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Physiatry is a medical specialty focused on improving functional outcomes in patients

with a variety of medical conditions that affect the brain, spinal cord, peripheral nerves,

muscles, bones, joints, ligaments, and tendons. Social determinants of health (SDH) play

a key role in determining therapeutic process and patient functional outcomes. Big data

and precision medicine have been used in other fields and to some extent in physiatry

to predict patient outcomes, however many challenges remain. The interplay between

SDH and physiatry outcomes is highly variable depending on different phases of care,

and more favorable patient profiles in acute care may be less favorable in the outpatient

setting. Furthermore, SDH influence which treatments or interventional procedures are

accessible to the patient and thus determine outcomes. This opinion paper describes

utility of existing datasets in combination with novel data such as movement, gait

patterning and patient perceived outcomes could be analyzed with artificial intelligence

methods to determine the best treatment plan for individual patients in order to achieve

maximal functional capacity.

Keywords: big data, physical function, outcomes, physiatry, physical medicine and rehabilitation, social

determinants of health

INTRODUCTION

Physical medicine and rehabilitation, or physiatry, is a specialty that treats medical conditions
affecting the brain, spinal cord, peripheral nerves, joints, muscle, bone, tendons and ligaments. The
main treatment goal of physiatry is to maximize function and independent living. Physiatry care
spans the entire continuum of health care from consultation in the acute care hospital to post-acute
inpatient rehabilitation, home health, outpatient, and community re-integration. Patients move
through these levels of care as they gain functional independence or have a need for ongoing care
(Figure 1). Patients enter the healthcare system at different “starting points” in the care spectrum.
At each phase of care and transition, physiatrists coordinate patient care andmake critical decisions
regarding rehabilitation needs based on medical status and functional progress. This decision-
making is made more complex by the wide diversity of patient types, socioeconomic backgrounds,
medical conditions, injury complexity, and patient-family perception of needs.
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FIGURE 1 | Overview of possible patient pathways through the spectrum of physiatric care and variation of medical data sources and SDH captured and stored

across rehabilitation settings.

Social determinants of health (SDH) are various social and
economic factors, including education, healthcare access, and
community support, which can impact health status and health
outcomes (1). SDH guide resource allocation, discharge planning,
access to outpatient rehabilitation services and other therapeutic
interventions and progress assessment. However, despite their
potential impact, SDH data are notoriously poorly collected and
coded in the electronic health record (EHR) (2) which makes
assessing their impact post-hoc challenging. Furthermore, specific
SDH can contribute to disparities in outcomes among patient
subgroups (3, 4). For example, SDH, including educational
attainment, housing and living environment, and social support,
influence rehabilitation outcomes with various post-acute
conditions such as stroke (5–14), spinal cord injury (SCI) (15, 16),
traumatic brain injury (TBI) (17–21), amputation (22–24), and
chronic conditions such as osteoarthritis (25), chronic pain (26),
and cardiopulmonary disease (27).

Due to wide availability of therapies and interventions,
it is challenging for physiatrists to determine which patient
subgroups will achieve the best outcomes. This challenge may
be met through exploration of big data and artificial intelligence
techniques. Presently, machine learning and artificial intelligence
are not commonly used in this field to predict outcomes, but
should be. We propose a critical reappraisal of data collection
methods and development of a “biopsychosocial model” (28)
that includes SDH and physical functional measures. In this
opinion and perspective paper, we present: (1) SDH driving

functional outcomes; (2) available big datasets relevant to
physiatry and possible artificial intelligence application; and (3)
new measurement and analysis methods that could improve
care pathway mapping and functional outcomes in physiatry.
The search terms “social determinants of health,” “big data,”
“electronic health record,” “physiatry,” “rehabilitation,” “physical
medicine and rehabilitation” were used to identify relevant
articles discussed herein. All relevant articles were reviewed and
representative articles that included the main patient populations
treated in physiatry are presented next.

SOCIAL DETERMINANTS OF HEALTH ON
PHYSIATRY CARE PATHWAYS

SDH are vital to collaborative short and long-term goal
setting with the patient and family, with establishing home
safety parameters, setting expectations for rate and type of
functional gains, and reintegration into social-vocational roles.
In the outpatient setting, SDH affects symptom progression,
mental health, social functioning and access to the amount
or type of services obtained for a given diagnosis (29).
Commonly measured SDH each care setting are summarized in
Supplementary Table 1.

Acute Care Setting
In acute care, SDH are reviewed that could impact referral
decisions and admissions into post-acute care. The decision to
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refer is described as “subjective” (30), yet referral of patients to the
appropriate level of care ensures equitable access (31). Limiting
or delaying access to services after severe injuries such as stroke
or TBI can worsen functional disability and related outcomes27

and contributes to health disparities. For many conditions, early
intensive rehabilitation can optimize functionality and re-engage
patients back into life. SDH that affect referral to post-acute
services include gender, race (29, 32), age, payor source (32), place
of living (community alone, community with others, nursing
home) (30), social support or living status, and geographic region
(23). For medically-complex conditions, such as dysvascular
amputation, inpatient rehabilitation referrals occur more often
when the patient is married, has Medicaid and lives in a
city; older, unmarried patients with history of nursing home
residence are more often referred to skilled nursing facilities
(SNF) (23). Patients with knee or hip arthroplasty may enter the
rehabilitation pathway in post-acute care or outpatient settings
depending on SDH, including age, gender and availability of
caregiver at home. Younger patients and those with more family
support are commonly referred to less intensive care settings
(33). Among patients with hip fracture or joint replacement,
SNF placement was more common in those with no insurance,
Medicaid, and those who were Hispanic or black. SNFs are
associated with less rigorous rehabilitation compared to an
inpatient rehabilitation hospital (34, 35). Thus, a key transition
at which functional outcomes is impacted is discharge to the
next setting.

Post-acute Care Setting
The post-acute care setting shapes functional and clinical
outcomes by rehabilitation prescription (type and volume of
therapies). Inpatient rehabilitation hospitals are required to
provide physician management at least 3 days per week, 24 h
nursing care and at least 3 h of intensive rehabilitation therapy
five times a week. Differences exist in the delivery of occupational,
physical and speech-language therapy among post-acute settings
for treatment of the same diagnosis (36). Gains in mobility
and self-care are frequently better after inpatient rehabilitation
compared to SNF (36, 37). Unfavorable outcomes in post-acute
settings include long rehabilitation hospital stays, slow trajectory
to achieve functional milestones (mobility, various activities),
small functional gains, discharge to long-term care and acute care
readmission. In general, worse outcomes occur with advanced
age (15, 38–40), non-white race (19, 41), insurance type (42),
less family support or living alone (23, 32, 40). Older patients are
less able to engage in intensive rehabilitation therapies for SCI or
hip fracture (3, 15). Some SDH, such as gender, have differential
effects on rehabilitation outcomes. Specifically, female gender
is associated with higher odds of discharge to home (43) and
better supervision-level only status for more functional activities
than men after stroke by discharge (10, 43, 44), but females
demonstrate lower efficiency of functional improvement during
rehabilitation than males after knee arthroplasty (45).

Readmission to acute care is differentially affected by SDH in
different settings. For patients with knee arthroplasty receiving
care in an inpatient rehabilitation hospital, advanced age and
non-white race increased the odds for 90-day readmission (35).

However, age, gender, race, marital status and living arrangement
did not predict hospital readmissions for patients in a SNF, but
medical conditions such as congestive heart failure did (46).
Other evidence shows that patients with SCI are more likely to be
readmitted multiple times if unemployed, female, have Medicaid
(16, 47) or if rehabilitation was provided in a SNF (48). SDH in
the context of the diagnoses and rehabilitation exposure will be
important in future analytic methods for outcome prediction.

Reintegration Back Home
Successful community reengagement includes social, leisure,
instrumental, vocational, school or volunteer participation.
For some diagnoses like stroke, reengagement in community
activities and self-care is best predicted by a supportive living
situation (49, 50). In patients with TBI, community reintegration
is complex, and strength of associations between SDH and
outcomes vary widely. Scoping reviews found that white
race, higher education, employment, level of disability and
mood/affect contribute to reintegration (51). Conversely, poor
housing is a risk factor for moderate-to-severe disability after
hospital discharge for stroke (52). SDH are critical in the success
of personal and societal engagement over the long-term.

Outpatient Setting
Common musculoskeletal conditions, such as arthritis and
chronic back pain, disproportionately affect people who are non-
white (black, Hispanic), older, have less than a high school
level of education, low annual income, single, unemployed,
and/or living in inner cities or rural areas (53–55). Job positions
requiring more craft skills than managerial-professional skills
are strongly related to back pain (56). Prospective evidence
shows that pain symptom severity and disability are worse
over time among non-white, less-educated individuals (26, 56,
57) and those with less social support (24). Neighborhood
location and resources may influence effectiveness of long-
term care for people in different geographical areas. For
example, people with knee osteoarthritis who live in safe
areas with better social cohesion and have resources for
participation in physical activity have better mental health
(25), which may improve health outcomes overall. In a mixed
sample of individuals with stroke, cardiopulmonary disease and
arthritis, social identification (social group membership in the
community) fostered feelings of self-efficacy and confidence,
which reduced disability (27). Our understanding of SDH
effects on functional outcomes across all settings could be
improved with the study of additional determinants related
to rehabilitation access, quality and effectiveness. Additional
determinants required to fully understand functional outcome
trajectories are in Supplementary Table 1.

LEVERAGING BIG DATA AND EXPANDING
MACHINE LEARNING IN PHYSIATRY

An exciting opportunity to improve prediction of functional
improvement exists through the use of artificial intelligence.
Based on existing evidence and state of the science, various
machine learning algorithms already helped create predictive
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equations for standard functional measures after inpatient
rehabilitation for stroke: Functional Independence Measure
(FIM), 10-m walk test, 6-min walk test and Berg Balance Scale
(58). Moreover, machine-learning modeling predicted 30-day
hospital readmissions after discharge to post-acute care, using
patient SDH and other characteristics (59).

Existing Datasets
Current datasets used in physiatry contain a mixture of
institutional data obtained by EHR extraction. Specific
registries and administrative datasets each have advantages
and disadvantages, described Supplementary Table 2. Often,
breadth, detail and consistency of data are sacrificed. Outcomes
in PM&R are focused on functional outcomes rather than
survival, and tracking and recording these data remains a major
challenge to expanding datasets.

Many physiatry-specific datasets are focused on specific
conditions, such as stroke or osteoarthritis, and contain limited
SDHdata (Supplementary Table 3). One of themore generalized
datasets is the Uniform Data System for Medical Rehabilitation
which has existed for almost 30 years and is used by
approximately 70% of inpatient rehabilitation facilities in the
U.S. and contains FIM data before, during and after completed
rehabilitation (60). Similarly, the Model Systems for Burn, TBI
and SCI have been in use over 20 years, and gather social,
psychologic, functional data and patient outcomes (61). More
recently, datasets are being developed which examine patient-
reported outcomes for benchmarking Medicare payments. These
include the American Academy of Physical Medicine and
Rehabilitation registries (for low back pain, ischemic stroke),
and the American Spine Registry created by the American
Association of Neurologic Surgeons and American Academy
of Orthopedic Surgeons (62, 63). SDH tend to be limited to
age, gender, race/ethnicity, insurance type, housing situation
and discharge location. This highlights the need to expand
data collection to create better predictive models. Non-specific
datasets (Supplementary Table 3) typically contain the “easy-
to-collect” SDH like age, gender, race/ethnicity, insurance type,
living situation (housing type, people in household), discharge
location and readmissions. Functional status is often assessed by
proxy for where the patient was discharged, and readmission to
a hospital or another rehabilitation facility (64). Unfortunately,
the physical/occupational therapy or rehabilitation type received,
and functional performance are generally not present, as seen in
the Supplementary Tables 2, 3.

Extraction of SDH, Rehabilitation
Components and Key Words
Often, research does not present the rehabilitation elements or
different proportions of time spent in specific activities like
gait retraining, patient education or activities of daily living
(65). The use of large datasets with detailed information about
therapeutic activities and outcomes including SDH, functional
assessment scores, and patient-reported outcomemeasures could
improve treatment precision and optimize patient success.
Natural language processing (NLP), languagemodeling and word
embedding techniques could be used on provider notes to find

items from patient interactions or audio files that are related
to SDH and functionality (66). For example, NLP can be used
to identify which patients are more likely to miss therapy,
or functional recovery time could be predicted for resource
allocation and treatment planning (67), as well as identify SDH
impact on functional progress among physiatric patients.

Non-linear Modeling of Functional Change
Functional recovery in physiatry is rarely a linear process.
Patients initiating care at lower functional levels receive more
treatment, andmore treatment is associated with longer recovery,
likely because treatment was resourced according to need (68).
This can be addressed by using non-linear modeling using
supervised techniques such as non-linear regression, decision
trees, non-linear support vector machines and unsupervised
techniques like clustering and artificial neural networks (69).
For example, non-linear modeling was applied to create a non-
linear risk score for stroke which performed better than the
Framingham Stroke Risk Score, and we postulate that this
approach would also be successful in predicting functional
outcomes following stroke or other diseases in the early or later
recovery stages (70, 71). Furthermore, the effects of SDH on
functional outcomes in physiatry is unlikely to be linear and
their inclusion could have protective effects against health plan
underpayment for treatment in high-risk vulnerable populations
(72). In our view, non-linear modeling methods would help
the field better establish which SDH impact which aspects of
functionality during each stage of rehabilitation from acute to
long-term. These techniques could immediately and positively
change how treatment is applied to different patient diagnoses
depending on the acuity of the condition. Figure 2 provides a
summary of these novel techniques.

PROPOSED NOVEL MEASUREMENT
APPROACHES 194

Several challenges exist with interpretation of functional
outcomes in physiatry. First, the level of functional impairment
dictates the type and amount physiatry services provided and
the long-term outcomes independent from SDH. Second, the
health status (defined as comorbid health conditions, personal,
social and environmental factors) preceding hospital admission
or outpatient visit impacts rehabilitation outcomes. Physical
function and mobility are embedded in many health measures,
from post-acute care and surgical outcomes, to chronic frailty
and disability; these are represented as a domain of human
activity in the International Classification of Functioning,
Disability, and Health (73). Yet, mobility and other functional
activities remain under-studied, and commonly-used medical
terminologies do not reflect functional status in the EHR. Health
status impacts FIM scores, is linked to SDH and can be used
for clinical decision-making or predicting functional outcomes.
For example, gender-related differences exist in the health status
factors that result in worse functional status after TBI for men
(dementia, epilepsy, chronic cardiovascular pathology, mental
health disorders) (74). Third, changes in SDH over time are
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FIGURE 2 | Proposed functional and performance metrics and processes to improve prediction of functional trajectories in patients with physiatric diagnoses.

SDH, Social determinants of health; AI, Artificial intelligence.

rarely accounted for in physiatry research, a critical flaw that
has been a barrier to understanding changes in function with
different treatment approaches. Thus, linking SDH longitudinally
to patient data and function is the next essential step in advancing
treatment precision.

Approach 1. Establishing Functional Level
and Health Status Prior to Disease
Physiatrists should have data regarding the patient’s general
health status and functional level prior to disease onset and
be able to use these data to predict the extent of the patient’s
potential for recovery. These data would ideally be obtained
prior to the disease, possibly at prior primary care physician
visits or collected data from wearable technology such as FitBit R©.
Less optimal methods would be surveying the patient and/or
their family and friends regarding their estimation of patient
functional capacity.

Approach 2. Longitudinal Capture of SDH
and Physical Function
The level of function at the start of rehabilitation coupled with
health status and SDH, shape the trajectory and time-scale
of recovery (58, 68). Supportive evidence includes widening
disparities in FIM scores after stroke among white, black
and Hispanic patients from rehabilitation to 12 months-
post discharge; these different recovery patterns are strongly
influenced by age (75). Also, there is population shifting
among subgroups of patients undergoing physiatric treatment.
Compared to years prior, individuals with non-vascular lower
limb amputation today are more cognitively intact, but less
physically functional and less able to afford prostheses—all of

which can impact functional and clinical outcomes independent
of other treatments provided (76). Longitudinal capture of
SDH and physical function metrics will dramatically improve
interpretation of treatment efficacy, disability fluctuation
patterns, hospital readmissions, morbidity risk and mortality
over time.

Approach 3. Capturing Movement and Gait
Patterns in the EHR
Daily activity metrics that reflect community ambulation and
physical activity patterns could be clinically useful to determine
real-life functioning in the home and community (77). These
metrics could include distance walked, daily step count and
intensity of the steps taken; higher intensities are related to lower
risk for major mobility disability (78) and predict independent
living (79). Commercially-available triaxial accelerometers that
produce raw acceleration output (Actigraph, Axivity, GeneActiv)
can be used to determine average acceleration, intensity gradient
or acceleration above which most active 30min are captured.
These raw data could be uploaded into the EHR on personal
medical portals at specific follow-up intervals from the home
or clinic.

Movement patterns produced during execution of functional
tests provide insight on neuromotor strategies across a diverse
range of patients. Gait metrics could be quickly extracted from
2D trajectories of body poses using single camera videos from
the sagittal view (computer models available and freely shared)
(80). Clinically-meaningful metrics could include gait speed,
cadence, gait deviation index and knee flexion. Collection of gait
metrics over time as part of routine care, coupled with SDH and
clinical measures, would provide a complete picture of the patient
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experience and success with treatment. For example, lower gait
speed was previously associated with age, literacy, and blue collar
occupation (81).

Approach 4. Perceived Functional
Outcomes and Self Efficacy
Inclusion of measures of perception of physical function and
self-efficacy would inform how much functional limitation
is modified by thoughts and feelings. Higher self-efficacy
(82) directly relates to better community reintegration (83),
functionality (24, 82), and independence in conditions such as
amputation and osteoarthritis. Patient-perceived function and
self-efficacy could be measured through traditional methods such
as survey. We propose a new approach of capturing patient
experiences through audio recording analysis. We envision a
patient portal (accessible through phone or computer) in which
patients could record changes in symptoms, pain and functional
ability at specific time points after initiation of treatment or
follow-up using standardized prompt questions from validated
surveys or a diagnosis-specific question set. These audio files
could be uploaded as part of the EHR. Additional free talking
could supplement standardized responses and the language
analyzed for key words that represent changes in well-being that
may not otherwise be captured in EHR. These could include
state of emotional well-being (such as, “feeling depressed,”
“sad”), SDH (including “lost my job,” “retired,” “moved to
new area,” “taking care of my husband,” “got married”) and
physical function (examples could include “my knee pain is
worse,” can’t drive anymore’). These methods could improve
understanding of functional fluctuations over time in different
patient subgroups.

MOVING FORWARD

As we move toward precision medicine, physiatry continues to
face unique challenges such as insufficient datasets, difficulty with
data access-sharing and lack of SDH and functional outcomes.

Physiatry is uniquely positioned to: (1) implement new forms

of data collection and integration such as movement and gait
patterning, and (2) improve collection of SDH and patient-

reported outcomes focusing on function. From a health system-
wide perspective, we advocate for a consistent and standardized

collection of SDH, health status and functional measures over
time for diagnoses commonly treated in physiatry. Sources
could include patient EHR, surveys, claims data, smart phone
applications and wearable devices. Unique sources of data could
include subcategories of race, “area deprivation scores” from the
Neighborhood Atlas (84), and census tract data. Using artificial
intelligence with the sources proposed here could help establish
optimal treatment pathways for different patient subgroups,
which in turn could improve preparation at each phase of
rehabilitation care and treatment precision.
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