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Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) has evolved to provide

increasingly sophisticated investigations of the human brain's structural connectome

in vivo. Restriction spectrum imaging (RSI) is a method that reconstructs the orienta-

tion distribution of diffusion within tissues over a range of length scales. In its original

formulation, RSI represented the signal as consisting of a spectrum of Gaussian diffu-

sion response functions. Recent technological advances have enabled the use of

ultra-high b-values on human MRI scanners, providing higher sensitivity to intracellu-

lar water diffusion in the living human brain. To capture the complex diffusion time

dependence of the signal within restricted water compartments, we expand upon the

RSI approach to represent restricted water compartments with non-Gaussian

response functions, in an extended analysis framework called linear multi-scale

modeling (LMM). The LMM approach is designed to resolve length scale and

orientation-specific information with greater specificity to tissue microstructure in

the restricted and hindered compartments, while retaining the advantages of the RSI

approach in its implementation as a linear inverse problem. Using multi-shell, multi-

diffusion time DW-MRI data acquired with a state-of-the-art 3 T MRI scanner

equipped with 300 mT/m gradients, we demonstrate the ability of the LMM

approach to distinguish different anatomical structures in the human brain and the

potential to advance mapping of the human connectome through joint estimation of

the fiber orientation distributions and compartment size characteristics.
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1 | INTRODUCTION

Over the last three decades, diffusion-weighted magnetic resonance

imaging (DW-MRI) has evolved to provide increasingly sophisticated

investigations of tissue microstructure in the living human brain. The

methodological basis for using water diffusion to estimate the proper-

ties of porous media is well established (Callaghan, 1993; Callaghan &

Stepisnik, 1995), and the application of DW-MRI to the biophysical

domain has been demonstrated in various tissue preparations and ani-

mal models in small-bore scanners (Assaf et al., 2008; Barazany

et al., 2009; Basser et al., 1994; Ong & Wehrli, 2010; Stanisz

et al., 1997). However, using DW-MRI for in-vivo mapping of human

brain tissue microstructure has required technical development efforts

in several key areas. The main barrier to pushing the diffusion resolu-

tion for human imaging has been the traditionally limited gradient per-

formance of human MRI scanners. This hardware limitation has been

addressed through the introduction of high-performance gradient sys-

tems for human imaging (Foo et al., 2020; Vachha & Huang, 2021;

van Essen et al., 2012), including dedicated engineering of the Con-

nectome MRI scanner (Fan et al., 2014; Fan et al., 2016; Huang

et al., 2015; Jones et al., 2018; McNab et al., 2013; Setsompop

et al., 2013), which was the first of its kind to incorporate a

300 mT/m whole-body gradient coil into a wide-bore 3 T scanner

platform. When combined with parallel imaging acquisition and recon-

struction techniques such as Simultaneous Multi-Slice (SMS)

(Feinberg et al., 2010; Feinberg & Setsompop, 2013; Setsompop,

Cohen-Adad, et al., 2012a; Setsompop, Gagoski, et al., 2012b) and

Fast Low-angle Excitation Echo-planar Technique (FLEET) (Polimeni

et al., 2016), as well as appropriate post-processing methods

(Andersson et al., 2016; Andersson & Sotiropoulos, 2015), such hard-

ware advances have enabled the acquisition of extensive diffusion

imaging datasets showing that reproducible estimation of an apparent

axon diameter index is indeed feasible and requires high gradient

amplitudes to sensitize the DW-MRI signal to intra-axonal water dif-

fusion (Fan et al., 2021; Huang et al., 2015; Huang et al., 2020;

Veraart et al., 2020).

The microstructural features of interest such as the axonal com-

partment sizes (�μm) are orders of magnitude smaller than the size of

the imaging voxel (�mm). Therefore, the process of mapping these

quantities relies on inferring this information indirectly, usually by

means of compartmental modeling of the acquired signals (Afzali

et al., 2021; Alexander et al., 2019; Duval et al., 2016; Henriques

et al., 2021; Jelescu et al., 2020; Kiselev, 2021; Nilsson et al., 2018;

Novikov, 2021; Novikov et al., 2019; Novikov, Kiselev, &

Jespersen, 2018a; Novikov, Veraart, et al., 2018b; Panagiotaki

et al., 2012; Szczepankiewicz et al., 2021; Xu, 2021). In a widely used

model (Assaf & Basser, 2005), the axons are assumed to be imperme-

able cylindrical elements characterized by non-Gaussian restricted dif-

fusion that are surrounded by a Gaussian extracellular diffusion

compartment. Estimating the parameters of the non-linear model can

be achieved by Markov-Chain-Monte-Carlo (MCMC)-based methods

originally presented in the context of optimization of experimental

design for microstructural DW-MRI (Alexander, 2008). While

computationally intensive, the MCMC approach can be used to avoid

local minima as well as to quantify the parameter uncertainty in the

Bayesian sense, resulting in robust estimates for this inherently low-

SNR problem. However, the basic MCMC approach works well when

the number of the parameters is relatively small, requiring separation

of the estimation task into two sub-problems (Alexander et al., 2010;

Huang et al., 2020): (i) estimation of the fiber orientation distribution

function, and (ii) estimating the microstructural parameters themselves

assuming the fiber orientations are known. Alternatively, the orienta-

tion dependence of the signals can be removed by spherical averaging

(Kaden, Kelm, et al., 2016a; Kaden, Kruggel, & Alexander, 2016b) that

has been recently demonstrated to result in axon diameter index esti-

mates independent of fiber orientation (with real-valued data to

remove the Rician noise build-up) (Fan et al., 2020; Veraart

et al., 2020). However, the MCMC technique requires long computa-

tional times, and the spherical averaging results in partial loss of the

information present in the data, retaining only the first order spherical

harmonics coefficients (Fan et al., 2020). The fitting of multi-

compartment microstructural models to extract biophysical parame-

ters is a complex problem that has been achieved using a variety of

non-linear optimization methods and initialization strategies (Harms

et al., 2017). Here, we investigate an alternative solution strategy to

explore the full multi-shell diffusion data by means of a linear inverse

problem formulation with joint estimation of length scale and orienta-

tion information.

Restriction spectrum imaging (RSI) is an extension of the well-

known linear spherical deconvolution model (Tournier et al., 2004). In

its original formulation, RSI reconstructed the diffusion tissue orienta-

tion distribution over a range of length scales by assuming a spectrum

of Gaussian diffusion response functions (White, Leergaard,

et al., 2013a). The RSI model provides estimates of both the orienta-

tional and length scale information while imposing few assumptions

about the underlying tissue microstructure and offering a linear imple-

mentation that is computationally efficient and straightforward. How-

ever, with the use of high b-value diffusion acquisitions the non-

Gaussian properties of water diffusion become more pronounced,

which are important for gaining sensitivity to restricted (i.e., intra-axo-

nal/intracellular) water diffusion (Huang et al., 2015; Veraart

et al., 2019).

Using a state-of-the-art 3 T MRI scanner equipped with

300 mT/m gradients, in this work we expand upon the RSI approach

to fully capture the complex time dependence of the diffusion signal

arising from restricted compartments that is represented with non-

Gaussian response functions. In this extended analysis framework,

called linear multi-scale modeling (LMM), we incorporate two types of

response functions: (1) a non-Gaussian diffusion response function to

account for restricted diffusion in the intracellular/intra-axonal space;

and (2) Gaussian diffusion response functions to model hindered dif-

fusion in the extracellular compartment and free diffusion in cerebro-

spinal fluid (CSF). The goal of the LMM approach is to solve for length

scale and orientation-specific information with greater specificity to

tissue microstructure in the restricted and hindered compartments

while preserving the advantages of the RSI approach in formulating
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the analysis as a straightforward linear inverse problem. Using multi-

shell, multi-diffusion time DW-MRI data, we demonstrate the ability

of the LMM approach to distinguish different anatomical structures in

the human brain in a cohort of healthy volunteers and to probe neural

architecture in vivo. By explicitly incorporating restricted diffusion

into the model, the extended LMM framework enables an improved

overall separation between restricted and hindered water compart-

ments. Furthermore, by employing the Connectome MRI scanner we

are able to probe the regime in which the diffusion signal is sensitive

to the finite size of the restricted compartment, thereby enabling the

LMM approach to also capture information on the apparent axon

diameter. We show that our measurements are sensitive to specific

microstructural tissue features by comparing our results with known

histological differences of distinct brain regions. The estimation of

restricted and hindered volume fractions and compartment sizes could

allow for the development of distinct microstructural signatures of

healthy and diseased tissue. Finally, the information obtained on the

orientation distribution at different length scales could provide further

insight into the structural connectivity of the brain.

2 | MATERIALS AND METHODS

2.1 | Signal models

2.1.1 | LMM

The mathematical model of the LMM framework explicitly character-

izes diffusion in restricted, hindered and free water compartments of

different size and orientation. The total DW-signal S is expressed as a

convolution over the unit sphere of each water compartment's

response function R with its corresponding orientation distribution f

(Figure 1). A detailed description of the methodology and LMM algo-

rithm can be found in the Appendix S1.

In short, for the different sized restricted water compartments

non-Gaussian diffusion response functions RR are employed that

describe the DW-signal arising from water molecules within imperme-

able cylinders of increasing diameter a. Axially symmetric Gaussian

diffusion response functions RH with a fixed longitudinal diffusivity DL

and increasing transverse diffusivity DT are used to model the DW-

signal arising from the different sized extracellular, hindered water

compartments. To model the partial volume fraction of free water dif-

fusion, an isotropic Gaussian diffusion response function RF was

included with free water diffusivity DF . Thus, the oriented component

of the DW signal equals the sum of each water compartment's

response function, weighted by their respective volume fraction and

oriented along their respective orientation:

S¼ RR a1ð ÞfR1 þRR a2ð ÞfR2 þ…þRR a5ð ÞfR5 þRH DT1ð ÞfH1

þ RH DT2ð ÞfH2 þ…þRH DT5ð ÞfH5 þRF DFð ÞfF :

2.1.2 | Spectrum of Gaussian diffusion functions

RSI (White, Leergaard, et al., 2013a) is a method that reconstructs the

diffusion tissue orientation distribution over a spectrum of length

scales by assuming a spectrum of Gaussian diffusion response func-

tions. To investigate the impact of mathematically accounting for

restricted diffusion by non-Gaussian diffusion response functions, the

LMM approach was compared with an analysis performed for a

F IGURE 1 The Linear Multi-Scale Model. The linear multi-scale forward model of different sized restricted and hindered diffusion
compartments is obtained by concatenating two spectra of response functions: (1) a non-Gaussian diffusion response function for water
restricted inside cylindrical structures and (2) a Gaussian diffusion response function for hindered water and free water diffusion. The diffusion-
weighted signal equals the sum of each water compartment's response function R convoluted with its corresponding orientation distribution
f. Each compartment's orientation distribution is parameterized with spherical harmonics
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spectrum of Gaussian functions akin to the RSI method. This approach

reduces to a spectrum of axially symmetric Gaussian response func-

tions in the form of:

S¼R DT1ð Þf1þR DT2ð Þf2þ…þR DT10ð Þf10þRF DFð ÞfF :

2.2 | Simulation data

Synthetic DW-MRI data was generated by simulating the random

walk of spins/molecules within different restricting 3D-environments

using the Monte Carlo diffusion simulator of Camino (Cook

et al., 2006; Hall & Alexander, 2009). Our substrates consisted of

either vertically or horizontally, hexagonally packed, parallel, non-

overlapping, impermeable cylinders of a single diameter and fixed

intracellular, that is, within the cylinders, volume fraction. Cylinder

diameters were simulated ranging from 1μm up to 14μm and intracel-

lular volume fractions ranging from 0.3 to 0.7 for an infinite signal-to-

noise ratio (SNR). To synthesize substrates with fibers of different

diameters crossing at 90�, the signals from the vertically and horizon-

tally simulated parallel cylinders with an intracellular volume fraction

of 0.7 were added up proportionally to 100%.

Subsequently, Rician noise of an SNR of 20 was added to the

noise free data. To ensure reproducibility of our synthetic signal we

used 100,000 walkers and 5001 time steps in each simulation. The

intrinsic diffusivity D was set to DL ¼1:7 �10�9m2s�1, corresponding

to the longitudinal diffusivity along the principal diffusion direction in

the human corpus callosum in vivo (Fan et al., 2020). A PGSE

sequence with the same parameters as the in vivo imaging protocol

(see below) was used to generate the synthetic data.

2.3 | Data acquisition

With approval from the institutional review board, 16 healthy volun-

teers (mean age 39 ± 18 years) were scanned on a dedicated high-

gradient 3 T MRI scanner (MAGNETOM CONNECTOM, Siemens

Healthineers, Erlangen, Germany) with a maximum gradient strength

of 300 mT/m and maximum slew rate of 200 T/m/s. A custom-made

64-channel phased array head coil was used for signal reception (Keil

et al., 2013).

The DW-MRI acquisition with whole brain coverage was per-

formed using a monopolar Stejskal–Tanner pulsed gradient spin echo

(PGSE), echo planar imaging (EPI) sequence with the following param-

eters: echo time (TE)/repetition time (TR) = 77/[3600–4000] ms,

2 mm isotropic resolution, two diffusion times Δ = 19 and 49 ms, dif-

fusion gradient pulse duration δ = 8 ms, eight diffusion encoding gra-

dient strengths evenly spaced between 30 and 290 mT/m,

32 diffusion encoding directions uniformly distributed on a sphere for

b < 2400 s/mm2, 64 diffusion encoding directions for b ≥ 2400 s/

mm2, parallel imaging acceleration factor R = 2 (GRAPPA), partial Fou-

rier of 7/8, simultaneous multislice acceleration factor of 2 (Setsom-

pop, Gagoski, et al., 2012b), and anterior-to-posterior phase encoding.

The applied b-values at Δ = 19 ms were b = 50, 350, 800, 1500,

2400, 3450, 4750, 6000 s/mm2, and at Δ = 49 ms b = 200,

950, 2300, 4250, 6750, 9850, 13500, 17800 s/mm2. Interspersed

b = 0 images were acquired every 16 DW-images. In addition, a set of

five b = 0 images with reversal of the phase encoding direction were

acquired separately to correct for geometric distortions due to sus-

ceptibility effects and eddy currents. For registration and segmenta-

tion, a high-resolution three-dimensional T1-weighted (T1w) multi-

echo magnetization-prepared rapid gradient echo (MEMPRAGE)

sequence was also acquired in each study using 1 � 1 � 1 mm3 vox-

els, TR/TE = 2530/[1.15, 3.03, 4.89, 6.75] ms, inversion

time = 1100 ms, and R = 2. The DW-MRI sequence was adapted to

export phase images in addition to the magnitude images. The total

MRI acquisition time was approximately 55 min.

2.4 | Data preprocessing and segmentation

The magnitude and phase data acquired in the DW-MRI experiments

were used to calculate the real-valued data by removing the nuisance

background phase, with Gaussian-distributed noises remaining in the

resulting imaging data (Eichner et al., 2015; Fan et al., 2020). The real-

valued diffusion data was then corrected for gradient nonlinearity dis-

tortion using in-house developed MATLAB tools (Fan et al., 2016;

Glasser et al., 2013; Jovicich et al., 2006), followed by correction for

susceptibility- and eddy current-induced distortions using the TOPUP

(Andersson et al., 2003) and EDDY (Andersson et al., 2016;

Andersson & Sotiropoulos, 2016) functions in the FMRIB Software

Library toolboxes (Smith et al., 2004) (FSL, version 5.0.9, https://fsl.

fmrib.ox.ac.uk).

The T1w images were also corrected for gradient nonlinearity dis-

tortions and then processed with the automated cortical parcellation

and subcortical segmentation tools in FreeSurfer (Fischl et al., 2002)

(stable version v6.0.0, http://surfer.nmr.mgh.harvard.edu) to generate

masks of cerebral gray matter, white matter, and subcortical nuclei for

region-of-interest (ROI) analyses.

2.5 | Signal approximation with spherical
harmonics

For noise reduction and improving the numerical conditioning of the

inverse problem, expansion of the real spherical harmonics up to order

ℓ¼6=ℓ¼8 with Laplace–Beltrami regularization was used to interpo-

late and smoothen the diffusion signal on each q-shell with ≤64 gradi-

ent directions/with more than 64 directions (Descoteaux et al., 2007).

The regularization parameter λ was set to 0.006.

2.6 | Model fitting and data analysis

Voxel-wise fitting of the DW-MRI data was performed in the native

space of each subject. To obtain the orientation distribution functions
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and corresponding signal fractions, hereafter also referred to as vol-

ume fractions, of the different sized restricted and hindered water

compartments, the signal arising from each compartment was decon-

volved with the corresponding response function. For a more compact

and efficient linear implementation we parameterized the orientation

distribution functions of the Gaussian diffusion and non-Gaussian dif-

fusion compartments with spherical harmonics up to order ℓ¼4 and

ℓ¼6, respectively (Descoteaux et al., 2007). The parameter DL was

set to 1.7μm2/ms (Zhang et al., 2012) and DF to the diffusion coeffi-

cient of free water at 37�C, that is, 3μm2/ms similarly to earlier stud-

ies (Huang et al., 2015). For the LMM model we let the diameter a

take on na ¼5 equally spaced values between 2 and 12μm and DT

was similarly discretized to nDT ¼5 hindered diffusion length scale

values, equally spaced between 0.5 and 0.9DL (see Appendix S1: fur-

ther details on parameter selection). For the analysis performed for a

spectrum of Gaussian functions, DT was discretized to n¼10 diffusion

length scale values, linearly spaced between 0 and 0.9DL. The multi-

scale deconvolution inverse problem was solved by standard least-

squares estimation with Tikhonov regularization.

2.7 | Group-averaged axon diameter maps

LMM analysis of the simulation data yielded distributions of volume

fraction estimates for each simulated axon diameter. As already noted

in (White, Leergaard, et al., 2013a), the linear inverse reconstruction

results in “crosstalk” between length scales as the model does not

make explicit assumptions about the number of fiber populations with

different compartment diameter in each voxel. Therefore, in order to

compare the LMM-based estimates with models where such assump-

tion is made, we need to “convert” the volume fraction distributions

to “single-axon” diameter estimates. To this end, the slope of the vol-

ume fraction estimates over the restricted diffusion length scales was

considered to have a one-to-one correspondence to the simulated

axon diameter, providing a “calibration curve”, that is, monotonic

function, that allowed the corresponding average axon diameter per

voxel to be determined for the in vivo data (see Figures S1).

Group-averaged maps were obtained as in Fan et al. (2020).

Briefly, the registration process was comprised of two components—

intra-subject registration between EPI images and T1w images, and

inter-subject registration between each subject's native T1w image

and the template T1w image. The intra-subject registration was per-

formed using the boundary-based registration method (Greve &

Fischl, 2009) with 6 degrees of freedom using the averaged inter-

leaved b = 0 image. The inter-subject registration was performed by

morphing the T1w image of each subject to the cvs35 template in the

FreeSufer package using the Combined Volumetric and Surface (CVS)

registration tool (Postelnicu et al., 2009; Zollei et al., 2010). The non-

linear morph and the linear transformation were then simultaneously

applied to the maps of apparent axon diameter in each subject's

native space to obtain aligned maps in the cvs35 template space,

which were then averaged over 15 subjects to derive a group aver-

aged map. Group-averaged maps of the LMM analysis were compared

with group-averaged maps obtained using the spherical mean tech-

nique (SMT) as in Fan et al. (2020).

3 | RESULTS

3.1 | Simulation study

The LMM analysis of our simulation data yielded a fiber orientation

distribution spectrum that tended to be consistent with the simulated

cylinder diameters and volume fractions (Figures 2-4). For the simu-

lated smaller axon diameters, that is, ≤5 μm, the estimated volume

fraction distributions looked relatively similar (Figure 2). Sensitivity of

the LMM model to the compartment sizes increased with larger axon

diameters. For a simulated voxel of densely packed impermeable cyl-

inders with an intracellular volume fraction of 70% and an SNR of

20, the intracellular volume fraction was estimated to be 85% for a

simulated axon diameter of 2 μm, 83% for a simulated axon diameter

of 6 μm, 72% for a simulated axon diameter of 10 μm, and 60% for a

simulated axon diameter of 14 μm (Figure 2). For simulated parallel,

impermeable axons with a diameter of 2 μm, an intracellular volume

fraction of 30% and an SNR of 20, the restricted diffusion fraction

was overestimated by 27%, to 57% (Figure 3). The larger the simu-

lated cylinder diameters and the higher the packing density, the more

accurate the LMM estimates of restricted diffusion became, exemplar-

ily for simulated axons with a diameter of 10 μm and an intracellular

volume fraction of 70% the restricted diffusion fraction was estimated

to be 72% (Figure 3). In comparison with the analysis performed for a

spectrum of Gaussian functions (following the framework of the origi-

nal RSI approach), the separation between the restricted length scales

was enhanced by incorporating the non-Gaussian diffusion model.

The LMM approach allowed for a direct, explicit read of the simulated

axon diameter. For both analysis methods, there was some “cross-
talk” between length scales such that the signal appeared to originate

not only from the corresponding simulated length scale, but also from

adjacent length scales. This observation became particularly evident in

the simulation of crossing fibers with distinct cylinder diameters

(Figure 4). While LMM was able to distinctly separate the orientation

distribution of the different sized cylinders, we observed a substantial

overlap of the signal fraction estimates originating from the different

length scales (Figure 4).

3.2 | In vivo experiments

Figure 5 compares volume fraction maps of the LMM versus the anal-

ysis performed for a spectrum of Gaussian functions (akin the original

RSI approach) for an exemplary axial slice at the level of the basal

ganglia and lateral ventricles. We found a high degree of restriction

particularly within the highly organized, densely packed WM. While

LMM captured this trend across the 5 restricted length scales, almost

all of the restricted diffusion signal in the approach using a spectrum

of Gaussian functions appeared to be subsumed within the first(s)
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length scales. Within the cortical GM, the LMM volume fraction maps

exhibited a high proportion of hindered water diffusion. Comparably,

the volume fraction of larger length scales increased in the cortex for

the approach using a spectrum of Gaussian functions. The free water

signal nearly exclusively originated from the cerebrospinal fluid space.

Taking the signal from all restricted, hindered, and free water com-

partments into their respective maps, LMM further highlighted the

differences in diffusion behavior between WM and GM structures

(Figure 6).

Voxel-wise estimated volume fraction distributions of the differ-

ent sized water compartments were distinguishable between different

anatomical structures within the brain. Figure 7 illustrates representa-

tive volume fraction estimates obtained by the LMM analysis for vox-

els within different WM and GM structures, concordant with the

preceding volume fraction maps. The WM voxel displayed a high sig-

nal stemming primarily from the restricted diffusion water compart-

ments, whereas the cortical GM voxel demonstrated a high signal

arising from the hindered diffusion water length scales. The voxel

within the thalamus contained a relatively high signal originating from

both the restricted and hindered diffusion water compartments com-

pared with WM and cortical GM. Figure 8 summarizes the voxel-wise

volume fraction analysis for different regions of cortical and deep gray

matter by plotting the mean and standard deviation for the volume

fraction estimates of each length scale within the respective regions.

Consistent with the representative voxels, we observed a low fraction

of restricted and high fraction of hindered diffusion within the cortex.

We noted a slight increase of restricted diffusion for the first length

scales in the caudate and putamen with an almost unchanged high

proportion of hindered diffusion in comparison to the cortical

GM. The thalamus and pallidum exhibited a mixture of restricted and

hindered diffusion.

Furthermore, by analyzing the fiber orientation distribution (FOD)

spectrum the LMM provided additional quantification of the orienta-

tion information at each length scale. Figure 9 shows the FOD spec-

trum for a region within the right frontoparietal lobe covering parts of

the cingulum, subcallosal and superior occipitofrontal as well as supe-

rior longitudinal fasciculus and a region extending from the left thala-

mus through the internal capsule to the left lentiform nucleus. While

the orientation of the restricted diffusion compartments in most GM

and WM voxels differed from the hindered diffusion compartments,

we generally found a similar orientation distribution for contiguous

length scales within the restricted and hindered diffusion regimes,

respectively. Obtaining the orientation information at each length

scale allowed for a scale-specific tractography. Within the first
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F IGURE 2 Simulation results: LMM vs. an analysis performed for a spectrum of Gaussian functions. Shown are exemplary volume fraction
estimates of the LMM analysis versus an analysis performed for a spectrum of Gaussian functions for a simulated voxel of tightly packed 2 μm
((a), (e)), 6 μm ((b), (f)), 10 μm ((c), (g)) and 14 μm ((d), (h)) impermeable cylinders with an intracellular volume fraction (ICVF) of 70% and an SNR of
20. Plotted are the mean and standard deviation of 500 different noise realizations. For the LMM analysis, the estimated volume fractions for the
restricted, hindered, and free water diffusion compartments are provided in percentages ((a)-(d)). Incorporating the restricted diffusion model
allows the LMM analysis framework to better distinguish the different sized restricted length scales. LMM is sensitive to simulated trends of
cylinder diameters and volume fractions, though does not recover the ground truth entirely. Particularly, model sensitivity is limited for low

diameter axons. For both analysis techniques, adjacent length scales blend into each other, suggesting that the signal arises not only from the
corresponding simulated length scale but also from neighboring length scales
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F IGURE 3 Simulation results: Volume fraction estimation. Shown are exemplary volume fraction estimates of the LMM analysis for a
simulated voxel of tightly packed 2 μm ((a)-(c)) and 10 μm ((d)-(f)) impermeable cylinders with an intracellular volume fraction (ICVF) of 30% ((a),
(d)), 50% ((b), (e)), and 70% ((c), (f)) and an SNR of 20. Plotted are the mean and standard deviation of 500 different noise realizations. LMM
overestimates the fraction of restricted, intracellular, non-Gaussian diffusion. Accuracy increases for larger axon diameters and higher packing
densities
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restricted length scale the path of projection and commissural fibers

could be delineated, while short association fibers in the subcortical

regions were captured in the first hindered length scale (Figures S1).

Furthermore, it was possible to resolve for crossing fibers.

Unlike the approach using a spectrum of Gaussian functions, the

LMM explicitly incorporates restricted diffusion in its framework. Uti-

lizing 300 mT/m gradients we were able to probe the regime in which

the diffusion signal is sensitive to the finite size of the restricted com-

partment, such that the LMM could also provide information about

the apparent axon diameter. In the group-averaged axon diameter

maps of the LMM analysis, the overall axon diameter size was overes-

timated, which is a known limitation of axon diameter mapping using

currently available gradient strengths up to 300 mT/m (Nilsson

et al., 2017). Nevertheless, it was possible to map relative differences

in axon diameters. For example, the axon diameter distribution within

the corpus callosum reflected known histologic trends of smaller

axons in the splenium than the midbody (Aboitiz et al., 1992; Barazany

et al., 2009; Veraart et al., 2020) and the corticospinal tract could be

delineated by its larger diameter estimates compared with the sur-

rounding tissue (Figure 10). For reference, Figure 10 additionally
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F IGURE 4 Simulation results: Crossing fibers of different diameters. LMM analysis of a simulated voxel of crossing fibers with an overall
intracellular volume fraction of 70% and an SNR of 20. The voxel is composed of 30% horizontal fibers with a diameter of 1 μm and 70% vertical
fibers with a diameter of 14 μm. Plotted are the mean and standard deviation of 500 different noise realizations. Shown is the fiber orientation
distribution for each length scale. Apart from the previously mentioned cross-talk between adjacent length scales, LMM is able to distinctly
separate the orientation distribution of the different sized cylinders
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F IGURE 5 Volume fraction maps. Comparison of the LMM analysis versus an analysis performed for a spectrum of Gaussian functions for
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length scales from left to right. Volume fraction maps are derived from the sum of the ODF values within a voxel, normalized in total to the sum
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indicating a large contribution and dark voxels indicating little or no contribution (see scale)
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depicts an SMT axon diameter map that also recovers the differences

in axon diameters seen in the LMM map.

4 | DISCUSSION

The objective of this study was to assess whether extending the

Gaussian framework of the original RSI model to include non-

Gaussian diffusion response functions in the LMM framework would

enable probing the orientational structure of the human brain at multi-

ple length scales with greater specificity for restricted and hindered

water compartments. To this end, we acquired a high-quality, compre-

hensive DW-MRI dataset leveraging state-of-the-art hardware with

300 mT/m gradients and pulse sequence developments. Our results

indicate that, to the extent shown in this study, LMM may capture

known differences in the degree of restricted diffusion reflecting com-

partment size in distinct anatomical regions of the brain and that the

obtained orientation information at the respective length scales can

be potentially used for an enhanced mapping of the human connec-

tome in vivo. In comparison to an analysis performed for a spectrum

of Gaussian functions, the LMM analysis may offer a refined and more

specific representation of WM and GM structures by explicitly model-

ing of the diffusion behavior in the different tissue compartments. In

particular, subtle differences within the restricted diffusion length

scales that were evident for the LMM approach could not be captured

in an approach using only Gaussian response functions.

As an internal validation, we generated synthetic DW-MRI data

using the Monte Carlo diffusion simulator of Camino for diffusion

within impermeable, regularly packed, parallel or crossing cylinders

with a range of diameters and intracellular volume fractions. Our sim-

ulation results confirm that the estimated microstructural parameters

obtained from the LMM analysis are sensitive to known differences in

cell/axon size, cellular packing density and intracellular volume frac-

tion within the range of the probed parameters. We further found

that the LMM approach provided better separation of the length

scales of the restricted water compartments over an approach using a

spectrum of Gaussian response functions, indicating that a non-

Gaussian diffusion response function is required to capture the DW-

MRI signal arising from water molecules diffusing within restricted

geometries especially with the high b-value data from the Connec-

tome MRI scanner.

It is to note that while the LMM model showed sensitivity to the

trends, it did not appear to have good sensitivity to low diameter

axons, that is, ≤5 μm, as the volume fraction distributions below this

limit looked fairly similar. Additionally, LMM consistently overesti-

mated the fraction of intracellular restricted diffusion, particularly for

smaller and less tightly packed axon diameters by up to 27%. In con-

trast to other model-based methods like TractCaliber (Huang

et al., 2020) and SMT (Fan et al., 2020), the LMM approach does not

assume a single axon diameter but a distribution across length scales.

Hence, the estimation task involves more unknown parameters and

necessitates solving the linear inverse problem. While approximating

compartment sizes is therefore somewhat imprecise, the main advan-

tages of the method are that the inverse operator is linear and pro-

vides high computational efficiency as well as the ability to perform

exploratory analyses with minimal assumptions about the underlying
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F IGURE 6 Restricted and hindered volume fraction maps. Volume fraction maps obtained by LMM. These maps comprise the signal from all

restricted (left), hindered (middle), and free (right) water compartments. We observe a high fraction of restricted water within the densely packed
WM, whereas the cortical GM comprises a high fraction of hindered water diffusion. The free water diffusion signal is exclusively originating from
the cerebrospinal fluid spaces. LMM maps depict a high contrast between WM and GM structures
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tissue microstructure. Assuming infinite SNR, parallel cylinders, and an

optimized diffusion encoding scheme, the lower resolution axon diam-

eter limit has been reported to be 2 μm for a maximum diffusion

encoding gradient strength of 300 mT/m (Drobnjak et al., 2016;

Dyrby et al., 2011; Huang et al., 2015; Nilsson et al., 2017). In this

study, we used a diffusion acquisition scheme based on a generalized

AxCaliber approach that has previously been established to estimate

known/expected fiber diameters with a resolution limit of about 2–

4 μm in phantom and in vivo studies (Fan et al., 2018; Fan

et al., 2019; Fan et al., 2020; Huang et al., 2015; Huang et al., 2020).

Similar to previously published results, our simulation results showed

that the larger the diameter and the higher the packing density, the

better the sizes of the respective compartments could be

distinguished (Fan et al., 2020). Optimizing the protocol following the

guidelines of Drobnjak and Nilsson et al. (Drobnjak et al., 2016;

Nilsson et al., 2017) could further improve the model's ability to

resolve small compartment sizes.

We observed similar volume fraction estimates and orientation

distributions for adjacent length scales within the restricted and hin-

dered water diffusion regime, respectively, suggesting that the indi-

vidual restricted/hindered length scales cannot be considered

completely independent of each other. In particular, our analysis of

crossing fibers with distinct cylinder diameters demonstrated the abil-

ity of LMM to separate such fiber orientation distributions, however,

yielded considerable overlap into adjacent length scales. This type of

cross-talk between model parameters was already noted by White
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F IGURE 7 Voxel-wise estimated volume fractions. Representative volume fraction estimates obtained with the LMM analysis for voxels
within different WM and GM structures which are consistent with the previously presented volume fraction maps. Within the WM voxel we find
a high signal especially originating from the restricted diffusion water compartments (a), whereas the cortical GM voxel shows a high signal
originating from the hindered diffusion water length scales (b). The voxel within the thalamus contains a relatively high signal originating from
both the restricted and hindered diffusion water compartments, compared with WM and cortical GM (c). Overall, voxel-wise estimated volume
fractions of the different sized water compartments are distinguishable between different anatomical structures within the brain. The residual
bootstrap is used to calculate the error bars as in (Jeurissen et al., 2011)
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et al. and further quantified using the concept of the model resolution

matrix which allows a characterization of the bias in linear inverse

problems (White, Leergaard, et al., 2013a). According to White et al.,

the intrinsic “scale resolution” of the model is primarily limited by the

acquisition protocol and not the model itself or the level of regulariza-

tion (White, Leergaard, et al., 2013a). Analogous to our findings, they

also observed that the level of Tikhonov regularization mainly effects

the smoothness of the respective FODs of the different correspond-

ing length scales. Assuming that the slope of the estimated volume

fractions over the restricted diffusion length scales matches the simu-

lated axon diameter and intracellular volume fraction one-to-one, in

this study we used this monotonic function or calibration curve as a

proxy for the average axon diameter in a voxel.

For the empirical data, LMM was able to detect distinct features

in the diffusion behavior of different anatomical brain regions and

thus differentiate them. First, as expected, we found a high degree of

diffusion restriction, particularly within the highly organized, densely

packed WM. Considering the cell membrane as the primary contribu-

tor to diffusion restriction in biological tissue (White, Leergaard,

et al., 2013a), this observation can be attributed to the myelin sheath

of the axons within the WM which allows for little to no exchange

between the intra- and extracellular compartments. Second, voxels

within the cortical GM showed conversely high volume fraction esti-

mates for the hindered diffusion water compartments, reflecting the

differences between GM and WM microstructure. The hindered

water DW-MRI signal within the cortex may not only originate from

water diffusion within the extracellular compartment, but also from

diffusion within glial cells and larger cell bodies which contribute to a

large extent to cortical GM tissue (White, Leergaard, et al., 2013a).

Following the Einstein equation (see Appendix S1), diffusion occurring

within large cell bodies that exceed an upper limit in cell size of 13 μm

will be indistinguishable from hindered diffusion and thus will pre-

dominately contribute to the hindered DW-MRI signal, rather than

the restricted DW-MRI signal. Furthermore, the much larger perme-

ability of glial cell membranes compared with neuronal cell mem-

branes leads to an increase in diffusivity and exchange between the

intra- and extracellular compartment, suggesting a more hindered dif-

fusion within glial cells (Solenov et al., 2004). Third, exemplarily the

thalamus, as a deep GM structure, exhibited relatively high volume

fraction estimates for both the restricted and hindered length scales,
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F IGURE 8 Volume fraction estimates for cortical and deep gray matter structures. Shown are the distributions of volume fractions for
different gray matter regions, for the cortex (a), and deep gray matter structures such as the thalamus (b), caudate (c), pallidum (d), and putamen
(e). Plotted are the mean and standard deviation for the volume fraction estimates of each length scale within the respective regions. Note the
low fraction of restricted and high fraction of hindered diffusion within the cortex. We observe a slight increase of restricted diffusion for the first
length scales in the caudate and putamen, whereas these deep gray matter structures retain an almost unchanged high proportion of hindered
diffusion. The thalamus and pallidum exhibit a mixture of restricted and hindered diffusion
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indicating some degree of additional restriction compared with corti-

cal GM. Dissimilar to other subcortical GM structures, the thalamus

comprises unmyelinated and myelinated nerve fibers (Wiegell

et al., 2003). The latter, also referred to as the thalamocortical stria-

tions, have already been shown to provide sufficient diffusion restric-

tion to be examined with diffusion tensor imaging and which we thus
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F IGURE 9 Scale specific fiber orientation distribution. LMM allows computation of scale-specific fiber orientation distributions. Depicted are
the normalized fiber orientation distributions of different restricted and hindered diffusion length scales for a region within the right
frontoparietal lobe covering parts of the cingulum, subcallosal and superior occipitofrontal as well as superior longitudinal fasciculus (a) and a
region extending from the left thalamus through the internal capsule to the left lentiform nucleus (b). The fiber orientation distributions were
underlaid with their corresponding volume fractions as gray values in each voxel. Note the different fiber orientation distributions in the
restricted versus hindered diffusion regime within the subcortical region and the internal capsule
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argue contribute to the higher volume fraction estimates for the

restricted water compartments in our model (Wiegell et al., 2003).

Similarly, LMM analysis of the globus pallidus yielded a high propor-

tion of restricted diffusion, whose pale appearance is attributed to

myelinated axons (Latin pallidus translates to pale) (Javed &

Cascella, 2022). This contrasts with the unmyelinated structures, that

is, putamen and caudate, which appear darker and exhibited a corre-

spondingly lower fraction of restricted and a high fraction of hindered

diffusion comparable to the cortex (Javed & Cascella, 2022). Com-

pared with equivalent volume fraction maps obtained with an analysis

using only Gaussian diffusion response functions, our results suggest

that the LMM analysis preserves the differences in diffusion behavior

between WM and GM more accurately. More specifically, in contrast

to the LMM approach, small differences within the restricted diffusion

length scales could not be captured by a spectrum of only Gaussian

diffusion response functions as the restricted diffusion information is

subsumed in the first(s) length scale(s).

By separating orientation distributions of restricted and hindered

diffusion water compartments over a range of length scales, the LMM

method may provide a more specific probe of neural architecture for

quantifying and mapping the connectome in vivo. We found a dissimi-

lar orientation distribution in GM and WM voxels for the restricted

and hindered water diffusion length scales, respectively. In particular

within the subcortical regions, we were able to delineate many short

association fibers that connect adjacent gyri within the first hindered

length scale, while the course of projection and commissural fibers

was reflected in particular within the first restricted length scales

(Meynert & Sachs, 1885). Using spherical deconvolution with tissue-

specific response functions and multi-shell DW-MRI data, de Luca

et al. were able to show that such a framework can be used to

improve the FOD estimation within the cortical GM paving the way

to GM fiber tractography (de Luca et al., 2020).

In contrast to the analysis performed for a spectrum of Gaussian

diffusion functions, the LMM method explicitly incorporates a diffu-

sion model within impermeable cylinders of increasing diameter in its

framework. Assuming that the slope of the estimated volume frac-

tions over these restricted length scales can be utilized as a proxy for

the average axon diameter in a voxel, the LMM method facilitates the

(a) (b)

(c) (d)

F IGURE 10 Group-averaged axon diameter maps. Group-averaged maps of axon diameter estimates across 15 healthy subjects. Shown is a
sagittal slice through the left corticospinal tract (denoted with a white arrow), obtained using the LMM (a) versus SMT (b) approach. While the
overall axon diameter is overestimated by the LMM in comparison to the SMT, it was possible to map the overall trends of axon diameters by the
LMM, for example, the corticospinal tract with its larger diameters was distinguishable from its surrounding tissue. (c) Depicts the estimated axon
diameters within a mid-sagittal slice at the corpus callosum and (d) the distribution of axon diameter estimates within the corpus callosum.
Although axon diameters in the corpus callosum are overestimated, LMM was able to recover known histologic trends of smaller axons in the
splenium than the midbody of the corpus callosum
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computation of “apparent axon diameter maps” in vivo. Such maps

provide condensed information about relative axonal size throughout

the brain, and the LMM-based results exhibited consistent trends

across all 16 healthy subjects. The obtained group-averaged axon

diameter maps yielded concordant differences in histologically known

tissue microstructural properties. For instance, we found that axons in

the corticospinal tracts feature among the largest diameters of axons

in the human brain (�1 μm larger compared with surrounding WM),

which is substantiated by previous histological studies in humans

(Graf von Keyserlingk & Schramm, 1984). Furthermore, LMM was able

to recover known histologic trends of lager axons in the midbody than

the splenium of the corpus callosum, but did not fully recover the

trend of smaller axons in the genu of the corpus callosum (Aboitiz

et al., 1992; Barazany et al., 2009; Veraart et al., 2020). Despite con-

sistent trends with histology, we should note that the reported diame-

ter values (≥5 μm in the whole brain) overestimate the majority of

axon diameters in the human brain by almost an order of magnitude.

Most axon diameters within the human brain range from 0.1 up to

10 μm and lay within the cell size range that we are able to probe with

our acquisition protocol (Assaf et al., 2013). However, as already

stated above, axons smaller than �2 μm remain below the diffusion

resolution limit at 300 mT/m (Drobnjak et al., 2016; Dyrby

et al., 2011; Huang et al., 2015; Nilsson et al., 2017). Furthermore,

employing a single axon diameter to subsume the average compart-

ment size skews the estimate towards larger diameter axons, whose

larger water content contributes to the overall decay of the diffusion

signal to a greater extent than the lesser water content of smaller,

more restricted axons (Alexander et al., 2010). Though significantly

overestimating the axon diameter, the LMM group-averaged axon

diameter maps recovered similar trends as axon diameter maps

obtained using an SMT analysis.

While our results cannot be considered as fully quantitative mea-

sures of axon diameter and density, the derived maps can be thought

of as axon diameter- and volume fraction-weighted images similarly

to (Huang et al., 2020), that appear to be sensitive to underlying

microstructural features of tissue and capture general trends in axon

size and packing density. The precise relationship between tissue

microstructure, diffusion signal, and parameters estimated by LMM

needs further investigation, which is alleviated by the availability of

high diffusion gradient strengths for in vivo imaging with the ongoing

development of the next-generation “Connectome 2.0” scanner tech-
nology (Huang et al., 2021). The advent of higher gradient strengths

on human MRI scanners has captured the interest of neuroscientists,

as high gradients may enable “in vivo histology,” that is, the possibility

of probing tissue microstructure in the living human brain, as exempli-

fied through axon diameter mapping. Tracking axonal pathology non-

invasively in white matter disorders such as multiple sclerosis

(de Santis et al., 2019; Huang et al., 2016; Huang et al., 2019) and

aging (Fan et al., 2019) using high-gradient DW-MRI may enable the

assessment of axonal damage in patients as they experience progres-

sion of disease and disability. Scanners such as MAGNUS (Foo

et al., 2020) and Connectome systems (Jones et al., 2018; McNab

et al., 2013) are becoming increasingly mainstream and are paving the

way to higher gradient strengths on clinical systems, thereby enabling

such capabilities as axon diameter mapping and other tissue micro-

structural imaging techniques to be performed on clinically available

scanners.

The LMM method extends the Gaussian framework of the origi-

nal RSI model to include non-Gaussian diffusion response functions.

As such, it gains greater specificity to restricted and hindered water

compartments compared with RSI while offering a general framework

for probing the size and orientational structure of human GM and

WM, in states of health and disease. We emphasize that the LMM

drives at tissue microstructure without imposing assumptions about

the composition of the tissue, which is a limitation of many biophysi-

cal models. The LMM can thus be applied to healthy tissue as well as

pathology. In comparison to the original RSI approach, we used a gen-

eral framework that imposes few assumptions on the underlying tis-

sue microstructure (Le Bihan, 1995) and preserves the advantages of

the RSI approach in its linear implementation, which is computation-

ally efficient. As such, LMM characterizes diffusion within human

brain tissue as basically occurring in three compartments: (i) restricted

diffusion within intracellular compartments, modeled as diffusion

within impermeable cylinders of different diameters, (ii) hindered dif-

fusion in extracellular compartments, modeled with an anisotropic,

cylindrically symmetric diffusion tensor with fixed longitudinal and

varying transverse diffusivities, and (iii) free, isotropic diffusion in CSF.

Panagiotaki et al. (Panagiotaki et al., 2012) and Ferizi et al. (Ferizi

et al., 2014) have shown that three compartment models, designed to

capture extracellular diffusion, intra-axonal diffusion, and isotropically

restricted diffusion as in glial cells, best fit the DW-MRI data from

human brain WM. They demonstrated that the anisotropic cylindri-

cally symmetric diffusion tensor used in our model best represents

the DW-MRI signal arising from the extracellular compartment and

that the impermeable cylinder of non-zero diameter provides a rea-

sonable model to first order for describing water diffusion within

axons. Furthermore, they showed that spherical cellular structures,

such as glial cells, even though best captured with a dot or a sphere,

can also be well captured with isotropically oriented impermeable cyl-

inders of non-zero diameter (Panagiotaki et al., 2012). Depending on

the field of research or application, these model assumptions can be

further adapted, for example, to represent nodular structures with

spheres of different diameter (Palombo et al., 2020), to consider

effects of permeability (Solenov et al., 2004) or the diffusion time

dependency of the signal within extracellular water compartments

(Burcaw et al., 2015; Lee et al., 2018).

A central feature of many inverse problems is they can be “ill-
posed”, meaning that the solution may not be unique and/or show

numerical instabilities that result in noise amplification. To make the

inverse problem at hand more well-behaved, we used a multi-shell,

multi-diffusion time acquisition scheme versus a Cartesian q-space

sampling scheme as originally utilized in the RSI approach (White,

Leergaard, et al., 2013a). This allowed us to use a spherical deconvolu-

tion approach in both the signal as well as the FOD space to improve

the numerical conditioning of the inverse operator. Nevertheless, in

light of the large number of unknown parameters, we solved the
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multi-scale, linear inverse problem using standard least squares esti-

mation with Tikhonov regularization to help prevent overfitting/noise

amplification, resulting in robust estimates of the volume fractions for

different length scales and the associated FODs. However, we should

note that the very general framework of the LMM allows FODs in

principle to be different across different restricted length scales. To

further reduce the effective number of parameters to be estimated,

we could add further constraints. For example, the adjacent length

scales within the same compartment (restricted vs. hindered) could be

assumed a priori to have more similar FODs or in the limiting case

assume that all restricted/hindered length scales are associated with a

single FOD.

For the differentiation and estimation of compartment sizes, we

recommend the use of at least two diffusion times (Huang

et al., 2015). The use of multi-diffusion time data has been used in our

previous studies (Huang et al., 2015; Huang et al., 2020) and others'

(de Santis et al., 2016; Harkins et al., 2021) to map axonal diameter

using DW-MRI. Nonetheless, we acknowledge that the LMM

approach could also be applied to multi-shell data acquired with a sin-

gle diffusion time, recognizing that the sensitivity to length scales

across restricted and hindered compartments may be more limited.

For the analysis of data acquired with nonspherical sampling, either

Cartesian sampling or due to gradient nonlinearities, the single-fiber

response functions could be adopted to also describe their radial

dependency, similar to (Morez et al., 2021).

Using conventional MRI gradient systems, the RSI approach has

already shown great promise in addressing key clinical challenges in

neuro-oncology, such as improved tumor conspicuity, differentiation

between treatment response and pseudo-response, delineation of

WM pathways within peritumoral edema, and risk stratification in

cancer patients (Latysheva et al., 2020; McDonald et al., 2016; White

et al., 2014; White, McDonald, et al., 2013b). Our results indicate that

accounting for non-Gaussian diffusion in the extended framework of

LMM increases sensitivity to restricted diffusion within confined cel-

lular structures. When used in conjunction with optimized pulse

sequences and state-of-the-art diffusion encoding gradient hardware,

the LMM approach can enable more precise characterization/

targeting of lesions for the development of tissue signatures particu-

larly within tumorous tissue environments (Nilsson et al., 2018) possi-

bly opening new avenues for therapy planning, including radiotherapy

and surgical resection. Further studies will focus on implementing the

LMM approach in a clinical setting.

5 | CONCLUSION

In this study, we present a general analysis approach for DW-MRI

data, that extends the RSI framework to represent restricted water

compartments with non-Gaussian response functions. The LMM

retains the advantages of the RSI approach in its implementation as a

linear inverse problem, while incorporating a more realistic model for

restricted diffusion. When combined with cutting-edge acquisition

techniques, the LMM framework offers a powerful analysis method

for separating orientation distributions of restricted and hindered

diffusion water compartments over a range of length scales. Thereby,

LMM allows for a more detailed characterization of tissue microstruc-

ture with greater specificity to diffusion in intra- and extracellular

compartments. Consistency between our results and previously pub-

lished histological data is encouraging and indicates that our measure-

ments are sensitive to particular microstructural tissue features of

different regions within the brain. The estimation of restricted and

hindered volume fractions and compartment sizes may enable the

development of distinct diffusion microstructural signatures of

healthy and diseased tissue, while orientation distribution information

at different length scales could give additional information about the

brain's microscopic structure and provide a roadmap for improved

radiation oncology and surgical planning.
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