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ABSTRACT
Background: Accurate identification of opioid overdose (OOD) cases in electronic healthcare record (EHR) data is an important element in sur-
veillance, empirical research, and clinical intervention. We sought to improve existing OOD electronic phenotypes by incorporating new data
types beyond diagnostic codes and by applying several statistical and machine learning methods.

Materials and Methods: We developed an EHR dataset of emergency department visits involving OOD cases or patients considered at risk for
an OOD and ascertained true OOD status through manual chart reviews. We developed and validated prediction models using Random Forest,
Extreme Gradient Boost, and Elastic Net models that incorporated 717 features involving primary and second diagnoses, chief complaints, medi-
cations prescribed, vital signs, laboratory results, and procedural codes. We also developed models limited to single data types.

Results: A total of 1718 records involving 1485 patients were manually reviewed; 541 (36.4%) patients had one or more OOD. Prediction per-
formance was similar for all models; sensitivity varied from 94% to 97%; and area under the receiver operating characteristic curve (AUC) was
98% for all methods. The primary diagnosis and chief complaint were the most important contributors to AUC performance; primary diagnoses
and medication class contributed most to sensitivity; chief complaint, primary diagnosis, and vital signs were most important for specificity. Mod-
els limited to decision support data types available in real time demonstrated robust prediction performance.

Conclusions: Substantial prediction performance improvements were demonstrated for identifying OODs in EHR data. Our e-phenotypes could
be applied in surveillance, retrospective empirical applications, or clinical decision support systems.

LAY SUMMARY
Methods to accurately identify opioid overdose (OOD) cases in electronic healthcare record (EHR) data are important tools for surveillance, empir-
ical research, and clinical interventions needed to help mitigate the opioid crisis. We sought to improve existing OOD EHR phenotypes through 2
innovations: (1) incorporating new data types beyond diagnostic codes and (2) applying several advanced statistical and machine learning meth-
ods. We first developed an EHR dataset of 1718 emergency department (ED) visits that was a mixture of 621 OOD cases and 1097 non-OOD
visits involving patients considered at high risk for an overdose. These non-overdose patients frequently had symptoms that a model might con-
fuse with an overdose, such as withdrawal symptoms. The goal was to train our models to differentiate between a true OOD and other closely
related non-OOD conditions. We determined true OOD visits through manual chart reviews. Next, we developed 3 competing prediction model
designs that each used 6 types of EHR data (primary and second diagnosis codes, chief complaints, medications prescribed, vital signs, labora-
tory results, and procedural codes). We showed that these models had improved prediction performance over previously published methods.
We believe these models could be used to drive real-time clinical decision support.

Key words: opiate overdose; electronic phenotype; prediction models.

Introduction

Opioid overdose remains a serious and growing public
health concern, with the number of overdose-related deaths
continuing to rise. According to the Centers for Disease
Control and Prevention (CDC), opioid overdose (OOD) in

the United States was responsible for 68 630 deaths in
2020, a 37.8% increase from the previous year with syn-
thetic opioids such as fentanyl comprising 82.4% of OOD
deaths.1 The emergency department (ED) and emergency
medical services are often the first point of care for OOD
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patients, making the ED a critical setting for the timely
identification and appropriate management of survivors.
Accurate retrospective identification of cases is also essential
for epidemiological surveillance studies, assessing the burden
of OOD, and evaluating management strategies such as dis-
pensing naloxone kits, initiating medications for opioid use
disorder and/or treatment referral. Electronic health records
(EHR) contain a wealth of data that can be used to develop
electronic phenotyping (e-phenotype) strategies, a notion at
the heart of the learning health system.2 However, identify-
ing OOD within EHRs can be challenging since administra-
tive data, including billing codes and other structured data,
are inconsistent and frequently missing, and manual review
of patient records is time-consuming.

Several studies have examined EHR-based OOD phenotyp-
ing approaches with promising results; however, each had its
limitations. Chartash et al3 examined opioid use disorder
instead of OOD and focused on the absence or presence of
International Classification of Diseases, Tenth Revision, Clin-
ical Modification (ICD-10-CM) codes for opioid-related dis-
orders as well as the absence or presence of related key words
in chief complaints, and achieved a positive predictive value
(PPV) of 95%. Green et al4 tested several algorithms with
ICD codes and natural language processing derived variables
from clinical notes and achieved an overall PPV of 87.4% on
the validation dataset. Badger et al5 used random forest and
penalized logistic regression to develop OOD phenotypes
using ICD codes, opioid medications, procedures, lab results,
observations, and clinical notes from N¼ 278 OOD patients
who had been identified initially through an ICD code pheno-
type. The maximum AUC achieved was 0.89, with positive
predictive value 0.67 and sensitivity 0.65.

An important attribute for OOD predictive models is data
temporality, or the point during an ED visit at which informa-
tion needed to drive the model actually becomes available.
Models based on data assigned post-visit such as ICD-10-CM
codes are useful for generation of retrospective registries. Mod-
els that use clinical data available in nearly real-time can also
be applied to drive decision support tools within the visit, such
as prompting for additional data on the overdose cause, plan-
ning for follow up care, initiating medications for patients with
opioid use disorder, or prescribing take home naloxone.6

Examples of clinical data that are available within a visit
include emergency department chief complaints, triage nursing
notes, administration and response to antidotes (eg, naloxone),
vital signs, and laboratory results such as drug screening test-
ing. In addition, baseline data from prior to a visit, such as
ICD-10-CM diagnostic codes from prior emergency depart-
ment visits or from outpatient care may also be useful.

In this study, we sought to evaluate previous approaches
from both an accuracy and temporality of data perspective
and improve on them by adding more opioid overdose-related
ICD codes including recent definitions established by the
CDC for surveillance of drug overdoses in ED settings.7 We
also included a multitude of EHR-based variables, including
chief complaint, vital signs, procedure codes, administered
medications, and laboratory values. We evaluated multiple
machine learning and statistical models while developing our
e-phenotype, and examined the impact of various predictors
on the accuracy of the models to streamline future implemen-
tation of the e-phenotype at other sites.

Methods

Population and data sources

Electronic medical record data were retrieved for emergency
department (ED) visits between January 1, 2012 and April 30,
2021 at the Medical University of South Carolina (MUSC) for
patients over age 18 years who: (1) were treated for a suspected
opioid overdose (OOD) or (2) met defined conditions for being
considered at risk for an OOD at some point (further elabora-
tion below). The MUSC Health Network includes the main
campus in Charleston that is an academic, quaternary referral
center, along with several community hospitals across the state.
Definitions for “suspected OOD” and “at-risk for future
OOD” were based on international classification of diseases
(ICD) code listings established by Green et al.4 Because these
listings were limited to the ICD-9-CM system, we used a gen-
eral equivalence mapping originally developed by the Centers
for Medicare and Medicaid Services to map the listings to the
ICD-10-CM system.8 For the at-risk group, we included all ED
visits that were within 1 year before or after the date on which
the patient met inclusion criteria. The suspected OOD group
was expected to be reasonably small (less than 1000 patients),
but the at-risk group was expected to be substantially larger.
We used several rules to shrink this group to focus on cases
that might confuse an algorithm by appearing to be similar to
an OOD but which in fact involved other diagnoses. These
rules and a listing of the ICD codes used to identify suspected
OOD and at-risk patients are included in the Supplementary
Material. The study was approved by the MUSC Institutional
Review Board (Pro00088536).

Development of validated cases

Manual chart reviews of the ED visits were used to establish a
“gold standard” OOD status against which the phenotype
models could be trained and validated. Clinical notes and rele-
vant information from ED visits were imported into a REDCap
database,9 which allowed reviewers to annotate each visit as
OOD or not OOD. A group of 13 reviewers consisting of 4
clinicians, several medical students, and study team members
assisted with the reviews. Detailed review guidelines were
defined by the lead clinical team (which included an ED physi-
cian and an MD informatics expert) and made available to the
reviewers via a link from REDCap. All reviewers were added to
the IRB protocol and trained using the review guidelines and a
video recorded training session. The charts were assigned evenly
to all reviewers with some overlap allowing for a portion of the
charts to be reviewed independently by 2 reviewers to allow for
inter-rater reliability (IRR) assessment. Reviewers were allowed
to check a box in REDCap to request group reviews for difficult
cases. Nonconcordant cases and group review requests were
reviewed by the lead clinical team. Cases were excluded if the
ED clinical notes were incomplete or ambiguous.

Predictor variables

The prediction models used predictor variables (or features)
derived only from coded data recorded during an ED visit; clini-
cal text notes were used only during the gold standard chart
reviews. We used the following data types as predictors: primary
and secondary diagnosis ICD codes, chief complaint (selected
from a fixed menu of conditions), medication therapeutic class,
vital signs recorded during ED visit triage (respiration rate,
pulse, systolic, and diastolic blood pressure), Current Procedural
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Terminology (CPT) codes, and laboratory results. A total of
717 features were used to develop the prediction models.

Statistical and machine learning methods

We used 3 methods to develop competing prediction models:
Random Forest (RF), Extreme Gradient Boosting (XGBoost),
and Elastic Net penalized regression (ENET). For each method,
we generated 1000 bootstrapped datasets (sampled with replace-
ment) that were the same size as the full dataset. These were
used to determine 95% CIs from the prediction performance sta-
tistics collected from 1000 model runs. For XGBoost and
ENET, we held out a 10% random sample during each run to
use as validation data from which we reported prediction per-
formance. For RF, we used 750 independent decision trees dur-
ing each run to train a “forest” to determine which variables
were most important in classifying a visit as an OOD or non-
OOD; the hyperparameter mtry (number of variables randomly
sampled as candidates at each split) was set at 27 (square root of
feature size).10 In each RF tree, part of the data was held out
(out of bag) and used to test that tree’s predictive performance
on validation data. We used the out of bag results for the full
forest to assess the model’s predictive performance. XGBoost is
also a decision tree method, but unlike RF, the trees are not
independent.11 Each tree was generated sequentially, using the
prediction performance of the previous tree to “boost” perform-
ance of the next. We set hyperparameters based on previous
experience; these are provided in the sample code in the Supple-
mentary Material. ENET is a penalized regression method
designed to “shrink” some predictor estimates to 0 based on
their lower importance in predicting an OOD. Related methods
are LASSO and Ridge Regression; each is optimal in certain sit-
uations and ENET is a compromise between them.12 The ENET
model was first tuned using a nested 10-fold cross-validation
step using training data to find the best performing hyperpara-
meters (alpha and lambda), after which the model was retrained
on the full training set; validation data was not part of the

tuning or training steps. For each RF, XGBoost and ENET
model, we report the area under the Receiver Operating Charac-
teristic (ROC) curve (AUC), and statistics derived from the 2�2
table of actual versus predicted OOD (sensitivity, specificity,
positive predictive value, F1 score, and accuracy). Cut points
were determined based on the Youden score, which is based on
the point at which an ROC curve reaches the maximum vertical
distance above the diagonal marking 50% prediction probabil-
ity.13 For each method, we also report variable importance
results; for RF, this was based on the mean decrease of the Gini
Index; for XGBoost this was the fractional contribution of each
predictor based on the total gain for the times that predictor was
used in a tree split; for ENET this was based on the relative mag-
nitude of the absolute value of parameter estimates. The primary
analyses involved models that included all available predictors;
we also ran secondary models that included a single type (ie, pri-
mary diagnosis, or chief complaint, etc.) to assess the relative
importance of each type. All analyses were performed in R using
packages randomForest, xgboost, and glmnet.12,14–16 Sample
code is included in the Supplementary Material.

Results

A total of 1719 records belonging to 1485 patients were man-
ually reviewed, with 105 records (6%) assigned to 2 reviewers.
The IRR was high with Kappa¼0.96. Table 1 provides a sum-
mary of the demographic characteristics of the patients. Of the
1485 patients, 541 (36.4%) had one or more ED visits involv-
ing an OOD. Approximately 11% of those with an OOD had
multiple visits involving an OOD. Non-Hispanic White (NHW)
and non-Hispanic Black (NHB) patients comprised most of the
cohort (70.9% and 26.1%, respectively), with NHW patients
being significantly more likely to have an overdose visit (40.6%
for NHW vs 25.1% for NHB, P<.0001). Females comprised
42.1% of the cohort and were less likely to have an OOD visit
compared to males (28.8% vs 42.0%, P<.0001). The median

Table 1. Demographic characteristics of the validated cohort.

Variable Category One or more OOD No OOD Total P-value

Group size N (%) 541 (36.4%) 944 (63.6%) 1485
Race and ethnicity Non-Hispanic White 427 (40.6%) 626 (59.4%) 1053 (70.9%) <.0001

Non-Hispanic Black 97 (25.1%) 290 (74.9%) 387 (26.1%)
Hispanic 9 (33.3%) 18 (66.6%) 28 (1.8%)

Other or missing 8 (44.4%) 10 (55.6%) 18 (1.2%)
Sex Female 180 (28.8%) 445 (71.2%) 625 (42.1%) <.0001

Male 361 (42.0%) 499 (58.0%) 860 (57.9%)
Age Median (IQR) 29 (22, 42) 33 (22, 48) 31 (22, 46) .0006
Total OOD visits per patient 0 0 (0%) 944 (100%) 944 NA

1 480 (88.7%) 0 480
2 47 (8.7%) 0 47
3 11 (2.0%) 0 11
4 2 (0.4%) 0 2
6 1 (0.2%) 0 1

Abbreviation: IQR, interquartile range.

Table 2. Performance statistics for full models.

Model Sensitivity Specificity Accuracy Positive predictive value F-1 score ROC-AUC

Random Forest (RF) 0.94 (0.93, 0.96) 0.93 (0.91, 0.95) 0.94 (0.93, 0.94) 0.89 (0.86, 0.91) 0.91 (0.91, 0.92) 0.98 (0.98, 0.99)
Extreme Gradient Boost

(XGBoost)
0.97 (0.90, 1.0) 0.94 (0.88, 0.97) 0.94 (0.92, 0.97) 0.90 (0.82, 0.95) 0.92 (0.89, 0.95) 0.98 (0.96, 0.99)

Elastic Net (ENET) 0.97 (0.89, 1.0) 0.96 (0.90, 0.99) 0.96 (0.92, 0.99) 0.93 (0.84, 0.99) 0.94 (0.90, 0.98) 0.98 (0.97, 0.99)
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(interquartile) age was 31 years (22, 46); OOD patients were
likely to be slightly younger: 29 (22, 42) versus non-OOD
patients 33 (22, 48), respectively, P¼ .0006.

Table 2 provides prediction performance statistics and
95% CIs from validation data for the 3 full models (RF,
XGBoost, and ENET) based on 1000 model runs on boot-
strapped datasets. Performance was similar for all methods;
sensitivity varied from 94% to 97%; specificity varied from

93% to 96%, and AUC was 98% for all models. The top 30
out of 717 predictor variables included in the models are
shown in Table 3, ranked by variable importance for the
ENET model, with similar rankings given in Tables S1 and S2
for the RF and XGBoost models. Each data type has a differ-
ent color shading (yellow¼chief complaint, green¼primary or
secondary diagnosis ICD code, blue¼vital signs,
tan¼medication class, pink¼positive lab result, purple¼CPT

Table 3. Relative importance of predictors by model type.

Rank Importance statistic

Code Data type DescriptionRF XGB ENET RF XGB ENET

2 2 1 87.970 0.145 1.824 T401X1A Primary dx Poisoning by heroin, accidental
(unintentional), initial encounter

6 3 2 32.156 0.093 0.992 T402X1A Primary dx Poisoning by other opioids, acciden-
tal (unintentional), initial
encounter

1 1 3 114.583 0.483 0.939 Chief Complaint Drug Overdose
5 4 4 36.024 0.047 0.642 MEDICATIONS ANTIDOTES
15 10 5 6.344 0.010 0.410 T401X1A Secondary dx Poisoning by heroin, accidental

(unintentional), initial encounter
10 9 6 11.197 0.015 0.398 96501 Primary dx Accidental overdose of heroin
83 31 7 1.276 0.002 0.211 T401X4A Primary dx Poisoning by heroin, undetermined,

initial encounter
4 6 8 43.923 0.034 �0.185 Vitals Respirations
3 12 9 51.962 0.007 0.184 Y929 Primary dx Unspecified place or not applicable
34 11 10 2.281 0.009 0.147 96509 Secondary dx Poisoning by opiates and related nar-

cotics, other
111 74 11 0.832 0.001 0.129 T402X1A Secondary dx Poisoning by other opioids, acciden-

tal (unintentional), initial
encounter

64 58 12 1.739 0.001 0.086 E9800 Secondary dx Poisoning by analgesics, antipyretics,
and antirheumatics

9 13 13 15.091 0.005 �0.085 MEDICATIONS PSYCHOTHERAPEUTIC DRUGS
35 47 14 2.231 0.001 0.082 E9500 Primary dx Suicide and self-inflicted poisoning by

analgesics, antipyretics, and
antirheumatics

75 37 15 1.365 0.002 0.081 96501 Secondary dx Heroin overdose
76 38 16 1.365 0.002 0.081 96501 Secondary dx Intentional heroin overdose
77 39 17 1.365 0.002 0.081 96501 Secondary dx Poisoning by heroin(965.01)
7 5 18 15.934 0.034 0.074 Vitals Pulse
8 82 19 15.576 0.001 0.072 X58XXXA Primary dx Exposure to other specified factors,

initial encounter
202 20 0.413 0.068 T402X4A Primary dx Poisoning by other opioids
294 21 0.254 �0.068 E9803 Secondary dx Poisoning by tranquilizers and other

psychotropic agents
20 24 22 5.004 0.003 �0.064 F329 Secondary dx Major depressive disorder, single

episode
291 23 0.258 0.060 T40601A Primary dx Poisoning by unspecified narcotics,

accidental (unintentional), initial
encounter

101 33 24 0.997 0.002 0.060 E8502 Secondary dx Accidental poisoning by other opiates
and related narcotics(E850.2)

129 29 25 0.704 0.002 0.051 T401X2A Primary dx Poisoning by heroin, intentional self-
harm, initial encounter

84 34 26 1.273 0.002 0.050 96500 Primary dx Opiate overdose
26 83 27 3.125 0.001 �0.050 30000 Secondary dx Anxiety state, unspecified
25 158 28 3.654 0.000 0.050 Y9289 Primary dx Other specified places as the place of

occurrence of the external cause
245 29 0.325 �0.046 E11319 Secondary dx Type 2 diabetes
104 42 30 0.936 0.002 0.044 T50901A Secondary dx Poisoning by unspecified drugs

The model ranks are shaded for the top 30 of 717 predictors by model type and ordered by elastic-net rank. The models independently assigned high ranks to
many of the same predictors. For example, a medication therapeutic class of “ANTIDOTES” was in the top 5 for all models and respiration rate was in the top
10. The data types for Chief Complaint, Medications, and Vitals frequently appeared among the top-ranked predictors, particularly for RF and XGBoost models;
previous phenotypes relied solely on ICD codes. The Supplementary Material include tables ordered by XGBoost and RF ranks. Note that no ranks are given for
some ENET variables because the model “shrank” those parameter estimates to 0. Importance statistics for each model type are: RF¼mean decrease of the Gini
Index; XGBoost¼fractional contribution of each predictor; ENET¼absolute value of parameter estimates. Data type colors: (yellow¼chief complaint,
green¼primary or secondary diagnosis ICD code, blue¼vital signs, tan¼medication class, pink¼positive lab result, purple¼CPT code).
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code). Some predictors were independently ranked as highly
important by the 3 models. For example, a chief complaint
for drug overdose was among the top 3 in all models; a medi-
cation in the antidotes class was among the top 5; respiration
rate (vital signs) was among the top 10. For XGBoost, posi-
tive lab results for methadone, opiates, and amphetamines
were among the top 30 predictors. Several CPT codes were
also highly ranked. For ENET, a larger number of ICD codes
were prioritized compared to the other models, but vitals (res-
pirations and pulse), 2 medication classes, and 1 chief com-
plaint were among the top 30. Note that for ENET results, a
negative importance statistic indicates that predictor is nega-
tively associated with an OOD. For example, a higher respira-
tion rate or CPT codes for a CT scan or electrocardiograms
were estimated to be less likely associated with an OOD.

Although prediction performance was similar among the 3
designs, we noted that RF importance rankings included 18
non-ICD code predictors among the top 30, while XGBoost
and ENET had 14 and 5, respectively. To assess contributions
by predictor type, we ran several additional RF models, each
based on single predictor types; Figure 1 shows the ROC
curves for these models. The primary diagnosis code and chief
complaint were the most important contributors to model
performance. Figure 2 provides a comparison of diagnostic
performance by predictor type. Models based on primary

diagnosis or medication class had the highest sensitivity,
whereas models based on chief complaint, primary diagnosis,
or vital signs had the highest specificity.

Figure 3 shows prediction performance for the full model
compared to smaller models based on the top 2 predictor cat-
egories (primary diagnosis and chief complaint) when they
were used either separately or together in models. The smaller
model based on primary diagnosis and chief complaint per-
formed nearly as well (AUC¼0.97) as the full model
(AUC¼0.98). Figure 4 provides a comparison of ROC curves
for the full model (AUC¼ 0.98) and the model limited to deci-
sion support data types (AUC¼ 0.94) that would be available
in near real-time during the ED visit. Decision support data
types included chief complaints, medications prescribed dur-
ing the visit, vital signs, laboratory results; excluded data
types were primary and secondary ICD codes (billing codes)
and CPT codes since they were entered following the visit.
The model based on decision support data types achieved
88% sensitivity, 89% specificity, and 89% positive predictive
value.

Sensitivity analyses

Since several of the top predictors were “obvious” labels for a
drug overdose (ie, chief complaint¼drug overdose), we exam-
ined how strongly model predictions for opioid overdose

RandomForest ROC by data type
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Figure 1. ROC curves by predictor category for RF models (other model types were similar). The primary diagnosis and chief complaint were the most

important contributors to model performance.
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depended on these predictors, though we also noted that pre-
vious published phenotypes appropriately included them for
the stated purpose of identifying an OOD in EHR data.3,4 We
compared model results when 3 key predictors were all
excluded: chief complaint of drug overdose, primary diagno-
sis code T401X1A (poisoning by heroin) and antidotes medi-
cation class. Each of these was among the top 5 predictors for
each model design (Table 3 and Tables S1 and S2). For the
chief complaint of drug overdose, 471 (75.8%) of true OOD
cases and 83 (7.6%) of non-OOD cases had this complaint;
out of 554 cases with this complaint, 83 (15%) were not true
OODs. For the T401XA ICD-10 code, 313 (50.4%) of true
OOD cases and 10 (0.9%) of non-OOD cases had this code;
out of 323 cases with this code, 10 (3.1%) were not true
OODs. For the “antidotes” medication class, 173 (27.9%) of
true OOD cases and 19 (1.7%) of non-OD cases included this
class; out of 192 cases with this class, 19 (9.9%) were not
true OODs. Table S3 gives RF model results when these 3 fea-
tures were excluded; model performance was not substan-
tially affected; AUC dropped from 0.98 to 0.96, sensitivity
from 0.94 to 0.92, specificity dropped from 0.93 to 0.88, and
positive predictive value from 0.89 to 0.81.

The Supplementary Material also include a description of
several subgroup analyses in which patients were excluded if
they had some (or any) of these “obvious” overdose labels in
order to better identify what other predictors were important
in this group. In the subgroup that excluded patients with the
top-5 most important “obvious” labels, the top-10 most

important predictors from the RF model included 4 vital
signs, 3 ICD codes related to suicide, poisoning, or place of
occurrence, and 3 diagnosis codes directly related to OOD.
We then examined the most limiting subgroup without any
ICD-9 or -10 primary or secondary diagnosis directly related
to an OOD, and found that only 0.5% of this group had an
OOD. Thus, nearly all OOD cases had at least one ICD code
related to an OOD, and it was not feasible to train and vali-
date a predictive model using this subgroup.

Next, we checked whether our results were biased by multi-
ple ED visits per patient, since the machine learning and
penalized regression methods applied here did not account for
multiple ED visits per patient (13% of our patients had more
than one ED visit and 11% of those with an OOD had multi-
ple visits). We created a subset of the full dataset in which
each patient had only one visit by randomly selecting one row
from each multiple-visit patient. Results from the RF model
are shown in Table S2; overall AUC was unchanged, though
specificity dropped slightly from 0.93 to 0.92 and positive
predictive value fell from 0.89 to 0.86.

Finally, we checked whether knowledge of a previous ED
visit involving an OOD would be important if added to the
original RF model, which relied only on current ED visit EHR
data. In Table S3, we see that AUC was unchanged, and sensi-
tivity increased only slightly from 0.94 to 0.95. Table S4 pro-
vides a comparison between the original RF model and the
new model that included the “previous OOD” variable; the
new variable ranked only 15th in importance.
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Figure 2. Diagnostic performance by EHR data type in RF models. Primary diagnosis and medication class were the EHR data types with greatest

sensitivity. For specificity, chief complaint, primary diagnosis, and vital signs were the top performers.
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Discussion

We sought to develop an improved phenotype for identifying
an OOD in EHR data to boost the effectiveness of epidemio-
logical surveillance efforts and to assist in healthcare manage-
ment strategies, such as dispensation of naloxone kits after
emergency department care. Green et al4 had earlier developed
an OOD phenotype based only on ICD-9 codes and reported
sensitivity of 97.2%, specificity 84.6%, and PPV 87.4% on
validation data. By expanding the data types to include chief
complaints, primary, and secondary diagnoses using both
ICD-CM-9 and -10 codes, medication classes, vital signs, CPT
codes, and laboratory results, we were able to boost overall
prediction performance: our machine learning and penalized
regression models achieved sensitivity between 94% and 97%,
specificity between 93% and 96%, positive predictive value
between 89% and 93%, with 98% AUC for each model based
on validation data. None of the 3 models (RF, XGBoost, and
ENET) were distinctly superior to the others in prediction per-
formance. We also assessed which data types were largest con-
tributors to diagnostic performance, and found that the
primary diagnosis ICD codes, coupled with the chief com-
plaint (selected from a pull-down menu in our EHR system)
were most important based on overall AUC, and the other
data types may not be needed in many instances to achieve

satisfactory performance. Related to this, we also found that
nearly every OOD case had at least one ICD code directly
related to OOD. This more “portable” model based on pri-
mary diagnosis and chief complaint would be far easier to
implement in a new system compared with the full model.
However, as shown in Figure 2, if specificity is important, then
other data types such as vital signs may be useful (respiration
rate, pulse rate, blood pressure). Incorporation of medication
therapeutic class may help to boost sensitivity. We also dem-
onstrated that our phenotype could be a useful input for deci-
sion support systems similar to one we previously described5

since prediction performance remained fairly robust when lim-
ited to data types available in near real-time (chief complaints,
medications prescribed during the visit, vital signs, laboratory
results). Compared to the full model (RF), sensitivity declined
from 92% to 88%, specificity declined from 95% to 89%,
and positive predictive value declined from 91% to 89%.
Finally, we ran multiple sensitivity checks that demonstrated
our phenotype was robust to several concerns, particularly
potential bias from patients with multiple ED visits.

Limitations

This was a single site study based on a population within a
limited geographic region and was based on data extracted
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Figure 3. ROC curves based on the top 2 most important predictor types (RF). ROC curve for “top 2” (dark blue) shows only slightly degraded prediction

performance compared to the full model with all predictor types (gold). Exporting this smaller model to other healthcare data systems would be less

complex than the full model (which also includes medications, secondary diagnoses, CPT codes, labs, and vital signs).
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from a single EHR data system. Specific data types such as
“Medication Therapeutic Class” may not be available in
other systems, so tailored phenotype development may be
required in other settings. Additional work is needed to deter-
mine if this phenotype is generalizable to other populations,
and to determine if the models we developed here are
portable to other EHR systems. Further, our models did not
incorporate clinical text notes. Natural language processing
methods could potentially boost predictive performance even
further.

Conclusion

To our knowledge, our work provides an important
update in methods for identifying OODs in EHR data
with e-phenotypes that could be used both in retrospective
empirical applications and in clinical decision support sys-
tems. We showed that incorporating new EHR data types
can lead to substantial improvement in overall prediction
performance.
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