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Abstract

Somatosensory evoked fields (SEFs) to electrical stimulation on the right and left sides of

the lower lip were measured using magnetoencephalography and compared in the bilateral

hemispheres of 31 healthy normal young and 29 healthy normal elderly subjects to evaluate

age-related change in lip somatosensation. The initial peak of the response around 13 ms,

designated as N13m, and the second peak of the response, designated as P21m, were

investigated. The N13m response, which was detected in 22 of 62 hemispheres in young

adults and 37 of 58 hemispheres in elderly adults, showed significantly prolonged latency

and increased equivalent current dipole (ECD) moment in the elderly adults. The P21m

response, which was detected in 56 of 62 hemispheres in young adults and in 52 of 58 hemi-

spheres in elderly adults, showed longer peak latency in the elderly adults. No significant dif-

ference was found in the ECD moment for P21m, which suggests that aging affected the

SEFs of the lip somatosensation, but the effects of aging on N13m and P21m differed. Pro-

longed latency and increased ECD moment of N13m might result from decreased peripheral

conduction and increased cortical excitation system associated with aging. Therefore, the

initial response component might be an objective parameter for investigating change in lip

function with age.

Introduction

Lip somatosensation is extremely important for daily life because of the involvement in stoma-

tognathic functions, such as swallowing, speaking, and feeding, as reflected in the large lip

representation in the model of somatotopic functional organization of the primary somatosen-

sory cortex (S1) called the homunculus [1]. The lower lip is innervated by the inferior alveolar

nerve. Inferior alveolar nerve injuries sometimes occur after dental treatment and patients
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may lose sensation in the affected areas. Such loss of lip somatosensation can cause dysfunc-

tion of speech, mastication, and swallowing [2]. Therefore, lip somatosensation and function

are thought to be interrelated to a considerable degree. In addition, decreased lip somatosensa-

tion with aging may cause dysphagia and speech disorder [3, 4]. These adverse events are

important issues clinically. In particular, evaluation of age-related change in lip somatosensa-

tion is important to predict functional changes of the oral region.

Lip somatosensation is generally evaluated using psychophysical methods such as the two

point discriminator and von Frey filaments [5, 6]. Various studies of age-related changes in lip

somatosensation have revealed that aging decreases sensory function [3, 7, 8]. However, these

methods require the cooperation of the subject and depend on subjective interpretation. Fur-

thermore, no diagnostic index of functional disorder of the oral region during aging has been

established.

Functional brain imaging techniques, especially magnetoencephalography (MEG), a non-

invasive brain imaging technique, can detect the weak magnetic fields caused by neural activ-

ity. Such magnetic fields are not distorted by the scalp structure. MEG has high temporal reso-

lution similar to electroencephalography, but MEG has higher spatial resolution. MEG

detection of somatosensory evoked fields (SEFs) caused by stimulation of the median nerve is

well established in clinical use.

Lip somatosensation has been investigated using SEFs for lips by several research groups,

but only in young subjects [9–19]. No study has evaluated age-related changes in lip somato-

sensation using SEFs or other functional brain imaging techniques in elderly subjects. Age-

related changes have been studied using various functional brain imaging techniques with

median nerve stimulation [20–26]. These studies identified prolonged latency and increased

amplitude in elderly subjects. In particular, MEG detection of the SEFs for median nerve stim-

ulation showed prolonged latency and increased amplitude were characteristic of the initial

response in elderly subjects [27–29].

The initial N20m response of the median nerve is considered to be a glutamate-dependent

excitatory component [30–32], and the first component of the lip response is considered to be

analogous based on the orientation of the dipole [13]. The second P35m response of the

median nerve is absent in infants with immature inhibitory gamma-aminobutyric acid

(GABA)-dependent component [30, 33, 34], and in patients with Angelman’s syndrome, a dis-

order of GABAergic-related genetic involvement [35]. Consequently, the P35m is considered

to be a post-excitatory inhibitory GABA-dependent component [30–32]. Similarly, the second

component of the lip response is considered to be analogous based on the orientation of the

dipole [11, 13, 17]. Therefore, we hypothesized that the first component of the lip response is

glutamate-dependent excitatory, and the second component is post-excitatory inhibitory

GABA-dependent.

Investigation of age-related change using SEFs for median nerve stimulation showed pro-

longed latency and increased amplitude of the N20m [27–29], and either a large equivalent

current dipole (ECD) moment [29] or no effect [28] on the P35m in elderly people. Prolonged

latency in elderly people can be explained by decreased peripheral conduction velocity in the

spinal cord [20, 36, 37]. In addition, reduced GABAergic inhibition and enhanced glutamater-

gic excitation have been reported in elderly people [38–42]. Furthermore, the first component

of the SEF showed larger response in patients with mild cognitive impairment than in normal

elderly subjects, which can represent a diagnosis index for functional change [43]. Therefore,

we hypothesized that the first component of the SEF response to lip stimulation would show

prolonged latency and increased moment and the second component would show prolonged

latency and decreased moment in elderly subjects.

Age-related change in lip somatosensation
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To confirm this hypothesis, the present study investigated the location and age-related

change in the first and second components of the SEF responses to lower lip stimulation using

MEG.

Subjects and methods

This article complies with the Strengthening the Reporting of Observational Studies in Epide-

miology (STROBE) guidelines for reporting findings.

This study examined 62 hemispheres of 31 right-handed healthy normal young adults (YA)

(22 males and 9 females; age 20–27 years, mean 22.5 years) and 58 hemispheres of 29 right-

handed healthy normal elderly adults (EA) (17 males and 12 females; age 63–76 years, mean

71.0 years). No subject had a history of neurological disease. Written informed consent was

obtained from all participants. This study protocol was approved by the ethical committee of

the Tohoku University Graduate School of Dentistry (protocol number: 23–20) in accordance

with the Declaration of Helsinki.

Electrical stimulation was administered to the right and left sides of the lower lip of each

subjectsubjects using a handmade clip with a silver-ball electrode (Unique Medical Co., Ltd.,

Tokyo, Japan) attached to the surface of the mucosa facing the canines (Fig 1). The electrical

stimuli consisted of constant current biphasic pulses with duration of 0.3 ms delivered at 0.7

Hz. The sensory threshold was determined by the psychophysical method. The test was con-

ducted several times with ascending and descending series of stimulus, and the mean of the

detected thresholds was considered as the sensory threshold. The stimulus intensity was below

the pain threshold. No participant reported feeling any pain.

The SEF signals were measured using a whole-head 200-channel MEG system (PQA160C;

Ricoh Co., Ltd., Tokyo, Japan) in a magnetically shielded room. The subjects lay supine, with

the head location determined by the positions of five fiduciary markers consisting of induction

coils placed at known locations on the scalp. The head shape and coil positions were estab-

lished using a three-dimensional digitizer (FastSCAN Cobra; Polhemus, Inc., Colchester, VT)

based on three-dimensional magnetic resonance (MR) images obtained for all subjects using a

3T MR system (Achieva; Philips Healthcare, Best, the Netherlands). The MEG signals were

recorded from 50 ms before to 300 ms after the trigger point and were filtered from 0.5 to 1000

Hz, and digitized at 2000 Hz. Data for about 400 stimuli were averaged.

A previous study designated the first component of the response as N15m, observed as a

contralateral initial peak with latency of around 15 ms and anterior dipole orientation [12],

but used a different MEG system (Neuromag Vector View; Elekta AB, Stockholm, Sweden) to

that in our study. The filter in that system delayed the latency by about 2 ms. Therefore, in the

present study, the first component of the response was designated as N13m. The second com-

ponent of the response was designated as P21m, a contralateral second peak with latency of

around 20–25 ms with posterior dipole orientation [17]. Measurements of these N13m and

P21m peaks were used for further analysis.

The SEFs were modeled as ECDs. The ECDs were used to estimate the location and

moment of the source, and were superimposed on the MR images. The ECD was calculated

using analysis software (Meglaboratory; Ricoh Co., Ltd.) based on Sarvas law [44] which is a

method of estimating the sources of magnetic signals in a spherical conductor. All ECDs were

located on the central sulcus. Goodness-of-fit greater than 70% was used for additional

analyses.

The latency and single ECD moments for N13m and P21m were compared between the YA

group and EA group. Additionally, the stimulus intensity and interpeak latency were com-

pared by unpaired Student’s t-tests, and the detection rate was compared by chi-square test.

Age-related change in lip somatosensation
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Fig 1. Silver ball electrodes. (A) Handmade stimulator (silver ball electrode embedded in the handmade clip) and (B) application of the

electrode to the left side of the lip.

https://doi.org/10.1371/journal.pone.0179323.g001
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For multiple comparisons, the false discovery rate control test was applied to the p-values

obtained from the Student’s t-tests and chi-square tests [45, 46]. Spearman’s correlation coeffi-

cients were used to analyze the relationships between the ECD moment and the stimulus

intensity, peak latency, and peak intensity. The locations of N13m and P21m were compared

within the YA and EA groups. The Wilcoxon signed-rank test was used for statistical compari-

son. These data are expressed as the mean and standard deviation. Differences were considered

significant for p<0.05.

Early components are known to be difficult to detect because of artifacts [9–12, 14–18].

Reportedly, no inter-hemispheric difference exists in the lip region [17]. The present study

found no significant inter-hemispheric differences in ECD moment and peak latencies for

N13m and P21m in the YA and EA groups.

Results

The N13m response to lower lip stimulation was detected in 22 hemispheres of 17 YA subjects

and 37 hemispheres of 25 EA subjects. The P21m response was detected in 56 hemispheres of

29 YA subjects and 52 hemispheres of 26 EA subjects. Clear responses were detected only in

the contralateral hemisphere to the stimulus side; ECDs were estimated in the central sulcus.

The detection rates of N13m responses were significantly higher for EA subjects than for

YA subjects (YA at 35.4% vs. EA at 63.8%; t = 8.7, p = 0.0032, chi-square test). However, the

detection rates of P21m responses showed no significant difference (YA at 90.3% vs. EA at

89.7%; t = 0.014, p = 0.90).

Stimulus intensity showed no significant difference between YA and EA subjects (YA at

4.89±2.86 mA vs. EA at 4.60± 2.30 mA; t = 0.57, p = 0.56) (Table 1). Additionally, sensory

threshold showed no significant difference between YA and EA subjects (YA at 0.68±0.24 mA

vs. EA at 0.8± 0.52 mA; t = 1.6, p = 0.11).

Fig 2 presents examples of the waveforms and latencies for N13m and P21m in each group.

Significant age effects were found in the latencies for both N13m and P21m. The latency of

N13m was significantly longer for EA subjects than for YA subjects (YA at 12.5±1.05 ms vs.

EA at 15.1±1.07 ms; t = 9.0, p<0.0001). In addition, the latency of P21m was significantly lon-

ger for EA subjects than for YA subjects (YA at 20.5±2.03 ms vs. EA at 21.7±1.69 ms; t = 3.2,

p = 0.0016). Interpeak latency was significantly longer for YA subjects than for EA subjects

(YA at 8.28± 1.32 ms vs. EA at 7.08± 1.42 ms; t = 3.1, p = 0.0030)

Table 1. Mean latencies, ECD moments, stimulus intensity, and interpeak latency in each subject

group.

YA group EA group p Value

N13m

Latency (ms) 12.5±1.05 15.1±1.07 <0.0001*

ECD moment (nAm) 2.19±0.81 6.06±2.68 <0.0001*

Detection rate (%) 35.4 63.8 0.0032*

P21m

Latency (ms) 20.5±2.03 21.7±1.69 0.0016*

ECD moment (nAm) 13.3±9.06 11.4±5.73 0.19

Detection rate (%) 90.3 89.7 0.90

Stimulus intensity (mA) 4.89±2.86 4.60±2.30 0.56

Interpeak latency (ms) 8.28±1.32 7.08±1.42 0.0030*

Significant differences between subject groups.

*p<0.05.

https://doi.org/10.1371/journal.pone.0179323.t001
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Fig 3 shows isofield maps and ECD locations for N13m and P21m. ECD moments for

N13m indicated a significant age effect. The ECD moment of N13m for EA subjects was signif-

icantly larger than for YA subjects (YA at 2.19±0.81 nAm vs. EA at 6.06±2.68 nAm; t = 8.2,

p<0.0001). However, the ECD moment of P21m showed no significant difference (YA at 13.3

±9.06 nAm vs. EA at 11.4±5.73 nAm; t = 1.3, p = 0.19). The correlation between ECD moment

and stimulus of P21m for YA subjects was significant (P21m for YA: r = 0.37, p = 0.0054). No

other significant correlation was found between the ECD moment and the stimulus intensity

(N13m for YA: r = 0.17, p = 0.44; N13m for EA: r = 0.31, p = 0.069; P21m for EA: r = 0.037,

p = 0.79). Furthermore, no significant correlation was found between latency and stimulus

intensity (N13m for YA: r = 0.12, p = 0.59; N13m for EA: r = 0.18, p = 0.30; P21m for YA:

r = 0.13, p = 0.32; P21m for EA: r = -0.0054, p = 0.70).

Locations of N13m and P21m were compared within each group. The locations of N13m

were significantly different from those of P21m in the Z axis and θ for YA subjects (Z:

p = 0.0074, θ: p<0.0001) and θ for EA subjects (θ: p<0.0001) (Table 2).

Discussion

The present study tested our hypothesis that the first component of the SEF response to lip

stimulation would show prolonged latency and increased moment and the second component

would show prolonged latency and decreased moment in elderly subjects. The present MEG

Fig 2. Waveforms and latencies for N13m and P21m after right side stimulation. [1] YA subject (25

years old, male), [2] EA subject (71 years old, male). Each waveform shows 10 ms before to 35 ms after

stimulus onset. Red and blue arrows indicate peak latencies for N13m and P21m, respectively.

https://doi.org/10.1371/journal.pone.0179323.g002
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study of age-related change in lip somatosensation showed markedly prolonged latency and

increased ECD moment for N13m and prolonged latency for P21m in the EA subjects com-

pared to the YA subjects. However there was no significant difference in ECD moment for

P21m. These findings agreed with our hypothesis for the latency and moment of the first com-

ponent (N13m), and the latency for the second component (P21m). However, the finding for

the ECD moment for P21m was not consistent with the hypothesis.

Previous studies were based on analysis of the P21m or later components [9–12, 14–18]. In

the present study, the P21m was observed in almost all subjects. However, the N13m was more

Fig 3. ECD locations and moments of N13m and P21m. [1] YA subject (25 years old, male), [2] EA subject (71 years old, male). (A)

Isofield maps. (B) ECD locations. (C) ECD moment of N13m shows a larger moment in the EA subject than in the YA subject.

https://doi.org/10.1371/journal.pone.0179323.g003

Table 2. Location (XYZ) and orientation (deg) for N13m and P21m in each subject group.

YA group EA group

Left Right Left Right

N13m P21m N13m P21m N13m P21m N13m P21m

X(mm) 48.9±6.74 44.1±7.19 -47.6±7.74 -42.4±8.49 48.7±7.31 47.8±6.29 -47.8±9.47 -43.2±6.77

Y(mm) 7.96±10.4 12.1±11.0 1.70±10.4 10.5±12.3 10.1±11.2 11.4±12.2 9.30±6.73 9.45±6.33

Z(mm) 77.3±4.50* 66.9±7.13 72.1±10.6* 68.8±9.58 62.8±7.21 60.2±10.0 64.7±12.0 62.5±10.3

θ(˚) 60.1±18.9* 111±23.9 55.3±29.7* 101±16.6 64.3±18.3* 110±16.4 56.4±18.5* 119±13.0

Significant differences between N13m and P21m on the same side in each subject group

*p<0. 01

https://doi.org/10.1371/journal.pone.0179323.t002
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difficult to detect because of its low amplitude and the effects of stimulus artifacts. Specifically,

the N13m was detectable in 37 of 58 hemispheres of EA subjects, but in only 22 of 62 hemi-

spheres of YA subjects. Detection of the N13m was significantly higher in EA subjects than in

YA subjects. The amplitude of N13m was lower in YA subjects than in EA subjects. Addition-

ally, the latencies of N13m were shorter in YA subjects than in EA subjects. Therefore, the

N13m of YA subjects was more affected by artifacts. These reasons explain the fewer detections

of N13m in YA subjects.

N13m and P21m were only detected in the contralateral hemisphere to the stimulus side, as

reported previously [11, 13, 17]. However, the ECDs of the first and second components were

estimated bilaterally [4], possibly due to the use of tactile stimuli in contrast to electrical stimuli

used in other studies including the present study. Therefore, the stimulus methods might affect

such interhemispheric differences.

Prolonged latency and increased ECD moment of N13m, and prolonged latency of P21m

were observed in the EA subjects, as we hypothesized. The absence of significant correlation

between ECD moment and stimulus intensity for N13m, and between the latency and stimulus

intensity for N13m and P21m showed that the changes are related to aging and not to the stim-

ulus intensity. The higher detection rate of N13m in EA subjects might be related to this

increased response.

The N13m response is considered to be an excitatory glutamate-dependent component like

the N20m response to median nerve stimulation. The N20m pathway is known to input

directly to the primary somatosensory cortex via the thalamus without the involvement of syn-

apses [47–50]. Therefore, the N13m pathway probably also inputs directly to the primary

somatosensory cortex via the thalamus without synapses, so directly reflects the decreased

peripheral conduction and enhancement of glutamatergic excitation with aging. Accordingly,

N13m may provide a parameter for measuring change with aging.

Median nerve studies have suggested that the N20m and P35m responses are generated

independently [51, 52]. Other studies also suggested that the locations of N20m and P35m are

different [53–55]. Consequently, the pathways of N20m and P35m from the peripheral to pri-

mary somatosensory cortices are likely to be different. The P35m response is known to be gen-

erated by inhibition in the deeper cortical layer [31, 32, 56, 57]. Therefore, P21m input to the

primary somatosensory cortex occurs via synapses. Long latency components are affected by

the attention and vigilance states [58, 59]. Additionally, some sources persisted after the

response of P35m [29], and the response of N20m overlaps the response of P35m [59]. There-

fore, the P21m response might be affected by the N13m response, and the attention and vigi-

lance states. Consequently, N13m might be regarded as a pure response that is not affected by

the attention or vigilance state.

Interpeak latency was shorter in the EA subjects than in the YA subjects. Therefore, the pro-

longed latency for P21m cannot be explained by only aging change of the peripheral nerves.

The greater amplitude of N13m and increased rising of the waveform result from enhance-

ment of glutamatergic excitation. In contrast, the slightly smaller amplitude of P21m and

reduced rising of the waveform result from reduction of the suppression system. The combina-

tion of these effects caused the shorter interpeak latency. This observation is thought to reflect

the different signal sources of N13m and P21m, and seems to reinforce the hypothesis that the

respective pathways and locations are different.

This study showed that the locations of N13m and P21m were significantly different as we

hypothesized. Furthermore, the correlation between ECD moment and stimulus intensity of

P21m was significant in the YA subjects. These findings support the idea that P21m is affected

by the attention and vigilance states, and the activities of other cortical regions. Consequently,

the location and the effects of aging differ between N13m and P21m.
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In conclusion, the present study detected age-related differences in lip somatosensation

using somatosensory evoked magnetic field analysis. Our findings indicate that N13m is more

useful than P21m as an objective parameter of aging change in lip somatosensation, and may

be useful for evaluating functional change.
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