patients who received
immunotherapy in the GSE77220 dataset. The lower the P-value,
the higher the similarity. As a result, we found that the IS1
subtype was not sensitive to PD-1 inhibitors (Figure 6A).
At the same time, we also analyzed the effects of different
chemotherapeutic drugs on molecular subtypes and found that
the IS1 subtype was more sensitive to 5-fluorouracil than other
subtypes (Figure 6B), while IS2 and IS3 were more sensitive to
cisplatin (Figure 6C).

Immune Landscape of Colon
Adenocarcinoma
To visualize and reveal the potential structure of individual
distribution of patients, we applied the dimension reduction
method based on graph learning to profile the expression
of immune genes. This analysis puts a single patient into a
graph with a sparse tree structure and defines the immune
landscape of COAD. The patient’s position therein represented
the overall characteristics of the immune microenvironment of
the corresponding subtype of tumor (Figure 7A). The horizontal
coordinates were highly correlated with a variety of immune cells
(Figure 7B). Among them, the horizontal coordinates had the
highest correlation with natural killer cells, regulatory T cells,
type 1 T helper cells, central memory CD4 T cells, image B cells,
MDSCs, central memory CD8 T cells, effector memory CD8 T
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FIGURE 5 | Immune signatures in different immune subtypes. (A) Differences in the enrichment scores of 28 types of immune cells in each subtype of the
TCGA-COAD cohort; (B) The immune score of each subtype in the TCGA-COAD cohort; (C) Differences in the enrichment scores of immune cells in the GSE39582
cohort; (D) Immune scores for each subtype in the GSE39582 cohort; (E) A heatmap depicting the immune score of patients in the TCGA-COAD cohort; (F) A
heatmap depicting the immune score of patients in the GSE39582 cohort; (G) Intersection of three immune molecular subtypes with previous immune molecular
subtypes; (H) The distribution of three immune subtypes in 56 immune-related features, out of which 35 immune features were significant (FDR < 0.01). *P < 0.05,
**P < 0.01, ***P < 0.001, and ****P < 0.0001.
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FIGURE 6 | Differential analysis of immune subtypes on immunotherapy/chemotherapy. (A) Results of the submap analysis showed that IS1 was not sensitive to the
programmed cell death protein 1 inhibitor (Bonferroni-corrected P < 0.05). The box plots of the estimated IC50 for (B) 5-Fluorouracil and (C) Cisplatin. **P < 0.01,
***P < 0.001.

cells, macrophages, and T helper cells (| R| > 0.75). The ordinates
had the highest correlation with activated CD8 T cells, activated
dendritic cells, effector memory CD8 T cells, and MDSCs. The
IS2 subtype was distributed at both horizontal and vertical
ends of the immune landscape, suggesting significant intra-class
heterogeneity among subtypes. According to the position of
IS2 in the immune landscape, it was further divided into three
subtypes (Figure 7C). These subtypes showed different immune
expression patterns (Figure 7D). Furthermore, different locations
on the immune landscape map also had different prognostic
characteristics. Results of immune landscape analysis provided
further information on the immune subtypes defined earlier
(Figures 7E,F).

Identification of Immune Gene
Co-expression Modules
The “WGCNA” package in R was used to identify the co-
expression modules of these immune-related genes. First, the
samples were clustered (Figure 8A), and the soft threshold was
set to 3 to screen the co-expression modules. We found that the
co-expression network conformed to the scale-free network, i.e.,
the log (k) of the node with connection degree k was negatively
correlated with the log [P (k)] of the probability of the node, and
the correlation coefficient was greater than 0.8. To ensure that the
network was scale-free, we selected β = 7 (Figures 8B,C).

Next, the expression matrix was transformed into an
adjacency matrix, which in turn was transformed into a
topology matrix. Based on TOM, the average linkage hierarchical
clustering method was used to cluster genes according to
the standard of a hybrid dynamic cut tree. The minimum
number of genes was set as 40 for each gene network module.
After determining the gene modules using the dynamic cutting

method, the eigengenes of each module were determined,
modules were clustered, and modules close to each other were
merged into new modules, and the following parameters were
set: height = 0.25, deepSplit = 2, and minModuleSize = 40.
A total of five modules were obtained (Figure 8D). Notably,
the gray module was a gene set that could be aggregated to
other modules. The gene statistics of each module are shown in
Figure 8E, from which it could be seen that 1921 genes were
assigned to five co-expression modules. The distribution of the
eigenvectors of the five modules in the three immune molecular
subtypes was calculated (Figure 8F). The results showed that
the eigenvectors of the five modules were significantly different
among the three molecular subtypes, in which the eigenvectors
of IS2 in yellow, red, blue, and brown modules were significantly
lower than those of IS1 and IS2. We further analyzed the
correlation between each module and age, sex, T stage, N stage, M
stage, as well as IS1, IS2, and IS3 subtypes. As shown in Figure 8G,
the expression of genes in the blue module was significantly
positively correlated with IS1, while that of the brown module
was significantly negatively correlated with IS1. The results of
correlation analysis of GS and MM of genes in the gene modules
are shown in Figures 8H,I. The results showed that the GS
and MM of blue and brown modules were highly positively
correlated.

Functional and Prognostic Analysis of
Immune Gene Co-expression Modules
We identified five immune-related gene modules. Results of
functional enrichment analysis showed that the blue module
was related to immune processes such as regulation of
vascular development, regulation of angiogenesis, response to
transforming growth factor-beta, and endogenous cell promotion

Frontiers in Medicine | www.frontiersin.org 9 May 2022 | Volume 9 | Article 827695

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-827695 May 6, 2022 Time: 10:55 # 10

Qi and Zhang Immune Landscape of Colon Cancer

FIGURE 7 | Immune landscape of COAD. (A) The immune landscape in colon cancer, where each point represents a sample, different colors represent different
molecular subtypes, the horizontal axis represents the first principal component, and the vertical axis represents the second principal component; (B) The correlation
heat map between the two principal components and 28 types of immune cells; (C) The immune landscape and molecular subgroups of three immune subtypes in
colon cancer; (D) The immune landscape in colon cancer and samples from two different locations; (E) The immune landscape in colon cancer; (F) The prognosis of
samples at different locations in the immune landscape of colon cancer is different. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

(Figure 9A). The expression of the blue module was highly
negatively correlated with the first principal component in the
immune landscape (Figure 9B). The function annotated by

the brown module was related to immune processes such as
T-cell activation, regulation of lymphocyte activation, positive
regulation of cytokine production, leukocyte proliferation
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FIGURE 8 | Co-expression module analysis of immune genes. (A) Sample cluster analysis; (B,C) Analysis of network topology for various soft-thresholding powers;
(D) Gene dendrogram and module colors; (E) Gene statistics of modules; (F) Distribution of modular eigenvectors in immune molecular subtypes; (G) Correlation
analysis between module feature vector and clinical features; (H) Scatter diagram for the module membership vs. gene significance for IS1 in the blue module;
(I) Scatter diagram for module membership vs. gene significance for IS2 in the brown module. ***P < 0.001 and ****P < 0.0001.
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FIGURE 9 | The function and prognosis analysis of immune gene co-expressed genes. (A) Graphical results of gene enrichment analysis of genes in the blue
module; (B) The correlation between the feature vector of the blue module and the first principal component in the immune landscape; (C) Graphical results of gene
enrichment analysis of genes in the brown module; (D) The correlation between the feature vector of the brown module and the first principal component in the
immune landscape; (E) Kaplan–Meier (KM) survival curve distribution of patients grouped according to the expression of model characteristic genes screened by the
brown module in the TCGA-COAD cohort; (F) KM survival curve distribution of patients grouped according to the expression of model characteristic genes screened
by the brown module in the GSE39582 cohort.

(Figure 9C). Moreover, the expression of the brown module was
highly negatively correlated with the first principal component
in the immune landscape (Figure 9D). Next, we extracted the
genes with correlation coefficient > 0.8 and the module feature
vector in the brown module from the TCGA-COAD dataset
for univariate Cox proportional-hazards regression analysis and
selected P < 0.05 as the threshold for filtering. The expression
of five genes was different among datasets. Then, we used
lasso regression to further compress the number of genes in
the risk model. The “glmnet” package in R was used for
lasso Cox regression analysis. The model was found to be
optimal at lambda = 0.0101564. Therefore, four genes (CD2,
FGL2, LAT2, and SLAMF1) with lambda = 0.0101564 were
selected as the hub genes of the module. Then, multivariate
Cox analysis was conducted, and the risk score based on the
final 4-gene signature was calculated as follows: Risk score = -
0.19826556 × CD2 - 0.15893408 × FGL2 + 0.56282953 × LAT2 -
0.03863855 × SLAMF1. In the TCGA-COAD dataset, the

prognosis of the high-risk group was significantly lower than that
of the low-risk group (Figure 9E). Moreover, the prognosis of
patients in the high-risk and low-risk groups was significantly
different in the GSE39582 dataset (Figure 9F).

Finally, four hub genes, CD2, FGL2, LAT2, and SLAMF1,
whose correlation coefficient between the brown module gene
and module characteristics was greater than 0.8 were selected
as the final characteristic genes. The TCGA database showed
that the expression of CD2, FGL2, LAT2, and SLAMF1 in
tumor tissues was significantly lower than that in cancer tissues
(Figures 10A–D), which was confirmed by western blotting
experiments (Figure 10E).

DISCUSSION

With the advent of ICIs in tumors, our understanding of cancers
has shifted from focusing on tumor cells to knowing the entire
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FIGURE 10 | Expression validation of four core genes. (A) The expression of CD2 in TCGA-COAD; (B) The expression of FGL2 in TCGA-COAD; (C) The expression
of LAT2 in TCGA-COAD; (D) The expression of SLAMF1 in TCGA-COAD; (E) The expression of four hub genes in 3 paired COAD tissues and normal tissues.
*P < 0.05 and **** P < 0.0001.
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tumor microenvironment. Because of this shift, tumor treatment
strategies are changing as well. In the past, tumor cells were
mainly eliminated by surgery and chemotherapy. At present,
tumor progression can be inhibited by reactivating immune
cells in the TME. However, biomarkers for assessing the efficacy
of ICIs are unclear, which may be due to the complex TME
characteristics of COAD. Previous studies have evaluated the
relationship between the MSI status and ICI treatment prognosis
in immunotherapy cohorts and have analyzed the mutation
data of immune microenvironment and immunogenicity under
different MSI statuses (15). However, studies on the systematic
analysis of the immune microenvironment in patients with
COAD are lacking.

In this study, we first identified molecular subtypes of
COAD based on the expression of immune-related genes in the
TME. The results showed that COAD could be classified into
three immune subtypes (IS), with significant differences in the
prognosis of each immune subtype. In general, the prognosis
of IS3 was better than that of IS1, indicating that differences in
the immune microenvironment can affect the prognosis, which
is consistent with previous reports. Furthermore, we observed
that most of these immune cell components were different in
different subtypes. The results showed that the proportion of
activated B cells, activated CD4 T cells, activated CD8 T cells,
central memory CD4 T cells, central memory CD8 T cells, and
MDSCs were significantly lower in the IS2 subtype than in IS1
and IS3 subtypes, which also explained the good prognosis of
the IS3 subtype. For example, CD8-positive cell infiltration was
previously reported to be positively correlated with the prognosis
of COAD (37, 38).

In addition, we analyzed the differences in the efficacy of
immunotherapy and chemotherapy among different immune
molecular subtypes. The results showed that the IS1 subtype
was not sensitive to PD-1 inhibitors. At the same time, we also
analyzed the sensitivity of different subtypes to chemotherapeutic
drugs and found that the IS1 subtype was more sensitive to 5-
fluorouracil than other subtypes, while IS2 and IS3 were more
sensitive to cisplatin. These results show that the IS1 subtype
with poor infiltration of immune cells not only has a poor
prognosis, but also exhibits poor response to PD-1 inhibitors,
suggesting such patients should be considered for alternative
treatment options. The application of classical chemotherapy
containing 5-fluorouracil may benefit patients belonging to the
ISI subtype. Additionally, we detected the expression profile
of classical tumor marker genes, CA199 and CA153, in colon
cancer and analyzed their differential distribution in various
subtypes. The results showed that differences in the expression of
CA199 and CA153 in TCGA-COAD and GSE39582 datasets were
consistent. The expression of CA199 and CA153 was relatively
higher in IS1 and IS3 subtypes than in the ISI subtype, suggesting
that these tumor markers could be easily used to categorize
patients for treatment compared to the use of molecular typing
and the application of ICIs. However, large-scale clinical trials
are required to determine the applicability of these ICIs in
patients with COAD.

Previous studies have shown that the TMB is an effective
biological index for predicting the efficacy of ICIs. Because the
TMB correlates with the frequency of gene mutations, higher

TMB indicates higher gene mutations, leading to increased
immunogenicity. This in turn can promote the level of
lymphocyte infiltration in the TME and lead to a better prognosis
of immunotherapy (39–42). Therefore, we calculated the TMB of
the three immune molecular subtypes. The results showed that
the TMB of IS1 and IS3 was significantly higher than that of IS2,
and IS2 has the lowest TMB. This result may be in contradiction
with our previous results. In our previous study, we found that
the IS1 subtype was not sensitive to PD-1 inhibitors, indicating
that ICIs are a better immune marker since higher mutations in
immune genes do not necessarily lead to abundant infiltration
of immune cells. Our results further defined COAD immune
landscape also confirms this view. Although patients with COAD
were categorized into three immune infiltration subtypes, the
immune infiltration characteristics of each patient were different.
Our classification categorizes patients with similar immune
infiltration characteristics into different immune subtypes to
facilitate early clinical decision-making.

To further simplify the clinical work, we identified the
immune gene co-expression module, screened the core genes,
and identified the following characteristic genes: CD2 (CD2
antigen cytotoxic tail binding protein 2), FGL2 (fibroleukin),
LAT2 (linker for activation of T-cells family member 2), and
LAMF1 (signaling lymphocytic activation molecule). The high
expression of these genes is related to a poor prognosis. Among
them, CD2, which is associated with malignancy in non-small
cell lung cancer, shows stem cell characteristics (43). However,
in breast cancer, high CD2 expression is associated with a longer
survival time. High CD2 expression is mainly related to immune-
related pathways. In addition, CD2 expression is associated
with a variety of tumor-infiltrating immune cells (TIC) (44).
Fibrinogen like protein-2 (FGL2) plays a key role in cancer by
regulating the proliferation, invasion, and migration of tumor
cells, or regulating the function of immune cells in the TME
(45). FGL2 is overexpressed in glioma, and its expression level
is negatively correlated with the prognosis of patients with
glioma. The expression level of FGL2 in breast cancer cells was
significantly lower than that in adjacent normal tissues. The low
expression level of FGL2 is associated with a poor prognosis in
patients with breast cancer. In addition, the expression level of
FGL2 is positively correlated with the infiltration of breast cancer
cells, especially those with high anti-tumor activity (46). LAT2
promotes the progression of multiple tumors and drug resistance
(47, 48). SLAMF1 promotes methotrexate resistance by activating
autophagy of choriocarcinoma cells (49). Moreover, it serves as a
prognostic marker gene of chronic lymphoblastic leukemia (CLL)
(50, 51). The functional differences of these hub genes could be
attributed to the heterogeneity of different tumors, as well as their
distinct immune microenvironment characteristics, which need
to be investigated further.

In conclusion, in this study, we systematically analyzed the
immune types of COAD according to the expression profile
of immune-related genes and divided them into three subtypes
with significant differences in prognoses. Immune-related genes
were divided into five functional modules, with differences in the
distribution and molecular and cytological characteristics of each
immune subtype. In independent datasets, immune subtypes and
gene modules were found to be highly reproducible.
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