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Abstract: Chelant agents are the mainstay of treatment in copper-associated hepatitis in humans,
where D-penicillamine is the chelant agent of first choice. In veterinary medicine, the use of D-
penicillamine has increased with the recent recognition of copper-associated hepatopathies that occur
in several breeds of dogs. Although the different regulatory authorities in the world (United States
Food and Drugs Administration—U.S. FDA, European Medicines Agency—EMEA, etc.) do not
approve D-penicillamine for use in dogs, it has been used to treat copper-associated hepatitis in
dogs since the 1970s, and is prescribed legally by veterinarians as an extra-label drug to treat this
disease and alleviate suffering. The present study aims to: (a) address the pharmacological features;
(b) outline the clinical scenario underlying the increased interest in D-penicillamine by overviewing
the evolution of its main therapeutic goals in humans and dogs; and finally, (c) provide a discussion
on its use and prescription in veterinary medicine from a regulatory perspective.

Keywords: D-penicillamine; humans; dog; copper-associated hepatitis; prescription

1. Introduction

Despite its name’s similarity to the widely known antibiotic penicillin, D-penicillamine
(DPA) is a byproduct of penicillin without any antibiotic properties [1]. It is a known
chelating agent, a chemical compound used to trap or remove heavy metals, such as
copper, lead, iron, and mercury, from the body; moreover, DPA also showed positive
immunomodulatory and antifibrotic capacities [2–5].

Penicillamine, also named D-b, b-dimethylcysteine, was firstly classified as a degrada-
tion product of penicillin [6], and chemically is a structural analog of cysteine, with two
methyl groups in place of the two hydrogen atoms linked to the second carbon atom of
cysteine [7]. For its structure, penicillamine shows similar properties to cysteine (Cys) and,
for this reason, it is classified as a nonproteinogenic amino acid containing a thiol group [8].
Penicillamine is also considered a trifunctional amino acid, in which an amino group and a
carboxyl group are attached to one carbon atom, and a sulfhydryl and two methyl groups
to a second (Figure 1) [7]. The three functional groups in penicillamine undergo character-
istic chemical reactions and change in their ability to participate in acid–base equilibria,
nucleophilic addition and displacement, combination with various metals, oxidation, and
free radical transformations [9]. Two are the enantiomers recognized: D and L isomers. In
particular, D isomer is the only one that can be utilized in clinical practice, although the L
isomer is characterized by excessive toxicity [1].

In humans, DPA, due to its metal chelating properties, is used to treat several dis-
eases, including Wilson’s disease [10], heavy metal intoxication [11], cystinuria [12], and
rheumatoid arthritis [13]; at the same time, DPA’s chelating ability is also used in veterinary
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medicine, and it is used in the treatment of liver disease caused by the accumulation of
abnormal storage of copper [14]. In fact, it is considered the initial treatment of choice
for most dogs with copper-associated hepatitis, including those with clinical illness and
those with moderate to severe hepatic histopathologic abnormalities [15]. Furthermore,
this veterinary medicine is also used for the long-term oral treatment of lead, or cadmium,
and mercury poisoning, or cysteine urolithiasis [16,17].
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Though DPA remains an effective drug for many dogs with copper-associated hepati-
tis, there is a limitation to its use due to scarce availability for the reason that it is marketed
only for humane use [14].

This lack of animal equivalent product results in veterinarians using this drug outside
of the authorized conditions of use, detailed in its summary of product characteristics to
treat disease and alleviate suffering [14,18–20].

Given that DPA has increased in recent years for its effectiveness in the treatment of
copper-associated hepatopathies, decreasing hepatic copper concentration and diminishing
the grade of inflammation, the authors: (a) address the pharmacological features; (b) outline
the clinical scenario underlying the increased interest on DPA, by overviewing the evolution
of its main therapeutic goals in humans and dogs; and finally, (c) provide a discussion on
its use and prescription in veterinary medicine from a regulatory perspective.

2. Absorption, Distribution, Metabolism and Excretion (ADME)

Penicillamine is absorbed rapidly from the gastrointestinal tract, with an oral bioavail-
ability between 40 and 70%. Literature studies show that its availability is significantly
reduced when taken with iron supplements, antacids, or food; in fact, peak concentrations
in blood are achieved in 1–3 h after administration [21].

In contrast to cysteine, penicillamine is quite resistant to attacks by cysteine deoldhy-
drase or L-amino acid oxidase, so it is stable in vivo. Almost all penicillamine is degraded
by the liver and its metabolites have been identified in both urine and feces [22]. Once
penicillamine is ingested, it transforms into disulfides [21,22], inorganic sulphates, N-acetyl-
D-penicillamine, and S-methyl-D-penicillamine [23].

Among metabolites, the disulfides are the most important, since they bind to albumin,
and this binding is responsible for the slow elimination of the drug from plasma [24]. It
was demonstrated that 80% of penicillamine in plasma is protein bound, whereas 6 % is
found in its free form, and the remaining metabolites account for 14 % [25]. Moreover,
s-methyl-D-penicillamine is further oxidized into sulfoxide or sulfone. Patients who are
poor sulfoxidizers have demonstrated an increased rate of immunologically mediated
toxicity from penicillamine [26]. It was suggested that penicillamine is slowly released
from deep tissues and skin [27]. Penicillamine is considered a chelating agent for lead,
copper, iron, and mercury [16,17,28].
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Moreover, penicillamine also acts as an anti-inflammatory agent [29]. It inhibits
collagen cross-linking by making it more susceptible to enzyme degradation [30]. The
antifibrotic properties reported may be useful in the treatment of animals with hepatitis,
but more data are necessary to validate this aspect.

Mechanism of Action

Structurally penicillamine is related to L-cysteine, an amino acid which is normally
present in the body. Penicillamine has a long list of biological actions and is naturally
produced by degradation of the thiazolidine ring after cleavage of the β-lactam ring in
penicillin [31]. The metal-binding ability of DPA is believed to underlie its effectiveness
in the treatment of Wilson’s disease, an inherited disorder of copper metabolism. DPA is
thought to decrease excess copper levels in Wilson’s disease by reducing Cu(II) to Cu(I) [32].
The reduction is accompanied by a change in preferred geometry from square planar to
tetrahedral, and a change in net charge, both of which are less favorable for protein binding.
Although EDTA binds copper with equal or greater affinity, it is thought to have a lower
efficacy than DPA in the treatment of Wilson’s disease due to its inability to reductively
chelate copper.

DPA has also been used for 30 years to treat rheumatoid arthritis, but its mechanism of
action remains unknown [33]. The current understanding of metalloprotease involvement
in the pathogenesis of arthritis suggests that the efficacy of DPA may be explained by the
inhibition of zinc proteases involved in remodeling the extracellular matrix. Because DPA
can chelate zinc with its thiol, amino, or carboxylate groups, it is tested for the inhibition of
three zinc proteases, matrilysin, thermolysis, and carboxypeptidase A, since these enzymes
represent the matrix metalloprotease, metalloendoprotease, and metalloexoprotease fami-
lies, respectively [31]. However, it is still not known what the mechanism of action is in
rheumatoid arthritis or in rheumatic diseases in general. There are certainly several ways
to go, i.e., Jaffe et al. [34] used their knowledge about the potential of penicillamine to split
the IgM rheumatoid factor molecule as rationale for the introduction of penicillamine in
the treatment of rheumatoid arthritis.

In certain experimental models, DPA inhibits humoral and/or cell-mediated immune
reactions, as well as particular inflammatory reactions, such as prostaglandin synthesis
modulation, lysosomal enzyme release, and oxyradical generation [35]. DPA inhibits
lysyl oxidase, which deaminates the lysine to provide polypeptide cross-links in elastic
fibers and collagen fibers [36,37]. DPA may directly bind to immature forms of collagen
and elastin, preventing formation of mature cross-links, or it may interfere with copper-
dependent enzymes responsible for these cross-linking reactions [38]. DPA inhibits the zinc
proteases involved in remodeling of the extracellular matrix [36]. It may act at the site of
inflammation by impairing fibroblast proliferation [39]. It also regulates histamine activity
by potentiating its metabolic inactivation, which may be the cause of its antipruritic effect
in patients [35].

3. Clinical Applications in Humans and Companion Animals
3.1. In Humans

The United States Food and Drugs Administration (FDA) approved penicillamine
for the treatment of several diseases, like Wilson’s disease, rheumatoid arthritis, and
cystinuria. Owing to its toxicity, penicillamine was discontinued in rheumatoid arthritis
and is confined to patients with an extreme active disorder, and who failed to respond to
an effective traditional treatment. Penicillamine also presented some off-label applications
among others, including lead poisoning [8], scleroderma [40], biliary primary cirrhosis [41],
and retinopathy of prematurity [42,43], as reported in Table 1.

An important cause of death in RA patients is secondary amyloidosis, in addition to
kidney disease; a potential use of DPA as a treatment for secondary amyloidosis has been
hypothesized in the first few years [44,45].



Antibiotics 2021, 10, 648 4 of 15

Thanks to the different modes of action proposed for DPA, such as eliminating free
radicals from oxygen or facilitating the synthesis of heme and protecting the peroxidation
of biomembranes by enhancing the action of antioxidant enzymes containing heme, DPA
has been proposed as a treatment off-label in various pathologies [46,47]. Among the
various off-label uses of DPA it has also been proposed in retinopathy of prematurity,
where it has been tolerated and has no major short-term adverse effects [43].

Much research on the utility of penicillamine as an anti-cancer agent is being gath-
ered. For example, an in vitro study on lung and oral cancer, penicillamine showed a
potent protector activity against cigarette smoke. Penicillamine has anti-aldehyde and anti-
inflammatory qualities that inhibit redox reactions between tobacco smoke and mucus [29].

Penicillamine may also play a role in treating Alzheimer’s patients due to its anti-
oxidant effects, although more studies are required [48].

The antiangiogenic properties of penicillamine are also shown, as they can inhibit
many significant growth factors (for example, vascular endothelial growth factor and
fibroblast growth factor) needing copper as a cofactor [49].

Due to its ability to bind copper, DPA has also been proposed as a potential treatment
for hepatitis; in fact, it was seen in a model of hepatitis on Long-Evans Cinnamon rats how
DPA reduced copper levels in the liver compared to animals not treated [50].

In cancer patients, higher levels of copper and oxidative stress than in healthier people
are well known [51]. The oral administration of penicillamine lowers copper and cerulo-
plasmin in those patients in the phase II clinical study on antiangiogenic involvement of
penicillamine in glioblastoma [52]. Furthermore, DPA due to its ability to act on acetalde-
hyde, implicated in the damaging mechanism of ethanol, has been used for the treatment
of ethanol-induced conditioned place preference, a behavioral disorder related to alcohol
intake [53].

Table 1. Penicillamine: therapeutic uses.

US FDA Approved References Off-Label Uses References

Rheumatoid arthritis [33] Lead poisoning [8]
Wilson disease [32] Retinopathy of prematurity [42,43]

Primary biliary cirrhosis [41]
Keloids [54]

Hemophilic synovitis [55]
Lipoid proteinosis [35]

Amyloidosis [45]
Primary sclerosing cholangitis [56]

Chronic active hepatitis [25]
Alcohol detoxification [25]
Keratosis follicularis [57]

Systemic sclerosis (SSc) [27]

3.1.1. D-Penicillamine in Wilson Disease and Metal Accumulation

DPA was proposed in 1956 as the first oral drug, and second overall drug, for the
treatment of WD, thanks to its high affinity to chelate copper not bound to ceruloplasmin
at the plasma level [58]. Penicillamine is a chelant of copper and other divalent ions, such
as cadmium, lead, mercury, and nickel [59]. Although, elevated levels of copper have
been reported in serum and synovial fluid [60] of patients with rheumatoid arthritis. After
prolonged administration of DPA to rheumatoid patients, the titre of rheumatoid factor
decreases [61]. The leading cause of chronic copper intoxication today is Wilson’s disease,
traditionally treated by chelation with DPA. In the long-term treatment of metal storage
diseases, DPA chelation therapy has played a crucial role; mercury poisoning, and lead
and copper poisoning had previously been treated with chelators, such as DPA [28]. Over
the years, new chelants have been introduced that have the same affinity, but lower toxicity
than DPA, such as meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propane
sulfonate (DMPS), capable of effectively mobilizing mercury and lead deposits in the
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urine. DMSA was more efficient than DPA in reducing tissue levels and increasing urinary
excretion of lead in mice and rats, as compared to the long-term therapeutic effects of
DPA [62]. DMSA appeared superior in that it caused clinical symptoms to exacerbate less
frequently than DPA [63].

Thanks to its copper chelating effect, DPA has also been proposed as a treatment
in patients with chronic liver disease, in which a low dose has been noted have positive
effect on preterminal Indian childhood cirrhosis, which was shown to be associated with
long-term survival [64].

Copper normally accumulates in the liver of patients with the primary biliary cir-
rhosis syndrome, and the amounts can equal or surpass those recorded in Wilson’s dis-
ease [65]. Copper will be mobilized from the body and the hepatic copper content will be
reduced with DPA and a low copper intake [66]. In the past, DPA, due to its antifibrogenic,
cupruretic, and immunosuppressive effects, has also been suggested as a potential treat-
ment for primary sclerosing cholangitis (PSC), a chronic hepatobiliary disease characterized
by diffuse inflammation and fibrosis of the leading intrahepatic and extrahepatic bile ducts
at hepatic overload of copper. Despite the high expectations, DPA has not shown positive
effects in the treatment of PSC and is, therefore, not recommended for any further studies
due to poor efficacy, accompanied by frequent serious side effects [67].

3.1.2. Neonatal Period

In the early 1970s, the scientists reviewed the role of DPA in the treatment of NHBI
(neonatal hyperbilirubinemia) [68], a new drug for most of neonatologists. The idea that
DPA might be a suitable drug to act as a copper-binding agent to control icterus neonatorum
occurred, serendipitously, while reflecting on the similarity of copper storage in Wilson’ s
disease and neonates [69]. It is well known that all neonates have elevated copper levels
in the liver and reduced plasma copper protein concentrations, ceruloplasmin, relative to
adults over age one [70].

In the premature and term babies 4–6 h after administration, the effect of a single
intravenous injection of 100 mg/kg body weight of DPA on SEBI (serum bilirubin con-
centration) can be observed. A sudden decline in SEBI occurred only in term infants with
elevated SEBI, but DPA does not affect infants under 1500 g in birth weight (suffering
from so-called accumulating NHBI by the immaturity of the glucanosyltransferase enzyme
system) or terminal infants with low SEBI. A plausible explanation for this is that DPA
inhibits bilirubin formation but does not cause any change in UDP glucanosyltransferase
activity [71].

3.1.3. Dermatological Application and Cutaneous Adverse Effects

After the examination of its cutaneous effects in Wilson’s disease patients, penicil-
lamine was first proposed as a possible therapeutic agent in systemic sclerosis (SSc) with
reduced skin collagen and general skin thinning [27]. In vitro experiments have shown
that the development of intra- and inter-molecular collagen crosslinks is interfered by
penicillamine, which contributes to the tissue aggregation of unrelated collagen molecules
which are most susceptible to proteolytic enzymes [31]. Several uncontrolled SSc studies
found that penicillamine improved the skin sclerosis condition, lowered the rate of involve-
ment of the new visceral organ and improved overall survival [8]. In a prospective study
conducted for 15 years, 69 patients with rapidly progressive SSc received penicillamine at
a dosage of 750 mg/day for at least 6 months [72]. Penicillamine treatment strengthened
defences to skin sclerosis lesion and simultaneously arrested pulmonary involvement. In
high dose penicillin therapy, however, 80% of the subsequent withdrawal occurred.

Moreover, numerous studies have demonstrated the utility of penicillamine in local-
ized scleroderma care [73].

By preventing dopachrome production, penicillamine presented a melanogenesis in-
hibition influence [74]. Although the nonpigmented melanoma cells are mostly susceptible
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to gamma radiation, it is used in vitro as a radiation sensitizer to destroy the melanoma
cells that inhibit the penicillamine [75].

Furthermore, there is evidence to show the therapeutic efficacy of penicillamine in
eosinophilic fasciitis patients (EF) [76]. EF is a rare condition with associated eosinophilia
characterized by symmetrical thickness and skin hardening, especially on the forearms
and the thorax. While corticosteroids are the first treatment line, certain patients do not
react and/or can have serious side effects on long-term treatment. Although no controlled
studies are necessary for EF patients on the effects of penicillamine, some findings indicate a
beneficial impact, including on patients that are not corticosteroid tolerant, often leading to
a total remission [77–81]. Keloids, which are symptoms of intensified collagen production,
are one of the disorders for which DPA is used as a medication [82]. Collagen cross-
linking is prevented by agents like b-amino propionitrile (BAPN) and DPA, making it more
vulnerable to enzymatic degradation [83]. Since BAPN has little effect on collagen that
has already been cross-linked, and DPA works at a separate site, the two should be used
together. In patients who are known to develop keloid scars, topical application of BAPN
and DPA can help prevent the formation of keloid scars [82]. Lipid proteinosis appears
to be a consequence of a specific overproduction of type IV collagen of the basement
membrane by epithelial or endothelial cells, and of an increased synthesis of non-collagen
glycoproteins by fibroblasts [84]. Given the ability of DPA to bind directly to immature
forms of collagen and elastin, preventing bonding or interfering with the copper-dependent
enzymes responsible for these cross-linking reactions it is considered a promising agent for
the treatment of lipoid proteinosis, especially when used in low doses [35].

3.2. In Animals

Through its immunomodulatory and antifibrotic properties, DPA has shown to be
effective in the treatment of copper hepatitis in dogs, in which it is used as a potent chelant
agent. It is administrated at a dose of 10–15 mg/kg orally twice daily [85–87].

Inherited copper-associated hepatitis in dogs is a copper storage disorder similar
to Wilson’s disease described in humans, characterized by an abnormal hepatic copper
accumulation. The disease has been identified in different breeds including the Bedlington
terrier, West Highland white terrier, Skye terrier, Dalmatian, Dobermann, and Labrador
retrievers [88–93]. The pathogenesis is partially known. In Bedlington terriers a genetic
predisposition for deletion of exon 2 of the COMMD1 gene is present, causing an extreme
accumulation of copper in the liver [94–96], while, in the other breeds, where copper
concentration is not very high as in the Bedlington terrier, it seems that environmental
factors play an important role in the pathogenesis of hepatic copper accumulation [96]. A
higher incidence is recorded in females than males, and in Labrador retriever the disease
seems to show with more clinical signs, where the continuous copper accumulation in
the liver causes hepatitis and, in the end-stage of liver disease, the onset of cirrhosis
precludes a successful treatment. Supplementation on a diet of zinc salt is used to create a
negative copper balance by blocking the copper adsorption into the enterocytes [97]. The
disease is characterized by an early phase, during which the copper is stored in the liver
without clinical signs. In the clinical phase, dogs show clinical findings related to the liver
dysfunction, such as polyuria, polydipsia, vomiting, anorexia, diarrhea, lethargy, icterus,
ascites, and convulsions.

Usually, the diagnosis was performed in this phase, representing the several-stage
of liver disease associated with fatal progression within a few months. The diagnosis of
copper hepatitis is histological on liver biopsies, necessary for managing the progression of
the disease and for monitoring the improvement post-therapy.

The liver biopsy verifies the diagnosis of copper-associated hepatitis coupled with
hepatic copper concentrations greater than 2000 mg/g [98], and with monitoring of the
clinical status (presence or absence of appetite, presence of vomiting and/or diarrhea,
degree of polydipsia, abnormal behavior, etc.), which is paramount when using DPA. It
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should be appropriate also to carry out a physical examination, especially of the liver
(palpation of its margins to evaluate the presence of enlargement, nodules, or pain).

Treatment with copper chelators like DPA is efficacious in dogs in the asymptomatic
phase, where the diagnosis is usually performed during a screening of family members.
The treatment aims to create a negative copper balance, using copper chelant as DPA,
stimulating the cupriuresis [14,99,100].

4. Adverse Effect in Humans and Animals
4.1. In Humans

Unfortunately, the beneficial effects of penicillamine may be accompanied by a variety
of undesirable side effects.

Adverse reactions for DPA leading to withdrawal included rash, nausea and vomiting,
thrombocytopenia, and proteinuria, all responding to withdrawal of the drug. In a previous
study, an incidence of adverse reactions to DPA was seen in 155 patients with rheumatoid
arthritis that was analysed and compared with their history of adverse reactions to gold.
Patients who have adverse reactions to gold are significantly more likely to develop side
effects from DPA [101].

The first oral drug for the treatment of WD was DPA [102]; in fact, its efficacy on liver
diseases has been demonstrated in several studies [103–105]. Serious adverse side effects
have been associated with treatment with DPA, linked to nephrotoxicity, bone marrow
toxicity, skin elastosis, and others, posing a huge question on the safety profile of the
latter [106,107]. Even at the pediatric level, the main treatment for WD involves the use of
copper and zinc chelators [108,109]. Due to the side effects over the years, the combined
use of different chelators, such as penicillamine and trientine, has been considered, which,
despite showing many positive effects, also has a series of toxicological effects.

In particular, it was seen how the use of copper chelators in patients who developed
neurological complications progressively required an interruption of therapy [110]. It was
also found in a previous study that approximately 10% of WD patients reported neurologi-
cal deterioration [111–113]. The mechanism underlying the neurological deterioration in
WD patients by copper chelation with DPA treatment is not very clear. One hypothesis
of this neurological worsening could be that DPA leads to a mobilization of the copper
present in the liver to the brain via the blood [114,115].

It has been seen in several clinical cases how DPA treatment was capable of de-
veloping autoimmune phenomena [116,117]. For example, in some clinical studies on
rheumatoid arthritis, WD, or cystinuria, treatment with DPA caused the development of
autoimmune diseases, symptoms that regressed following the discontinuation of treatment
with DPA [118].

DPA was able to chelate heavy metals, so may bond the gold stored in tissue for
prolonged periods after the end of treatment. Hence, some adverse reactions to DPA seen
in patients after treatment with gold may result from mobilisation of gold in the tissues.
The frequency and severity of adverse reactions can be reduced by the gradual introduction
of DPA therapy and the administration of low maintenance doses [119].

DPA haematological toxicity is close to adverse effects in experimental therapies, as
seen in reduced platelets and white blood cells, and seems to not be dose-related [120].
Despite the continuity of treatment, depressions within hematopoietic cell counts are
intermittent and usually resolved. The propensity of DPA to chelate copper and other basic
minerals or short-term cytotoxicity due to its metabolites are theoretical causes of such
temporary impact [101].

The leukocyte and platelet count, and urinary analyses for proteinuria and haematuria
must be repeated throughout the treatment period at monthly intervals and, in the first
eight weeks of therapy, these tests must be performed at weekly or biweekly intervals. A
drop in the number of leukocytes and platelets in the three subsequent counts suggests an
interruption of therapy, even if the values remain within normal limits. Proteinuria should
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be measured over 24 h. A gradually progressive increase in proteinuria or the appearance
of significant haematuria are reasons for discontinuing therapy.

The penicillamine treatment presents cutaneous manifestations very different that may
be divided into several categories, such as the effects on collagen and elastin, autoimmune
nature effects, acute sensitivity reactions, and a variety of miscellaneous side effects that
have not been included in the others categories [121].

Dermatological responses are usually the development of hives, but often macular or
popular [9]. Medicinal eruptions typically occur within 7 to 10 days of initiation, and clear
within a few days of discontinuation [9].

An early onset allergy, unless severe, responds to treatment with cyproheptadine and
temporary reduction of the dose of DPA.

Most of these lesions can be explained on the basis of an immune mechanism or a
toxic-metabolic effect on connective tissue synthesis. The concept of the interaction of a
disease entity with a specific drug and the subsequent production of a variety of adverse
effects based on dosage and duration of therapy is fascinating.

4.2. In Animals

In dogs side effects are usually referred to as gastrointestinal signs, such as vomiting,
anorexia and, diarrhea [122]. DPA administration with food is generally recommended to
avoid or reduce vomiting in dogs treated [93,122]; despite similarity to what happens in
humans, its biodisponibility with the food decrease is about 70% [122]. The occurrence of
vomiting at approximately the time of peak plasma drug concentration (1–3 h), suggests
that the onset of gastrointestinal side effects is related to blood concentration and to
stimulation of the chemoreceptor trigger zone [123]. In order to reduce the vomiting a
long-acting antiemetic could be administered one hour before DPA administration.

Other side effects reported in human medicine, are not described in dogs. In the
literature, two cases are documented with the suspicion of immunological side effects
following DPA administration. A female English springer spaniel showed ascites and
proteinuria after four months of treatment with DPA, relating to the presence of protein-
losing glomerulopathy. After the cessation of treatment, a resolution of clinical signs was
detected [122]. Another case was a West Highland white terrier with several dermatological
lesions, rapidly and totally solved after the interruption of the treatment with DPA [122].
The DPA may cause a decrease in the excretion and on the activity of pyridoxine (B6
vitamin). Pyridoxine supplementation should be considered in the long-term treatment
with penicillamine [124].

5. Prescription in Veterinary Medicine from a Regulatory Perspective

Veterinarians are often faced with cases for which approved drugs are not available
for the complete range of animal species and disease conditions encountered, or where
extra-label use may be more effective or appropriate [125].

In the present case, DPA is registered for use in humans only, but veterinarians often
prescribe it for animals as an “extra-label” (used in a manner not in accordance with
approved labeling) drug. When drugs such as this are rarely available, veterinarians are
granted the privilege of using human drugs in an off-label way.

Extra-Label Drug Use (ELU)

ELU refers to the use of a pharmaceutical product in a manner that is not consistent
with what is indicated on the label, package insert, or product monograph of any drug
product approved by a regulatory authority [126].

ELU also refers to: (i) any approved drug that is administered in a manner not
explicitly stated on the approved label regarding the indication, dosage regimen, route
(oral versus injectable) or frequency of administration, duration of treatment, target species
(i.e., dogs instead bovine), or age groups (i.e., puppies instead of adults) [127]; and (ii) any
drug approved for humans but not for the veterinary use [127].
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Therefore, when an unapproved drug is used in a manner that has never been ap-
proved, it is referred to as an off-label use.

The rationale for ELU is that the official agencies do not regulate the practice of
drugs, and that veterinarians/physicians are free to decide what they consider best for
their patients.

6. Discussion

Although the pharmaceutical industry has grown progressively over the years and
a variety of veterinary pharmaceutical agents are marked [128,129], there remains many
human drugs that are prescribed extra-label for animals when there is not an animal equiv-
alent drug product available, as in the case of DPA, in order “to avoid causing unacceptable
suffering” (art. 112 of the Regulation 2019/6/UE on Veterinary Medicinal products). In
these cases, it is recognized that ELU is necessary and appropriate. The use of the expres-
sion, in particular, to avoid causing unacceptable suffering allows the legislator to indicate that
ELU is restricted. The choice to use this chelant agent extra-label is made by the prescrib-
ing veterinarian under his/her direct personal responsibility because this use might be
associated with adverse events [130,131].

Veterinarians, playing a pivotal role in animal health and welfare, must ensure that
they meet the practice expectations when prescribing and dispensing a drug in an extra-
label manner [132], as reported in Box 1.

Box 1. Practice Expectations of the Veterinarian.

1. Obtain an informed consent from the owner when prescribing a drug in an extra-label manner as
suggested in humans for the physicians [133]
2. Understands that he/she has the responsibility to ensure the safety, efficacy, and, in the case
of therapy in food-producing animals, the food safety when prescribing an extra-label drug
use [134–136].
3. Recommends a drug approved for veterinary use as the first drug treatment option where
available. Alternatively, recommends a drug approved for human use. When a not approved drug
exists and where a therapeutic need has been established, recommends that a drug be compounded
from a drug approved for veterinary use, or a drug approved for human use, or (if neither is
possible) from an active pharmaceutical ingredient.
4. Understands that prescribing a compounded product instead of an approved drug should not be
done solely for the economic benefit of the veterinarian.
5. Prescribes in an extra-label manner in keeping with the current research and evidence for a
specific species.

Thus, veterinarians are expected to use their professional judgement to determine
the appropriateness of ELU in individual patients, although a not explicit guidance in
exercising such judgement is available [137].

To provide a systematic process for assessing the appropriateness of any proposed
ELU, a decision tree/algorithm (Figure 2) with accompanying explanatory notes should be
developed. The notes guide the veterinarian considering ELU of a particular drug, such as
DPA, in answering the question: “Is there high-quality evidence supporting its use?” The
answer derives from a critical evaluation of the best available scientific evidence based on
the efficacy and the safety.

Routine ELU of DPA in the dog could be justified because there is sufficient evidence
supporting efficacy of this molecule [82,118,119], suggesting an overall reasonable benefit–
risk ratio, given the severity of the clinical condition due to the copper hepatitis.

Unfortunately, few studies relating to the pharmacokinetics of DPA in dogs
exist [122,138,139]; therefore, the rationale for using this product is often based on
data from human studies, along with empirical clinical veterinary experience.
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7. Conclusions

It could be appropriate to approve DPA that already exists on the human drug side
with an animal-approved label claim. In this manner, it might assure good quality care for
dogs with copper-associated hepatitis. Further studies on the pharmacology, pharmacody-
namic, and efficacy of DPA in dogs are needed.
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115. Svetel, M.; Šternić, N.; Pejović, S.; Kostić, V.S. Penicillamine-induced lethal status dystonicus in a patient with Wilson’s disease.
Mov. Disord. 2001, 16, 568–569. [CrossRef]

116. Harpey, J.; Caille, B.; Moulias, R.; Goust, J. Lupus-like syndrome induced by d-penicillamine in Wilson’s disease. Lancet 1971,
297, 292. [CrossRef]

117. Dourmishev, L.A.; Stomonjakova, S.R.; Dourmishev, A.L. D-penicillamine induced polymyositis and morphea in a woman with
Hashimoto thyroiditis. J. Eur. Acad. Dermatol. Venereol. 2002, 16, 538–539. [CrossRef]

118. Jaffe, I.A. Induction of auto-immune syndromes by penicillamine therapy in rheumatoid arthritis and other diseases. Semin.
Immunopathol. 1981, 4, 193–207. [CrossRef]

119. Hakoda, M.; Taniguchi, A.; Kamatani, N.; Akahoshi, T.; Kashiwazaki, S. Intermittent treatment with D-penicillamine is effective
in lower doses and with fewer adverse effects in patients with rheumatoid arthritis. J. Rheumatol. 1994, 21, 1637–1641.

120. Camp, A.V. Hematologic toxicity from penicillamine in rheumatoid arthritis. J. Rheumatol. 1981, 7, 164–165.
121. Manzini, C.; Sebastiani, M.; Giuggioli, D.; Manfredi, A.; Colaci, M.; Cesinaro, A.; Ferri, C. D-penicillamine in the treatment of

eosinophilic fasciitis: Case reports and review of the literature. Clin. Rheumatol. 2011, 31, 183–187. [CrossRef]
122. Langlois, D.; Lehner, A.; Buchweitz, J.; Ross, D.; Johnson, M.; Kruger, J.; Bailie, M.; Hauptman, J.; Schall, W. Pharmacokinetics and

Relative Bioavailability of d -Penicillamine in Fasted and Nonfasted Dogs. J. Vet. Intern. Med. 2013, 27, 1071–1076. [CrossRef]
123. Miller, A.D.; Leslie, R.A. The Area Postrema and Vomiting. Front. Neuroendocr. 1994, 15, 301–320. [CrossRef] [PubMed]
124. Scherk, M. Toxic, Metabolic, Infectious, and Neoplastic Liver Disease. In Textbook of Veterinary Internal Medicine; Elsevier:

Amsterdam, The Netherlands, 2005; pp. 1464–1478.
125. Gloyd, J.S. FDA tightens screws on extra-label drug use, liberalizes policy on use of human drugs in animals. J. Am. Vet. Med

Assoc. 1992, 201, 676–677.

http://doi.org/10.1080/01652176.2011.563146
http://www.ncbi.nlm.nih.gov/pubmed/22029820
http://doi.org/10.1111/j.1939-1676.2012.01001.x
http://doi.org/10.1016/0002-9343(56)90066-3
http://doi.org/10.1080/00365520701847044
http://doi.org/10.1002/art.1780250802
http://doi.org/10.1016/S0140-6736(56)91859-1
http://doi.org/10.1093/oxfordjournals.qjmed.a067346
http://doi.org/10.1016/S0022-3476(75)80131-4
http://doi.org/10.1093/oxfordjournals.qjmed.a068467
http://doi.org/10.1097/01.mcg.0000225670.91722.59
http://www.ncbi.nlm.nih.gov/pubmed/17063115
http://doi.org/10.1093/oxfordjournals.qjmed.a068320
http://doi.org/10.1002/hep.22261
http://www.ncbi.nlm.nih.gov/pubmed/18506894
http://doi.org/10.1016/j.jhep.2011.11.007
http://doi.org/10.1097/00005176-200410000-00006
http://doi.org/10.1159/000355276
http://doi.org/10.1155/2012/123431
http://doi.org/10.1001/archneur.1987.00520170020016
http://www.ncbi.nlm.nih.gov/pubmed/3579660
http://doi.org/10.1002/mds.1111
http://doi.org/10.1016/S0140-6736(71)91022-1
http://doi.org/10.1046/j.1468-3083.2002.00544_6.x
http://doi.org/10.1007/BF01857095
http://doi.org/10.1007/s10067-011-1866-3
http://doi.org/10.1111/jvim.12147
http://doi.org/10.1006/frne.1994.1012
http://www.ncbi.nlm.nih.gov/pubmed/7895890


Antibiotics 2021, 10, 648 15 of 15

126. Drew, M.L. Update on the Animal Medicinal Drug Use Clarification Act of 1994 Regulations for Wildlife Veterinarians. In
Proceedings of the Annual Conference-American Association of Zoo Veterinarians, Omaha, NE, USA, 17–22 October 1998;
pp. 163–167.

127. Kirkpatrick, D. The veterinary drugs directorate to discuss extra-label drug use in Halifax. Can. Vet. J. 2002, 43, 425–426.
128. Veterinary Pharmaceuticals World Market Study, 2015–2019 & 2020–2030. Available online: https://www.globenewswire.

com/news-release/2020/01/13/1969779/0/en/Veterinary-Pharmaceuticals-World-Market-Study-2015-2019-2020-2030.html (ac-
cessed on 27 May 2021).

129. Welser, J.R. Extra-label drug use—Pharmaceutical industry view. J. Am. Vet. Med. Assoc. 1993, 202, 1635–1658.
130. Cleland, J.L. Extra-label drug use—Veterinary practitioner views: Companion animals. J. Am. Vet. Med. Assoc. 1993, 202,

1642–1658.
131. Geyer, R.E. Extralabel drug use and compounding in veterinary medicine. Food Drug Law J. 1997, 52, 291–295.
132. Hart, B.; Cliff, K.D. Interpreting published results of extra-label drug use with special reference to reports of drugs used to correct

problem behavior in animals. J. Am. Vet. Med. Assoc. 1996, 209, 1382–1385.
133. Gillick, M.R. Controlling off-label medication use. Ann. Intern. Med. 2009, 150, 344–347. [CrossRef]
134. Heauner, J.E.; Teske, R. Legal Implications of the Extra-Label Use of Drugs in Food Animals. Vet. Clin. N. Am. Food Anim. Pr.

1986, 2, 517–525. [CrossRef]
135. Riviere, J.E.; Webb, A.I.; Craigmill, A.L. Primer on estimating withdrawal times after extralabel drug use. J. Am. Vet. Med. Assoc.

1998, 213, 966–968.
136. Payne, M.A.; Baynes, R.E.; Sundlof, S.E.; Webb, A.I.; Riviere, J.E. Drugs prohibited from extralabel use in food animals. J. Am. Vet.

Med. Assoc. 1999, 215, 28–32.
137. Kelly, M.; Gazarian, M.; McPhee, J. Off-label prescribing. Aust. Prescr. 2005, 28, 7. [CrossRef]
138. Bergstrom, R.F.; Kay, D.R.; Wagner, J.G. The pharmacokinetics of penicillamine in a female mongrel dog. J. Pharmacokinet.

Biopharm. 1981, 9, 603–621. [CrossRef] [PubMed]
139. Lehner, A.F.; Dirikolu, L.; Johnson, M.; Buchweitz, J.P.; Langlois, D.K. Liquid chromatography/tandem mass spectrometric

analysis of penicillamine for its pharmacokinetic evaluation in dogs. Toxicol. Mech. Methods 2020, 30, 1–40. [CrossRef] [PubMed]

https://www.globenewswire.com/news-release/2020/01/13/1969779/0/en/Veterinary-Pharmaceuticals-World-Market-Study-2015-2019-2020-2030.html
https://www.globenewswire.com/news-release/2020/01/13/1969779/0/en/Veterinary-Pharmaceuticals-World-Market-Study-2015-2019-2020-2030.html
http://doi.org/10.7326/0003-4819-150-5-200903030-00108
http://doi.org/10.1016/S0749-0720(15)31204-4
http://doi.org/10.18773/austprescr.2005.005
http://doi.org/10.1007/BF01061028
http://www.ncbi.nlm.nih.gov/pubmed/7334461
http://doi.org/10.1080/15376516.2020.1814467
http://www.ncbi.nlm.nih.gov/pubmed/32854553

	Introduction 
	Absorption, Distribution, Metabolism and Excretion (ADME) 
	Clinical Applications in Humans and Companion Animals 
	In Humans 
	D-Penicillamine in Wilson Disease and Metal Accumulation 
	Neonatal Period 
	Dermatological Application and Cutaneous Adverse Effects 

	In Animals 

	Adverse Effect in Humans and Animals 
	In Humans 
	In Animals 

	Prescription in Veterinary Medicine from a Regulatory Perspective 
	Discussion 
	Conclusions 
	References

