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Immunoglobulin superfamily (IgSF) cell adhesion molecules (CAMs) are cell surface
glycoproteins that not only mediate interactions between neurons but also between
neurons and other cells in the nervous system. While typical IgSF CAMs are
transmembrane molecules, this superfamily also includes CAMs, which do not possess
transmembrane and intracellular domains and are instead attached to the plasma
membrane via a glycosylphosphatidylinositol (GPI) anchor. In this review, we focus
on the role GPI-anchored IgSF CAMs have as signal transducers and ligands in
neurons, and discuss their functions in regulation of neuronal development, synapse
formation, synaptic plasticity, learning, and behavior. We also review the links between
GPI-anchored IgSF CAMs and brain disorders.

Keywords: cell adhesion molecules, neuronal, GPI anchor, synapses, neurite outgrowth, synaptic plasticity
(LTP/LTD), learning and memory

INTRODUCTION

Cell adhesion molecules (CAMs) are expressed across all cell types. In the nervous system, multiple
families of CAMs are expressed in neurons, including integrins, cadherins, selectins, neuroligins,
neurexins, and the immunoglobulin superfamily (IgSF) of CAMs (Brümmendorf and Rathjen,
1993; Chothia and Jones, 1997; Buckley et al., 1998; Südhof, 2008; Sytnyk et al., 2017). These
molecules play numerous roles in the developing and mature nervous system by regulating growth
and branching of neurites, navigating growing axons and dendrites to the appropriate targets,
regulating formation and maturation of synaptic contacts, and maintaining synapse function and
plasticity during learning and memory formation.

Typically, and for some families exclusively, CAMs are transmembrane proteins. While the
extracellular domains of these molecules mediate interactions not only between neurons but
also between neurons and other cells by interacting with the same molecules or other types of
molecules either on the membranes of other cells or in the extracellular matrix, the intracellular
domains are involved in interactions with the cytoskeleton and signal transduction (Leshchyns’ka
and Sytnyk, 2016). However, CAMs can also be anchored to the plasma membranes via a
glycosylphosphatidylinositol (GPI) anchor, with the highest number of the GPI-anchored CAMs
within the IgSF (Figure 1 and Table 1). Although these proteins do not possess intracellular
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domains, their functions are not limited to mediating cell
adhesion only. In this review, we summarize the role GPI-
anchored IgSF CAMs have as signal transducers, ligands, synapse
formation regulators, as well as their role in synaptic plasticity
and brain disorders.

GPI-Anchored IgSF CAMs and Their
Homophilic and Heterophilic Interactions
Immunoglobulin superfamily CAMs are identified by the
presence of immunoglobulin (Ig)-like domains in their
ectodomains. There are several types of Ig domains present
in IgSF CAMs including C2-, V-, and I-type (Williams and
Barclay, 1988; Harpaz and Chothia, 1994). The V-type is
similar to the variable V-domain in Igs, whereas the C2 type
is similar to C1-domains in Igs (Barclay, 2003). The I-type
(I for intermediate) shares similarities with C1- and V-type
domains and was initially identified in Telokin, an intracellular
smooth muscle protein (Harpaz and Chothia, 1994). GPI-
anchored IgSF CAMs differ in the numbers of V-, C2-, or
I-type Ig domains present in their ectodomains. For example,
only one V-type Ig domain is present in Thy-1, while there
are three C2-type Ig domains present in neuronal growth
regulator 1 (NEGR1), and six C2-type domains present in
contactin-1, -2, -3 (Ranscht, 1988; Williams and Barclay, 1988;
Brümmendorf et al., 1989; Zuellig et al., 1992; Figure 1). The
first four Ig domains of contactin-2 have also been classified as
I-type Ig domains in some studies (Harpaz and Chothia, 1994;
Freigang et al., 2000). All Ig domains of the IgSF CAMs have
a core of two β-sheets facing each other and stabilized by an
intra-chain disulfide bridge (Chothia et al., 1998; Figure 2).

Ectodomains of IgSF CAMs may also contain fibronectin
type III repeats, which are also present in ectodomains of
some GPI-anchored IgSF CAMs, such as contactin-1, -2, -3
(Figures 1, 2).

In the human and murine genomes, genes coding for
GPI-anchored IgSF CAMs include NEGR1, opioid-binding cell
adhesion molecule (OBCAM), neurotrimin (Ntm), limbic system-
associated membrane protein (LAMP), IgLON5, contactin-1, -2,
-3, -4, -5, -6, Thy-1, and carcinoembryonic antigen-related cell
adhesion molecule (CEACAM)-5, -6, -7, and -8 (Williams and
Gagnon, 1982; Oikawa et al., 1987; Yoshihara et al., 1994, 1995;
Hachisuka et al., 1996; Ogawa et al., 1996; Funatsu et al., 1999;
Itoh et al., 2008; Sabater et al., 2016) (Table 1 and Figure 1).
OBCAM, Ntm, LAMP, NEGR1, and IgLON5 constitute the
IgLON family (Yamada et al., 2007; Hashimoto et al., 2009; Sanz
et al., 2015). In addition, short isoforms of some transmembrane
IgSF CAMs, such as the shortest isoform of the neural cell
adhesion molecule (NCAM) with the molecular weight 120 kDa
(NCAM120), are also GPI-anchored (Hemperly et al., 1986).

Glycosylphosphatidylinositol-anchoring of proteins to the
plasma membranes is a highly conserved post-translational
modification across all eukaryotes (Fujita and Kinoshita, 2012).
The GPI anchor is a complex structure consisting of a
phosphoethanolamine linker, glycan core, and phospholipid
tail. Structural variations of the anchor are possible by the
modification of phosphoinositol, glucosamine, and mannose
residues within the glycan core (Paulick and Bertozzi, 2008;
Fujita and Kinoshita, 2012). Application of phosphatidylinositol-
specific phospholipase C (PI-PLC), an enzyme capable of cleaving
the GPI anchor, induces removal of GPI-anchored IgSF CAMs

FIGURE 1 | Examples of the GPI-anchored IgSF CAMs. Structural domains and putative glycosylation sites in the GPI-anchored IgSF CAMs are represented
according to the Uniprot database. SS, disulfide bridges present in Ig domains.
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from the cell surface, indicating that the GPI anchor is critical
for the attachment of these proteins to the cellular membranes
(Sanz et al., 2015). The complexity of the GPI anchor, however,
suggests that it also plays a role in other multiple functions
aside from membrane anchorage, including signal transduction,
protein sorting, as well as the structure and function regulation of
the GPI-anchored IgSF CAMs. In particular, the GPI anchor links
these molecules to membrane microdomains that are insoluble
in cold non-ionic detergents (Varma and Mayor, 1998; Fujita
and Kinoshita, 2012). Such specialized membrane microdomains
are referred to as lipid rafts and render GPI-anchored proteins
resistant to cold non-ionic detergent extraction (Schroeder et al.,
1994; Simons and Ikonen, 1997).

The ectodomains of GPI-anchored IgSF CAMs contain
multiple glycosylation sites. For example, IgLON protein
family members with three Ig domains contain six or seven
N-glycosylation sites in their ectodomains (Figure 1; Pimenta
et al., 1996; Itoh et al., 2008). NCAM120 is a prominent
example of a glycosylated GPI-anchored IgSF CAM (Yoshihara
et al., 1991), because similarly to transmembrane NCAM
isoforms it can carry polysialic acid (PSA) (Dityatev et al.,
2004).

Multiple subdomains in the extracellular domains of
IgSF CAMs have been suggested to contain binding sites
for interactions with other Ig domain-containing proteins
(Brümmendorf and Rathjen, 1993). Indeed, Ig domains have
been shown to play a key role in homophilic and heterophilic
trans-interactions between IgSF CAMs, i.e., the interaction
between two identical IgSF CAMs on membranes of adjacent
cells, and the interaction of IgSF CAMs with other proteins in the
extracellular environment (Reed et al., 2004; Walmod et al., 2004;
Kulahin et al., 2011). In addition to mediating trans-interactions,
IgSF CAMs bind in cis, i.e., laterally, to surface proteins present
in the same cell surface plasma membrane (Held and Mariuzza,
2011). Cis-interactions can enhance the trans-interactions of IgSF
CAMs and are also involved in signal transduction across the
membrane (Soroka et al., 2003; Kiselyov et al., 2005). Similarly
to transmembrane IgSF CAMs, GPI-anchored IgSF CAMs
mediate homo- and heterophilic interactions. For example,
LAMP, OBCAM, Ntm, Thy-1, CEACAM5, contactin-2, and
NCAM120 bind homophilically in trans while CEACAM6 binds
heterophilically in trans to CEACAM8 (Oikawa et al., 1991;
Mahanthappa and Patterson, 1992; Rader et al., 1993; Zhou et al.,
1993; Zhukareva and Levitt, 1995; Lodge et al., 2000; Taheri
et al., 2000; Gil et al., 2002). Neurotractin (a chick homolog
of human NEGR1) appears to be unique in the IgLON family
in that it does not bind homophilically, but heterophilically
binds to Ntm and LAMP (Marg et al., 1999), although a later
study reported that mammalian NEGR1 was able to interact
homophilically (Miyata et al., 2003a). GPI-anchored IgSF
CAMs also interact in cis. For example, LAMP and OBCAM
heterophilically interact in cis to create dimeric IgLONS
(diglons) and formation of this complex changes the ability of
both proteins to regulate neuronal development (Horstkorte
et al., 1993; Ranheim et al., 1996; Reed et al., 2004; Held and
Mariuzza, 2011).

GPI-Anchored IgSF CAMs As Functional
Receptors
The role for IgSF CAMs as functional receptors has been
suggested by studies analyzing effects of antibodies against these
molecules on neurite outgrowth. Early studies using antibodies
against Thy-1 as a growth substrate showed that Thy-1 antibodies
enhance regeneration of neurites in rat retinal ganglion neurons
and promote survival of mouse cerebellar Purkinje cells (Leifer
et al., 1984; Messer et al., 1984). Similarly, antibodies against
Thy-1 promote neurite outgrowth in rat dorsal root ganglion
(DRG) neurons when applied in the culture medium (Chen et al.,
2005). Later, natural ligands of GPI-anchored IgSF CAMs have
also been shown to induce neurite outgrowth changes. Retinal
ganglion cells from Thy-1 knock-out mice show impaired neurite
outgrowth over different substrates made of the proteins of
the extracellular matrix, including fibronectin and collagen, and
Thy-1 knock-out mice demonstrate abnormal retinal formation
with thinner retinae (Simon et al., 1999). Thy-1 has also been
identified as a receptor for αVβ3 integrin. Binding of integrins
to Thy-1 at the neuronal cell surface induces signal transduction
across the cell membrane resulting in inactivation of the c-Src
protein tyrosine kinase, reduced neurite outgrowth, as well as
neurite retraction (Herrera-Molina et al., 2012). In this study,
neuron-derived Cath-a-differentiated (CAD) cells grown on a
monolayer of DITNC1 astrocyte cells, which expressed αVβ3
and β3 integrins, had inhibited neurite outgrowth compared to
CAD cells grown over a monolayer of DITNC1 cells treated with
Thy-1-Fc protein, anti-β3 integrin antibodies, or transfected with
siRNA against the β3 chain of the integrin. Neurite outgrowth
inhibition in CAD cells on a substrate of αVβ3-Fc was abolished
by silencing Thy-1 expression by shRNA. Furthermore, while
αVβ3-Fc reduced dendritic length in primary cortical neurons,
application of PI-PLC to cleave Thy-1 prior to the addition
of αVβ3-Fc prevented the inhibition of dendrite outgrowth
(Herrera-Molina et al., 2012).

Chondroitin sulfate E has been shown to activate contactin-1
to stimulate neurite outgrowth in primary mouse hippocampal
neurons (Mikami et al., 2009). In addition to being a receptor
to chondroitin sulfate E, contactin-1 binds to the second and
third fibronectin type III (FNIII)-like domains of tenascin-R.
Binding of tenascin-R to contactin-1 promotes neurite outgrowth
(Norenberg et al., 1995), and induces formation of filopodia and
lamellipodia along neurites (Zacharias, 2002). Contactin-1 is also
a receptor for the receptor-type protein tyrosine phosphatase zeta
(PTPRZ) (Peles et al., 1995; Bouyain and Watkins, 2010), and
induces neurite outgrowth in chick tectal neurons in response to
binding to PTPRZ (Peles et al., 1995). Recent work also showed
that contactin-1 at the cell surface of hippocampal neurons
binds in trans to contactin-associated transmembrane receptor 2
(CASPR2) (Rubio-Marrero et al., 2016). The physiological role of
this interaction remains to be analyzed. The role for contactin-1
as a functional receptor in regulation of neuronal development is
also supported by in vivo observations in contactin-1 knock-out
mice. Granule cells are the major neuron population expressing
contactin-1 in axons in the cerebellum. In wild-type mice,
the parallel fibers of granule cells extend perpendicular to the
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dendritic arborizations of Purkinje cells. In contrast, the parallel
fibers extend parallel to the plane of Purkinje cell dendritic
branches in contactin-1 knock-out mice indicating misguidance
of granule cell axon subpopulations (Berglund et al., 1999).

Contactin-2 has been shown to function as a receptor
for neuronal cell adhesion molecule (NrCAM) but not for
the neuron–glia cell adhesion molecule (NgCAM) in DRG
and sympathetic ganglion neurons (Lustig et al., 1999). In
these neurons, substrate-coated NgCAM and NrCAM, two L1
family CAMs, promote neurite outgrowth. Anti-contactin-2 Fab
fragments do not affect the neurite outgrowth induced by
NgCAM, but inhibit the NrCAM-dependent neurite outgrowth
(Lustig et al., 1999). Substrate-coated NrCAM and NgCAM
interact heterophilically in trans with contactin-2 at the cell
surface of chick commissural axons and both molecules
cooperate in the axonal guidance. However, this interaction is
not involved in regulation of the axonal outgrowth (Fitzli et al.,
2000). Knock down of contactin-2 with ex-ovo RNAi in the chick
embryo affects guidance but not growth of axons of granule
cells in the cerebellum (Baeriswyl and Stoeckli, 2008). Knock
down of contactin-2 results in the failure of granule cells to
extend their axons parallel to the pial surface of the cerebellum,
creating an uneven molecular layer with decreased parallel fiber
density. Since known binding partners of contactin-2, including
NgCAM and NrCAM, are not expressed during granule cell axon
extension, homophilic interactions of contactin-2 were proposed
to be involved in axon guidance in these neurons (Baeriswyl
and Stoeckli, 2008). Loss of contactin-2 in chick retinal neurons
also impairs the ability of retinal neurons to contain their arbors
within appropriate sublaminae (Yamagata and Sanes, 2012).

Glycosylphosphatidylinositol-anchored IgSF CAMs can also
function as receptors when they are involved in homophilic
binding. Cortical neurons grown on a substrate of recombinant
OBCAM or LAMP demonstrate a dose-dependent increase in
neurite outgrowth (Sanz et al., 2015). This neurite outgrowth-
promoting activity of LAMP has been attributed to the first
Ig domain within LAMP mediating homophilic interactions
(Eagleson et al., 2003). Homophilic binding of Ntm also induces
neurite growth in hippocampal neurons (Gil et al., 1998, 2002).

GPI-Anchored IgSF CAMs As Signal
Transducers and Membrane Domain
Organizers
While GPI-anchored IgSF CAMs do not possess intracellular
domains, they induce intracellular signaling and regulate
formation of the functional membrane domains by interacting in
cis with other transmembrane proteins. For example, activation
of the intracellular signaling by Thy-1 antibodies is likely to
be induced by cross-linking Thy-1 molecules and associated
proteins, such as integrins (Kuroiwa et al., 2012).

Contactin-1 interacts in cis with CASPR (Peles et al., 1997).
The CASPR/contactin-1 complex accumulates in paranodal
junctions in myelinated axons during myelination of peripheral
nerves (Rios et al., 2000). Contactin-1 is necessary to target
CASPR to the synaptic membrane, because CASPR is synthesized
but not targeted to the cell surface plasma membrane in the
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FIGURE 2 | Crystal structure of the fragment of contactin-3 containing Ig-like domains 5 and 6 and fibronectin type III domains 1 and 2. (A) fibronectin type III (FN)
and immunoglobulin-like (Ig) C2-type domains of contactin-3 are shown as a ribbon diagram in two views flipped 90◦ to demonstrate the β-sheet orientation and
disulfide bonds in Ig domains (green lines). β-Sheet strands are shown as light purple arrows in Ig6, FN2, and FN1 and multicolored arrows in Ig5. Coils are in light
pink and turns are in light blue. (B) A ribbon diagram of the Ig5 domain with one β-sheet represented by strands A (orange), B (red), E (green), and D (purple) and the
second sheet represented by strands A′ (yellow), C (cyan), F (blue), and G (pink). Strands E and F are connected by a short helix (in magenta). Two views flipped 90◦

are shown to demonstrate the β-sheet orientation and the disulfide bond represented as a green line in both views and highlighted by a red box in the upper view.
Dashed green line represents the disulfide bond behind the B–C coil. (C) A ribbon diagram of the Ig5 domain with β-sheet strands re-colored to demonstrate the two
sheets, one comprised of strands A, B, E, and D (red) and another comprised of strands A′, C, F, and G (blue) with the disulfide bond (green) holding the two sheets
together. Image of PDB ID 5I99 (Nikolaienko et al., 2016) created with Protein Workshop (Moreland et al., 2005).

hippocampus of contactin-1-deficient mice (Rios et al., 2000;
Murai et al., 2002). Contactin-1 also forms a complex with L1 and
Fyn kinase in the mouse cerebellum, suggestive of the capability
to transduce signals to intracellular proteins via L1 (Olive et al.,
2002).

Contactin-2 binds in cis to L1. This interaction can be induced
by homophilic trans interactions of contactin-2 resulting in the
cis binding to L1 and L1-mediated ankyrin recruitment to the
complex (Malhotra et al., 1998). Contactin-2 also binds in cis
to NgCAM. This heterophilic cis interaction promotes neurite
outgrowth, whereas heterophilic trans interaction between
NgCAM and contactin-2 has no effect on neurite outgrowth
(Buchstaller et al., 1996). Contactin-2 binds directly to the
ectodomain of CASPR2 (Lu et al., 2016), and both proteins form
a cis complex but are unable to form a trans complex. Despite this,
contactin-2 is able to bind homophilically in trans to contactin-2
that has formed a cis complex with CASPR2 (Traka et al., 2003).
The physiological significance of this interaction is illustrated
by observations in contactin-2 and CASPR2 knock-out mice
showing that contactin-2 is necessary for CASPR2 localization
at juxtaparanodes in myelinated axons (Traka et al., 2003),
whereas targeting of contactin-2 to juxtaparanodes depends
on CASPR2 and both contactin-2 and CASPR2 are required

for accumulation of voltage-gated potassium channels at the
juxtaparanodes (Poliak et al., 2003).

Other contactins also associate in cis with various cell surface
receptors. For example, contactin-5 forms a cis complex with
amyloid precursor-like protein 1 (APLP1) on the presynaptic
membrane (Shimoda et al., 2012). The second and third Ig
domains of contactin-3, -4, -5, and -6 bind to receptor-type
protein tyrosine phosphatase G (PTPRG) (Bouyain and Watkins,
2010) and contactin-3 and -6 associate in cis with PTPRG at
the surface of mouse rod photoreceptor cells (Nikolaienko et al.,
2016). Contactin-6 also interacts in cis with the Close Homolog
of L1 (CHL1) and binds to and regulates the activity of the
receptor-type protein tyrosine phosphatase α (PTPRα) (Ye et al.,
2008).

Glycosylphosphatidylinositol-anchored IgSF CAMs also
interact with the intracellular enzymes and cytoskeleton
via lipids. NCAM120 co-localizes and associates with the
membrane-cytoskeleton linker protein spectrin in transfected
CHO cells and mouse hippocampal neurons, and this association
is lost after disruption of the lipid rafts (Leshchyns’ka et al., 2003).
Overexpression of NCAM120 in cultured hippocampal neurons
from NCAM knock-out mice, however, is not sufficient to induce
neurite outgrowth in response to recombinant extracellular
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domain of NCAM (Niethammer et al., 2002). The interaction
with spectrin may, however, be important in glial cells where
NCAM120 is enriched. Contactin-2 associates with ganglioside
GD3 in cerebellar neurons, and clustering of this complex
induces activation of the Src family kinase Lyn (Kasahara et al.,
2000, 2002). A recent study showing that NEGR1 interacts with
Niemann-Pick disease Type C2 (NPC2) protein and functions
in cholesterol transport (Kim et al., 2017) suggests that GPI-
anchored IgSF CAMs may also be involved in regulation of the
lipid composition of the plasma membrane.

GPI-Anchored IgSF CAMs As Functional
Ligands
Glycosylphosphatidylinositol-anchored IgSF CAMs also function
as ligands for other cell surface receptors in neurons and other
cells. Early work on contactin-1 has demonstrated that neurite
outgrowth in DRG neurons grown on CHO cells transfected
with contactin-1 is increased (Gennarini et al., 1989, 1991).
Further work showed that contactin-1 exerts dual cell-specific
effects on neurite outgrowth by inhibiting neurite outgrowth
in cerebellar granule cells and stimulating neurite outgrowth in
sensory neurons, whereas it does not affect hippocampal neurons
(Gennarini et al., 1991; Buttiglione et al., 1996), suggesting
that contactin-1 activates different receptors expressed by these
cells (Buttiglione et al., 1996). Among neuronal receptors for
contactin-1 are members of the L1 family. NrCAM and NgCAM
have been shown to interact heterophilically with contactin-
1 (Morales et al., 1993). However, despite having shown that
contactin-1 interacts with NrCAM and NgCAM, only NrCAM
was found to enhance the outgrowth of chick retinal neurons
(Treubert and Brümmendorf, 1998). Tectal cells adhere to and
extend neurites on a substrate of contactin-1 and this effect is
blocked by the application of Fab fragments against NrCAM
but not NgCAM (Morales et al., 1993). While these experiments
indicate that the interaction between contactin-1 and NrCAM
induces neurite outgrowth, receptors mediating the inhibitory
effects of contactin-1 on neurite outgrowth and the role that
the interaction between contactin-1 and NgCAM plays remain
to be determined. Contactin-1 was also identified to be a ligand
of Notch in oligodendrocytes being involved in the signaling
pathway of oligodendrocyte maturation (Hu et al., 2003). The role
for contactin-1 as a functional ligand is also supported by in vivo
observations. Contactin-1 is not detected in dendrites of granule
cells (Faivre-Sarrailh et al., 1992). However, development of the
dendrites is affected in contactin-1 knock-out mice resulting
in a significant reduction of granule cell postsynaptic area
(Berglund et al., 1999), suggesting that contactin-1 expressed
on other cells acts as a functional ligand to regulate dendrite
formation.

Contactin-2 used as a substrate induces neurite outgrowth in
rat and chick DRG neurons (Furley et al., 1990; Stoeckli et al.,
1991) and in rat and mouse cerebellar neurons (Kasahara et al.,
2002; Wang et al., 2011). Removal of contactin-2 by PI-PLC from
DRG neurons cultured on a substrate of contactin-2 does not
affect the effect of contactin-2 substrate on neurite outgrowth
(Felsenfeld et al., 1994) indicating that homophilic interactions
of contactin-2 are not involved. Contactin-2-dependent neurite

outgrowth is blocked by Fab fragments against L1 (Kuhn et al.,
1991; Stoeckli et al., 1991; Felsenfeld et al., 1994; Wang et al.,
2011) and β1 integrin (Felsenfeld et al., 1994), indicating that L1
and integrins are contactin-2 receptors, which promote neurite
outgrowth. Contactin-2 was also shown to be a ligand of amyloid
precursor protein (APP). Binding of contactin-2 to APP triggers
cleavage of APP resulting in the release of its intracellular domain,
which negatively modulates neurogenesis (Ma et al., 2008).

Neurite outgrowth in rat hippocampal neurons is enhanced
when they are grown on substrate-coated recombinant contactin-
3 and -4 (Yoshihara et al., 1994, 1995), or on HEK293 cells
transfected with contactin-4, -5, and -6 (Bouyain and Watkins,
2010; Mercati et al., 2013), indicating that other CAMs of the
contactin family can also function as trans ligands. Contactin-3
and -6 associate with PTPRG not only in cis but also in trans when
expressed on the surfaces of apposing cells (Nikolaienko et al.,
2016). Hence, PTPRG is likely to be a neuronal receptor for these
CAMs of the contactin family. However, contactin-4, -5, and -6
display identical binding to PTPRG but differentially promote
neurite outgrowth and branching at distinct developmental
stages (Mercati et al., 2013), suggesting that other receptors are
also involved. These receptors remain to be identified in future
work.

Trans-interactions have also been reported for Thy-1
presented as a ligand. Thy-1 was identified in a neurite
outgrowth-promoting complex containing also laminin and a
heparin sulfate proteoglycan (Greenspan and O’brien, 1989).
Thy-1 expressed at the neuronal cell surface functions as a ligand
for αVβ3 integrin at the cell surface of astrocytes (Hermosilla
et al., 2008). This interaction leads to integrin clustering, tyrosine
phosphorylation of focal adhesion kinase (FAK) and p130Cas,
activation of RhoA and p160ROCK, recruitment of paxillin,
vinculin, and FAK to focal contacts resulting in formation of
focal adhesion and stress fibers in rat astrocytes (Leyton et al.,
2001; Avalos et al., 2002, 2004).

Cell adhesion molecules of the IgLON family NEGR1 and Ntm
are constitutively shed from the cell surface and create a growth
permissive substrate. Inhibition of their shedding by a pan-
metalloproteinase inhibitor (BB-94) inhibits neurite outgrowth
in cortical neurons and IgLON CAMs accumulate at the cell
surface, whereas an increase in shedding by PI-PLC promotes
neurite outgrowth (Sanz et al., 2015). A recent report showing
that soluble NEGR1 promotes neuronal arborization in FGFR2-
and ERK1/2-dependent manner (Pischedda and Piccoli, 2015)
suggests that FGFR2 is one of the receptors for NEGR1 at the
neuronal cell surface. The shedding of IgLON CAMs not only
provides a growth permissive substrate but also renders cortical
neurons grown on the IgLON substrate insensitive to the growth
inhibitory effects of BB-94 suggesting that shed IgLON CAMs
mitigate inhibitory signals transduced by a NEGR1- or Ntm-
containing complex at the neuronal cell surface (Sanz et al.,
2015).

Another member of IgLON family, LAMP, inhibits the neurite
outgrowth in DRG neurons by heterophilically binding to Ntm
expressed in these neurons (Gil et al., 2002). The second
Ig domain of LAMP, which is not involved in homophilic
interactions, harbors the outgrowth inhibiting activity (Eagleson
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et al., 2003). Soluble recombinant Ntm induces neurite outgrowth
in DRG neurons. This effect is also observed after removal of Ntm
from the cell surface of these neurons by PI-PLC indicating that
it is mediated by heterophilic interactions of Ntm. In contrast,
Ntm inhibits neurite outgrowth in SCG neurons. These neurons
do not express Ntm, and therefore Ntm’s effects are also mediated
by heterophilic interactions (Gil et al., 1998, 2002).

GPI-Anchored IgSF CAMs Are Present in
Synapses in Neurons
The presence of multiple GPI-anchored IgSF CAMs in
synapses was first suggested by biochemical analysis of synaptic
terminals, synaptosomes, isolated from the brain tissue. Early
work with Thy-1 antigen showed that Thy-1 was present
in synaptosomes isolated from the mouse brain with later
work showing that Thy-1 is a component of large dense core
and small clear vesicles of PC12 cells which are similar to
neuronal synaptic vesicles (Stohl and Gonatas, 1977; Jeng et al.,
1998). Later studies showed the presence of different GPI-
anchored IgSF CAMs in synaptosomes, including contactin-
1 and contactin-2 (Murai et al., 2002; Bakkaloglu et al.,
2008).

Immunoelectron microscopic analysis of contactin-1
localization revealed that depending on the type of synapse,
contactin-1 is localized to either the pre- or post-synaptic
membranes (Faivre-Sarrailh et al., 1992). For example, in the
mouse cerebellum contactin-1 is localized pre-synaptically in
synapses between parallel fibers of granule cells and dendritic
spines of Purkinje cells and in synapses between mossy
fiber terminals and granule cell dendrites, and is localized
post-synaptically in synapses formed on Golgi cell dendrites
(Faivre-Sarrailh et al., 1992). In the hippocampal CA1 region,
contactin-1 is distributed at the surface of pyramidal cell
dendrites, dendritic spine heads, and post-synaptic densities, and
is also present in biochemically isolated post-synaptic density
fractions (Murai et al., 2002). Contactin-2 has also been shown
to localize to synaptic plasma membranes isolated from rat
forebrain (Bakkaloglu et al., 2008).

In contrast to contactin-1, Ntm has been shown to accumulate
both pre- and post-synaptically in synapses between parallel
fibers of granule cells and dendritic spines of Purkinje cells
and in synapses between mossy fiber terminals and granule cell
dendrites but was not present in inhibitory synapses made by
stellate or basket cells (Chen et al., 2001). LAMP is expressed
pre- and post-synaptically in synapses in the developing lateral
septum, but is detected only post-synaptically in synapses formed
on granule cells of the dentate gyrus in adult hippocampus (Zacco
et al., 1990).

Electron microscopic immunohistochemistry has
demonstrated that NEGR1 is present at high levels in post-
synaptic densities and at lower levels pre-synaptically in synapses
along dendrites and on somata of neurons in the cerebral
cortex and hippocampal CA3 region of adult rats (Miyata et al.,
2003a). OBCAM shows similar ultrastructural distribution as
NEGR1 with OBCAM immunoreactivity limited to postsynaptic
densities of dendritic and somatic synapses in the cerebral cortex
and hippocampal CA3 region of adult rats (Miyata et al., 2003a).

Several studies indicate that GPI-anchored IgSF CAMs are
also present in synaptic organelles. Biochemical analysis of Thy-1
in the rat brain showed that it is targeted to small synaptic vesicles
(SSVs) and large dense core vesicles (LDCVs) (Jeng et al., 1998).
OBCAM is present in neurosecretory granules in neurites of
hypothalamic magnocellular neurons (Miyata et al., 2003b). Mass
spectrometry analysis of synaptic vesicles also identified NEGR1,
OBCAM, Ntm, Thy-1, LAMP, and contactin-1 as components of
synaptic vesicles (Takamori et al., 2006).

Role of the GPI-Anchored IgSF CAMs in
Synapse Formation Regulation
Protein expression and localization of the GPI-anchored IgSF
CAMs is developmentally regulated. Levels of Thy-1 strongly
increase from postnatal day 14, whereas levels of NEGR1,
OBCAM, and contactin-1 gradually increase during development
and reach the highest level at 4 weeks after birth in the cerebral
cortex, diencephalon, hippocampus, and cerebellum (Miyata
et al., 2003a). Ntm levels gradually increase in the forebrain
during development reaching the plateau at postnatal day 7
and then decline in adults (Struyk et al., 1995). Ntm levels are
also increased in the molecular layer and the internal granular
layer of the cerebellum during the period of synaptogenesis
and reduce shortly after the active period of synaptogenesis
ends, but remain high at synaptic contacts (Chen et al.,
2001). Levels of NCAM and particularly NCAM120 increase
in chick cornea and corneal nerves during corneal innervation
(Mao et al., 2012). High expression of the GPI-anchored
IgSF CAMs at the time of active synaptogenesis and their
synaptic localization suggests that they play a role in synapse
formation.

The role of the GPI-anchored IgSF CAMs in synapse
formation is further indicated by studies showing that disruption
of their functions or increase in their levels in neurons affect
synaptogenesis. Overexpression of OBCAM in hippocampal
neurons increases numbers of synapses along dendrites of
transfected neurons (Hashimoto et al., 2009), whereas disruption
of OBCAM functions using antibodies or by suppressing its
expression using the antisense oligodeoxynucleotide results in
impaired formation of synapses on dendrites of hippocampal
neurons indicating that OBCAM promotes synapse formation
(Yamada et al., 2007). OBCAM expression has been observed to
be higher during early postnatal development and it decreases
over time suggesting that OBCAM is active in the regulation
of synapse formation (Li et al., 2006; Yamada et al., 2007). An
increase in synapse formation has also been observed in cultured
hippocampal neurons overexpressing LAMP (Hashimoto et al.,
2009) and NCAM120 (Dityatev et al., 2004). Interestingly,
overexpression of NEGR1 decreases numbers of synapses formed
on dendrites of hippocampal neurons (Hashimoto et al., 2009).
Thus, different GPI-anchored IgSF CAMs not only promote, but
can also reduce synaptogenesis.

The molecular mechanisms of synaptogenesis regulation
by the GPI-anchored IgSF CAMs remain poorly understood.
Interestingly, ablation of NCAM expression in GABAergic basket
interneurons in the postnatal mouse cortex results in impaired
maturation of perisomatic synapses formed by these neurons,
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and this phenotype is rescued by NCAM120 (Chattopadhyaya
et al., 2013). The NCAM120-dependent maturation of synapses
is inhibited by a dominant-negative form of Fyn kinase
(Chattopadhyaya et al., 2013) indicating that GPI-anchored IgSF
CAMs regulate synapse formation not only via changes in cell
adhesion but also by activating intracellular signaling.

GPI-Anchored IgSF CAMs in Regulation
of Synaptic Plasticity
Recent reports indicate that GPI-anchored IgSF CAMs also play
a role in synaptic plasticity. Constitutively contactin-1-deficient
mice show decreased paired pulse facilitation (PPF). Long-term
potentiation (LTP) in the CA1 region of the hippocampus of
these mice is normal, whereas long-term depression (LTD) is
impaired (Murai et al., 2002). In contactin-1 transgenic mice
generated to induce overexpression of full-length contactin-1
under control of the human contactin-2 promoter, PPF is not
changed at 5 and 12 months of age indicating that the short-term
plasticity is not altered by contactin-1 overexpression. However,
LTP in the CA1 region of the hippocampus is increased in
contactin-1-overexpressing mice at 12 months of age despite no
change in LTP in contactin-1 transgenic mice at 5 months of
age (Puzzo et al., 2013). Further analysis of LTP in the CA1
region of the hippocampus in older animals showed that LTP
is impaired in 24-month-old wild-type mice when compared to
3–5-month-old wild-type animals. However, the age-dependent
decline in LTP was slower in mice overexpressing contactin-
1. Hence, contactin-1 is likely to play a role in maintaining
synaptic plasticity in the adult brain during aging (Puzzo et al.,
2013, 2015). Synaptic transmission is impaired in LAMP knock-
out mice with a reduction in LTP in the CA1 region of the
hippocampus (Qiu et al., 2010). LTP in the CA1 region of the
hippocampus in Thy-1 knock-out mice was normal although LTP
was absent in the dentate gyrus of these mice (Nosten-Bertrand
et al., 1996). These observations indicate that GPI-anchored
IgSF CAMs are involved in regulation of the different forms of
synaptic plasticity in brain region-dependent manner.

GPI-Anchored IgSF CAMs in Regulation
of Learning and Behavior
Glycosylphosphatidylinositol-anchored IgSF CAMs are also
involved in regulation of learning and behavior. Thy-1 knock-out
mice have been found to fail in observing social cues to select food
that had been socially cued (Mayeux-Portas et al., 2000). It was
therefore proposed that the loss of Thy-1 while not fatal is still
under evolutionary pressure as the inability to select cued (and
therefore safe) food would quickly push for the conservation of
Thy-1. Spatial learning as assessed by the Morris water maze test
was not affected in Thy-1 knock-out mice (Nosten-Bertrand et al.,
1996).

Mice deficient for LAMP exhibit heightened reactivity
to novelty, lower anxiety, and lower sensitivity to stressful
environment (Catania et al., 2008; Innos et al., 2011, 2012). LAMP
deficiency in mice also results in impaired spatial learning as
indicated by increased time LAMP-deficient mice need to locate
the underwater platform in the Morris water maze (Qiu et al.,

2010). The role for LAMP in regulation of behavior is further
suggested by observations showing that LAMP expression levels
are increased in the hippocampus of mice exposed to the enriched
environment (Heinla et al., 2015).

The link between changes in contactin-1 expression and
age-dependent learning impairments has been demonstrated in
studies showing that the age-dependent decline in contactin-1
levels in wild-type mice correlates with a higher latency in finding
the hidden platform in the Morris water maze (Palmeri et al.,
2013; Puzzo et al., 2015). The age-dependent increase in the time
required to find the hidden platform in the Morris water maze
is reduced in transgenic contactin-1-overexpressing mice (Puzzo
et al., 2015). Furthermore, while old wild-type mice spend equal
amounts of time exploring the novel and familiar objects in the
novel object recognition test analyzing recognition memory, the
old contactin-1-overexpressing mice spend more time exploring
the novel object (Puzzo et al., 2015).

GPI-Anchored IgSF CAMs in Brain
Disorders
Several observations indicate that contactin-2 may play a
role in the onset of epilepsy. A homozygous single base pair
deletion (c.503_503delG) of contactin-2 was identified to
be present in individuals affected with autosomal recessive
cortical myoclonic tremor and epilepsy in a consanguineous
Egyptian family (Stogmann et al., 2013). The role of
contactin-2 in epilepsy is further suggested by studies
in mice showing that while gross brain morphology of
contactin-2 null mice appears to be indistinguishable from
their wild-type littermates, contactin-2 null mice display
spontaneous episodes of seizures despite demonstrating
normal behavior and are more sensitive to convulsant
stimuli than their wild-type littermates (Fukamauchi et al.,
2001).

Genome-wide analysis of copy number variations in autism
spectrum disorder (ASD) patients identified a trend for the
contactin gene family (contactin-4, -5, -6) to be associated with
ASD (Van Daalen et al., 2011; Nava et al., 2014; Poot, 2014).
The identification of multiple contactin CAMs in ASD has led
to the suggestion that genetic interactions between contactins are
involved in different degrees of ASD (Poot, 2014).

Autoantibodies against contactin-1 were shown to be present
in a subset of patients suffering from chronic inflammatory
demyelinating polyneuropathy (CIDP) (Querol et al., 2013),
suggesting that contactin-1 is involved in neuromyopathies.
Chronic passive transfer of anti-contactin-1 IgG4 in Lewis rats
results in progressive motor deterioration (Manso et al., 2016),
indicating that antibodies against contactin-1 are pathogenic in
CIDP. A study on a consanguineous family with a homozygous
contactin-1 mutation presenting with lethal congenital myopathy
also supports the role contactin-1 may have in peripheral
neuromyopathies (Compton et al., 2008).

Increased levels of NCAM120 were found in the cerebrospinal
fluid (CSF) of patients suffering from bipolar disorder and
depression suggesting that NCAM120 may be involved in mood
disorders (Poltorak et al., 1996).
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Patient case studies found that deletions of 1p31.1 to
1p31.3 containing the NEGR1 gene present with developmental
co-ordination disorder, attention deficit/hyperactivity disorder,
learning disability, as well as delayed speech and language
development (Gillberg and FitzPatrick, 2010; Tassano et al.,
2015). A genome-wide copy number scan identified NEGR1
to be one of five new candidate genes involved in dyslexia
(Veerappa et al., 2013). A case study on two siblings with
interstitial microdeletion of 1p31.1 involving only NEGR1
presented with learning and behavioral problems, hypotonia,
hypermobility, scoliosis, and aortic root dilation (Genovese
et al., 2015). Further suggestive of the role NEGR1 has
in brain disorders, NEGR1 is also elevated in the CSF of
bipolar and depressed patients (Maccarrone et al., 2013).
In Dark Agouti rats, NEGR1 is upregulated in response to
venlafaxine (VLX), a serotonin and noradrenaline reuptake
inhibitor used to treat major depressive disorder (MDD),
suggesting that NEGR1 contributes to the VLX effect in MDD
possibly by contributing to the establishment of new neuronal
connections and changes in synaptic plasticity (Tamási et al.,
2014).

A study on male contemplated suicide identified LAMP
SNPs to be associated with suicide (Must et al., 2008).
However, it is important to note that after multiple
correction tests the association did not maintain statistical
significance leading the authors to suggest that LAMP
may play a role in suicidal behavior but more work is
required to confirm their initial findings. Genotyping showed
that four SNPs (rs1461131, rs4831089, rs16824691, and
rs9874470) of LAMP were significantly associated with MDD
(Koido et al., 2012). In addition, LAMP expression was
significantly increased in the dorsolateral prefrontal cortex
of schizophrenic and bipolar disorder patients (Behan et al.,
2009).

In a study on late-onset Alzheimer’s disease, four SNPs
(rs1629316, rs1547897, rs11222931, and rs11222932) in intron
1 of the Ntm gene (11q25) and one SNP (rs11223225)
in intron 1 of the OBCAM gene (located on the same
chromosome as Ntm < 80 kb apart) have been found to
be associated with late-onset Alzheimer’s disease (Liu et al.,
2007). Genome-linkage studies in two independent Dutch
populations indicate that depression is also associated with a
locus on chromosome 11q25 suggesting a link to OBCAM
(Schol-Gelok et al., 2010). In a study of schizophrenia in Thai
populations, four SNPs (rs3016384, rs1784519, rs1894193, and
rs1939498) of OBCAM have been identified to be linked to
schizophrenia (Panichareon et al., 2012). An earlier study also
identified OBCAM to be implicated in schizophrenia; however,
the association was nominally significant (O’Donovan et al.,
2008). Genome-wide analysis of aggressiveness in attention
deficit hyperactivity disorder (ADHD) found that one of two
significant loci associated with aggressiveness in ADHD was
within the Ntm gene (Brevik et al., 2016). Additionally, Ntm
has also been identified to be associated with intelligence as
demonstrated by a family-based association study (Pan et al.,
2011).

Conclusion and Future Directions
Glycosylphosphatidylinositol-anchored IgSF CAMs play
important roles in regulation of neuronal development, synapse
formation and function, learning, and behavior. Previous
research indicates that in addition to mediating adhesive
interactions, these molecules induce intracellular signaling by
binding to other cell surface receptors, regulating their levels and
functions, and assembling membrane microdomains.

Further research is, however, needed to characterize the
whole repertoire of the interactions of GPI-anchored IgSF CAMs
in developing and mature neurons, and in synapses to fully
understand the role these molecules play in the developing and
mature nervous system and molecular mechanisms involved.
While several neurite outgrowth-promoting receptors for GPI-
anchored IgSF CAMs have been described, observations showing
that even relatively well-characterized contactin-1 not only
promotes but also inhibits neurite outgrowth in a neuron-
specific manner suggest that there are still other receptors
that remain to be identified. How the repertoire of molecular
interactions involving GPI-anchored IgSF CAMs changes during
neuronal development remains also poorly understood. The roles
that these interactions play in regulating synapse formation
and function are mostly unknown. It is possible that GPI-
anchored IgSF CAMs promote synapse formation by forming
homophilic adhesive bonds connecting pre- and post-synaptic
membranes. However, these molecules are often asymmetrically
expressed in synapses and are found either pre- or post-
synaptically. This observation suggests that GPI-anchored IgSF
CAMs regulate synapse formation by heterophilically interacting
with other receptors or CAMs in synaptic membranes. Further
characterization of the synaptic interactions of GPI-anchored
IgSF CAMs is necessary to understand molecular mechanisms
activated by these molecules during synapse formation. It may
also help to understand the role that GPI-anchored IgSF CAMs
play in synaptic plasticity suggested by abnormalities in mice
with altered expression of these molecules, and to characterize
the signaling pathways regulated by GPI-anchored IgSF CAMs in
synapses.

Further analysis of the post-translational modifications
of GPI-anchored IgSF CAMs is necessary to understand
mechanisms of the regulation of the functions of these
molecules. Shedding of the IgLON family members was shown
to play an important role during neuronal development.
The role that proteolysis of GPI-anchored IgSF CAMs plays
in regulation of synapse numbers and remodeling during
synaptic plasticity remains to be investigated. Regulation
of the homophilic and heterophilic interactions of GPI-
anchored IgSF CAMs by glycosylation of the multiple sites
within their ectodomains is also an intriguing possibility,
which remains to be analyzed. Whether GPI anchor-
mediated interactions with lipids play a role in the transport
of GPI-anchored IgSF CAMs, their sorting to lipid rafts,
microdomain assembly, and signal transduction also remains to
be investigated.

Genetic association studies in humans have started to
illuminate the role of GPI-anchored IgSF CAMs in brain
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disorders. Biochemical analyses of the changes in levels and
synaptic targeting of GPI-anchored IgSF CAMs in postmortem
human brain tissue and in animal models are necessary to
corroborate these findings and may reveal yet unknown roles
of these molecules in brain disorders. Future research analyzing
molecular mechanisms of GPI-anchored IgSF CAM function and
regulation will help to understand the molecular mechanisms
of brain disorders linked to abnormal expression or function of
these molecules, and may pave the way for development of new
treatments of these disorders.
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