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Abstract
Memory-related activity in the Dentate Gyrus (DG) is characterized by sparsity. Memory

representations are seen as activated neuronal populations of granule cells, the main en-

coding cells in DG, which are estimated to engage 2–4% of the total population. This sparsi-

ty is assumed to enhance the ability of DG to perform pattern separation, one of the most

valuable contributions of DG during memory formation. In this work, we investigate how fea-

tures of the DG such as its excitatory and inhibitory connectivity diagram can be used to de-

velop theoretical algorithms performing Sparse Approximation, a widely used strategy in

the Signal Processing field. Sparse approximation stands for the algorithmic identification of

few components from a dictionary that approximate a certain signal. The ability of DG to

achieve pattern separation by sparsifing its representations is exploited here to improve the

performance of the state of the art sparse approximation algorithm “Iterative Soft Threshold-

ing” (IST) by adding new algorithmic features inspired by the DG circuitry. Lateral inhibition

of granule cells, either direct or indirect, via mossy cells, is shown to enhance the perfor-

mance of the IST. Apart from revealing the potential of DG-inspired theoretical algorithms,

this work presents new insights regarding the function of particular cell types in the pattern

separation task of the DG.

Introduction
The hippocampal formation is one of the most important information processing units in the
brain, critically implicated in spatial [1], associational and episodic memory storage and re-
trieval [2]. The hippocampus is a cascade of different subregions dedicated to perform distinct
and specific functional processes. Information enters from the Entorhinal Cortex (EC, the up-
stream area of hippocampus) and passes through the Dentate Gyrus, the CA3, CA2 and CA1
regions, where it is processed accordingly to form neuronal representations of memories that
will be stored and/or retrieved. Finally, suitably manipulated information from the hippocam-
pus is projected back to the cortex for further processing.
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The first information “processor” (subregion) in the hippocampal cascade is the Dentate
Gyrus (DG). The main encoding cells of DG are Granule Cells (GC) that receive sensory infor-
mation from EC and detonate the CA3 area (the downstream hippocampal subregion) by
strong synapses that are formed via mossy fiber axons [3]. These principal cells are packed
within the Granule Cell Layer [4] of the DG, and have been proposed to be organized in differ-
ent clusters [5]. Except for principal granule cells, DG incorporates other excitatory cells, called
Mossy Cells (MC), and various inhibitory cells [6], with pyramidal Basket Cells (BC) being the
most important and intensively studied [4]. Both MCs and BCs are located in another layer of
DG, the Polymorphic Cells layer, and receive excitatory afferents from principal GCs. The BCs
project back to GCs layer and inhibit cells within the same cluster [5] whereas MC exhibit
more distributed excitatory connections to GCs. Apart from the excitation to GC, MCs also ex-
cite BCs and it is evidenced that the net effect of MCs excitation is to inhibit GC via BCs in an
inter-cluster manner [7, 8]. Thus, both MCs (via the conjectured net inhibition effect) and BCs
inhibit GCs by inter- and intra-cluster lateral inhibition, respectively. Fig. 1 illustrates the two
types of lateral inhibition.

It has been proposed [2, 9–11] that the hippocampus performs two important computa-
tions, the so called pattern separation and pattern completion tasks. Pattern separation refers
to the ability of the network to reduce or eliminate the overlap between similar inputs, before
they are further processed and stored in downstream areas, in order to reduce interference dur-
ing memory recall. Pattern completion concerns the ability of the network to retrieve stored
memory patterns when triggered with partial or noisy inputs. In many models of the hippo-
campus, the DG region is considered as a preprocessing unit that performs pattern separation
on EC inputs. This conjecture is supported by anatomical and network features such as the
sparsity of neuronal activation patterns and the existence of detonator synapses between DG
and the downstream CA3 area [12]. Specifically, sparsity allows for inputs currying similar in-
formation to be encoded into non-overlapping GC populations [13]. This sparse code is subse-
quently imposed on CA3 pyramidal neurons via the strong mossy fiber connections, triggering
the storage of new memories [14]. The emergence of sparse representations in the DG has been
attributed to the interplay of intra- and inter- cluster inhibition [5, 15]. According to this
model GCs activate MCs and BCs and the subsequent net inhibition constrains DG firing, al-
lowing for sparse representations (see Fig. 1). This mechanism enables DG to translate the
noisy and dense signal of the upstream cortical areas into a sparse and specific code to be fur-
ther manipulated by the hippocampal formation for the efficient storage and recall of multiple
memory items [16].

Code transformations, from redundant signals to sparse representations, like the ones pro-
posed to be performed in the hippocampus, are extensively studied in the Signal Processing
field. For instance, an N-dimensional signal, e.g., an image,f, could be decomposed into few
components of a wavelet-based dictionaryC, i.e., f =Cx, where x is sparse, i.e., it has very few
non-zero elements. It was recently proved analytically [17] that once you have few random
measurements y (with dimensionM< N) of the initial signal, e.g., y = Ff, it is possible to
uniquely identify x as long as it is sufficiently sparse. In many cases one can exactly recover
such a sparse signal x as the solution to:

minkxk1 s: t: y ¼ Ax ð1Þ

where kxk1 denotes the l1 norm, i.e., the absolute sum of the components of vector x. It can be
shown that the l1 norm is an adequate sparsity constraint instead of the l0 norm (the number of
non-zero elements of a vector), which leads to computationally intractable algorithms. Finding
algorithms that efficiently solve Eq. 1 is an area of great interest since matrix A and vector x
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can contain millions of entries [18], in which case traditional linear programming algorithms
are too slow. Given the importance of the sparsity constraint in these algorithms and the effi-
ciency of the DG to produce sparse representations it would be interesting to investigate the
role of inter- and intra- cluster inhibition in such algorithms and, vice versa, extract valuable
insights regarding the role of the implicated cell types in pattern separation as a code transfor-
mation task.

One prevalent family of such algorithms are the iterative thresholding algorithms [19]. It
has been found both theoretically and empirically that a sparsity-promoting process intro-
duced by the thresholding procedure can solve l1 minimization problems, such as the one in
Eq. 1, provided that they have sufficiently sparse solutions. Starting from x1 = 0, the iterative
rule applies as:

xiþ1 ¼ Zðxi þ k � ðATðy � AxiÞÞ; tÞ ð2Þ

where η(.) is the thresholding function, t the threshold, and 0< κ< 1 is a relaxation parameter.
The soft thresholding function ZsðxÞ ¼ sgnðxÞðjxj � tÞþ with a fixed threshold t is directly re-
lated with the l1 norm (see S1 Text) and has been used in various settings (see for example
[20]) and extensively analyzed with regard to its convergence [21].

Figure 1. Intra- and inter- cluster inhibition in Dentate Gyrus. In intra-cluster inhibition(first column of GCs), the most excited GC excites an interneuron
which projects back to inhibit other GC within the same cluster. The samemechanism holds for the inter-cluster inhibition mediated by MCs. (MC: Mossy
Cells, GC: Granule Cells, INT: Interneurons).

doi:10.1371/journal.pone.0117023.g001
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In this work we investigate whether incorporation of the DG inhibitory mechanisms can
improve the performance of the Iterative Soft Thresholding (IST) algorithm by enhancing its
sparsification function. Particularly, we investigate the performance of the IST-based, sparse
approximation task (Eq. 1), whereby the x vector is considered to be approximated by the pop-
ulation activity of the DG in terms of the GCs firing rates. Thus, we examine only the case of
positive values approximation.

In the subsequent paragraphs we evaluate the results of the new sparse approximation algo-
rithm that incorporates the two sources of potential inhibition in the DG, hereby termed DG-
IST algorithm. Moreover we try to infer the biophysical mechanisms (i.e. cell-type specific con-
nections) that could account for the improved performance of the DG-IST algorithm. We in-
vestigate whether such mechanisms can be utilized to implement newWinner-Take-All
approaches that select which cells (x vector elements) fire (change) during the iterative approx-
imation process [22]. Apart from the implications of our method with respect to algorithmic
improvements in the signal processing field, we analyze the functional role of each inhibitory
component on sparse approximation and infer the role of the corresponding cells in a hypothe-
sized sparse approximation functionality of the DG in terms of the pattern separation task.

Results

Implementation of the DG-IST algorithm
Fig. 1 is a graphical illustration of the proposed algorithm, incorporating the simple inter- and
intra- cluster inhibition. The organization of GCs is adopted from the work of Myers and
Scharfman [5], where it is supposed to be structured in non-overlapping clusters. Each inter-
neuron (INT) is activated by all (not shown in the Figure) GCs in a cluster and, in turn, it proj-
ects back to inhibit GCs of the very same cluster, implementing a form of ‘‘winner-take-all’’
competition. Thus we assume that, all, but the most strongly activated GCs within a cluster, re-
ceive inhibition [5]. While it is unlikely that the strongest GCs lose inhibitory connections en-
tirely, this simplification reflects the realistic scenario where highly excitable GCs are able to
overcome inhibitory inputs. The same mechanism for inter-cluster inhibition is evidenced to
be implicitly mediated by MCs via disynaptic inhibition [7], as shown in Fig. 1.

In order to transfer the aforementioned inhibition mechanisms to the iterative IST algo-
rithm, vector x is transformed into a matrix xm, where each column corresponds to a cluster of
GCs. Specifically, the N-dimensional (N = 1000) vector x corresponding to the GC population,
is divided into 25 non-overlapping clusters (matrix columns) each containing 40 elements [5].
In every iteration of the DG-IST algorithm, all but the most excited GCs (largest elements) in
each column and each row are inhibited by subtracting suitably constructed matrices (see Ma-
terials and Methods), Is andMs, corresponding to intra- and inter- cluster inhibition, respec-
tively (without loss of generality we consider inter-cluster inhibition to be imposed row-wise
on matrix xm). Hence, the initial IST algorithm shown in Eq. 2 is hereby altered according to
the equation:

xmiþ1 ¼ Zs ðxmi þ k � ½ðATðy � AxiÞÞm � Is �Ms�; tÞ ð3Þ

where them notation indicates that we refer to the matrix version of the corresponding vector
as previously described. The soft thresholding function is applied to each element of the vector-
-matrix separately (see S1 Text for selected threshold value t and relaxation parameter κ).

In order to evaluate the performance of the DG-IST algorithm, the x vectors where generat-
ed with a sparsity degreea a = 2%. That is, only 2% (randomly selected) of the elements of vec-
tor x had non-zero values that were uniformly distributed in the interval [0,1]. The adopted 2%
sparsity degree was based on experimental evidence reporting that sparse representations in
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DG consist of approximately 2–4% of the GCs population [23]. The vector y was subsequently
estimated by the formula y = Ax (see Eq. 1) where matrix A is a random, Bernoulli,M × N, ma-
trix withM� a log(N/a) (a here is used in absolute values instead of percentage) [24] (see S1
Text forM estimation). The performance of both IST and DG-IST algorithms was then evalu-
ated on the task of approximating the initial vectors x, given y and A.

Case specific evaluation of the DG-IST algorithm
Fig. 2A shows the performance of the simple IST algorithm (blue) for T = 1000 iterations for a
randomly selected vector x. The vertical axis denotes the Mean Squared Error, given by

MSE ¼ 1
N

XN

k¼1
ðxk � x̂kÞ2. The DG-IST performance is depicted in green (cyan and red lines il-

lustrate the performance of other versions of the DG-IST that will be described below). As
seen in the figure, the MSE reduction rate slows down dramatically after T� 200 iterations,
and seems to saturate after T� 500 (Fig. 2A, green line). This saturation is attributed to the
fact that each cluster (column of xm) or group of GCs affected by inter-cluster inhibition (row
of xm) can contain more than one non-zero elements, i.e., elements to be approximated. The
“winner-take-all”mechanisms of the inter- and intra- cluster inhibition, however, allow only
the largest elements within a column or a row of the xm matrix to be approximated, disregard-
ing other non-zero elements. As a result, the MSE reaches a plateau reflecting the algorithm’s
failure to approximate these additional non-zero elements. This problem can be overcome by
decreasing the number of GCs receiving inhibition at the sight of saturation, thus, allowing ap-
proximation of subsequent non-zero x elements within a column or row. This artificial decay
of inhibition is implemented by modifying matrices Is andMs, every d iterations, such that all,
but the two, three etc. most strongly activated GCs (x elements) within a column or row receive
inhibition.

The performance of the DG-IST without decay of inhibition (d = inf), is illustrated in
Fig. 2A in green, as previously reported. Values of d = 1,. . .,500 for that particular x vector
were explored in order to find the optimum d value. The performance of DG-IST with opti-
mum d = opt = 171 is shown in Fig. 2A in red. Note the substantial decrease in the MSE after
T = 1000 iterations in comparison with the previous version of DG-IST, where d = inf (i.e.,
without decay of inhibition).

The approximation accuracy of DG-IST for d = inf and d = opt = 171 is shown in Fig. 2B.
Black dots denote the original x vector while green and red stems illustrate the corresponding
approximation by the DG-IST algorithm with d = inf and d = 171, respectively. Purple and or-
ange cycles show x elements that reside in the same column and row of xm, respectively. Note
that for a given column (purple cycle), when d = inf only one (of the two x elements) is approx-
imated (green stems) during the iteration process whereas the other is suppressed by intra-
cluster inhibition. The same can be seen for multiple elements within a row (orange circles,
green stems). This problem is resolved when d = opt = 171, where the gradual decrease of inhi-
bition allows for better approximation of multiple x elements (red stems). The same compari-
son between the original IST algorithm and the DG-IST, with d = opt is shown in Fig. 2C.

While the gradual decrease of inhibition (d 6¼ inf) is vital for the efficiency of the proposed
DG-IST algorithm, the d value that determines the iteration step at which removal of inhibitory
inputs takes place is case-specific. For instance, approximation of different x vectors requires
different d optimum values. In order to investigate if there is a global d value for a certain size,
N, and sparsity degree of the vector x, 100 different vectors, with the same size and sparsity
properties were constructed and the MSE error curve after 1000 iterations was calculated for
d = 1,. . .,500. S1 Fig. illustrates the average curve of the aforementioned 100 cases, that exhibits
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its minimum at d = 96. Fig. 2A (cyan line) shows the performance of DG-IST with this mini-
mum value of d = 96 and demonstrates the slight difference between the DG-IST with the opti-
mum d value and d = 96. This negligible difference is also illustrated with respect to the
approximation of each x element in Fig. 2D. Thus, for a specified sparsity level and a given
problem dimensionality (N), it is possible to extract a global d value that allows efficient ap-
proximation of any given instance of vector x. Nevertheless, the determination of a general op-
timum d value that is independent of dimensionality and sparsity constraints should be further
investigated and relative considerations are described in the “Discussion” section.

Functional interpretation of the DG-IST algorithm
In order to understand the functional aspects of the proposed DG-IST algorithm, it is necessary
to investigate the way x elements within the same, e.g., cluster (column of matrix xm), are

Figure 2. DG-IST performance. (A) MSE vs. Iterations for IST (blue), DG-IST with d = inf (green) DG-IST with d = opt = 171 (red), and DG-IST with d = 96
(cyan). (B) Sparse approximation of vector x by DG-IST with d = opt = 171 (red) and DG-IST with d = inf (green). Purple and orange highlighted stems
correspond to elements within the same column and row of matrix xm, respectively. Brown highlighted stem corresponds to a non-zero element that belongs
to a row and a column with no other non-zero elements. (C) Sparse approximation of vector x by DG-IST with d = opt = 171 (red) and IST (blue). (D) Sparse
approximation of vector x by DG-IST with d = opt = 171 (red) and d = 96 (cyan).

doi:10.1371/journal.pone.0117023.g002
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approximated. The evolution of the approximation of x elements within the purple cycle in Fig.
2B (same cluster-column) can be seen in Fig. 3, for the DG-IST with d = opt = 171 and DG-IST
with d = inf in the left and right panels, respectively. The first row of each panel (left and right)
shows how the approximation of the two elements evolves: black horizontal lines show the
original x elements to be approximated and vertical pink lines (in the left panel only) show
the iterations at which elimination of inhibition takes place for the second (T = d = 171), third
(T = 2d = 342) etc., largest elements in the corresponding column of matrix xm. The second
row of each panel illustrates the input to each GC (x element) through the iterative process, i.e.,
input ¼ k � ½ðATðy � Axmi ÞÞm � Is �Ms� ¼ k � ðError þ INT þMCÞ (see Eq. 3). The INT,
MC, and Error values that add up to form the Input value are shown in the remaining rows of
each panel, respectively. It is profound that without artificially eliminating inhibition, the sec-
ond largest element remains very low (first row, right panel, green line), due to the subtraction
of a constant value originating from the intra-cluster inhibition mechanism (third row, right
panel, green line). On the other hand the same element is adequately approximated when
gradual elimination of inhibition is used (first row, left panel, green line). Specifically when
T = d = 171, inhibition from INT (third row, left panel, green line) is eliminated and thus a se-
vere discontinuity in the Input value (second row, left panel, green line) allows for the DG-IST
algorithm to proceed with the approximation of the second largest element. Similarly, S2 Fig
depicts the evolution of the elements highlighted by the orange cycles in Fig. 2B, which belong
to the same row of matrix xm, where the same phenomenon is illustrated for the second and
third largest elements.

Interestingly, the gradual removal of inhibition also enhances the approximation of x ele-
ments that have no other elements to compete with in the same column/row, as is the case

Figure 3. Evolution of approximation for purple-highlighted elements in Fig. 2B, using DG-IST with d = opt = 171 (left panel) and DG-IST with
d = inf (right panel). First row of each panel shows the approximation evolution of the two elements, black horizontal lines declare the original elements
to be approximated and vertical pink lines (only left panel) show the iterations at which elimination of inhibition takes place for the second largest
element in the corresponding column of xm. The second row of each panel illustrates the Input to each GC through the iterative process,
input ¼ k � ½ðATðy � Axmi ÞÞm � Is �Ms� ¼ k � ðError þ INT þMCÞ. The Error, MC, and INT values that add up to form the Input value are shown in the
remaining rows of each panel.

doi:10.1371/journal.pone.0117023.g003
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highlighted with the brown cycle in Fig. 2B. Despite the fact that this particular element is from
the beginning dominant within its column and row, the alteration of the Error variable due to
the elimination of inhibition in other columns (GCs clusters) and rows also affects the Error el-
ement for this particular value. This causes a slightly slower decrease in the Error term and, as
a result, the evolution of the approximation of that element is affected due to the soft threshold-
ing function (see S3 Fig).

A similar comparison, this time between IST and DG-IST with d = opt, is shown in Fig. 4,
where the approximation history for the elements in the purple cycle (same cluster) of Fig. 2B
is depicted. Note that in the IST algorithm there are no MC and INT components. The corre-
sponding graphs are depicted here for consistency reasons. The dominant difference between
the two algorithms is that IST approximates the two elements simultaneously, and it essentially
fails to approximate both of them, whereas the DG-IST initially isolates the most dominant ele-
ment while keeping constant the second largest element until the first inhibition elimination,
i.e., until T = d = opt. This is accomplished through the inhibition mechanism; in this case, by
the intra-cluster inhibition (this is the reason that MC component is zero). As a result, the
Error term of the most dominant element (blue line) decreases slower in DG-IST than in the
IST algorithm and the soft thresholding function leads to a faster increase of the element under
approximation. As soon as the elimination of inhibition happens, a slight jump in the Input
value triggers the approximation of the second dominant element within the particular cluster.
It should also be noted that the Error component of the second largest element (green) remains

Figure 4. Evolution of approximation for purple-highlighted elements in Fig. 2B, using DG-IST with d = opt = 171 (left panel) and IST (right panel).
First row of each panel shows the evolution of the two elements, black horizontal lines declare the original elements to be approximated and vertical pink lines
(only left panel) show the iterations at which elimination of inhibition takes place for the second largest element in the corresponding column of matrix xm. The
second row of each panel illustrates the Input to each GC through the iterative process, input ¼ k � ½ðATðy � Axmi ÞÞm � Is �Ms� ¼ k � ðError þ INT þMCÞ. The
Error, MC, and INT values that add up to form the Input value are shown in the remaining rows of each panel.

doi:10.1371/journal.pone.0117023.g004
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nearly constant (and so does the corresponding element under approximation—green line,
first row) until the first elimination, which then enables the approximation of this particular el-
ement. In contrast, in the IST algorithm the Error term decreases rapidly. Taking into account
that the Error term is the one subject to optimization as the task proceeds (see Eq. 1), it is vital
that this parameter is dissociated for the two (or more) elements under consideration. This is
the most valuable contribution of the proposed algorithm: it dissociates the approximation pro-
cess for multiple elements within the same column and/or row of the xm matrix (i.e. for multiple
highly active GC cells) and this is accomplished by the intra- or inter-cluster inhibition that pre-
serves the Error term for the less dominant x elements (i.e. 2nd, 3rd etc highly active GC cells)
until inhibition elimination takes place. As can be seen in Fig. 3 (right panel), this dissociation
is not exploited unless the gradual elimination of inhibition takes place.

The mathematical interpretation of the abovementioned dissociation of, e.g., elements x1
and x2, can be explained if we take into account that the IST algorithm is a Majorization-
Minimization (MM) procedure [25] (see S1 Text). In order to simply illustrate the difference of
the approximation process between the two algorithms, assume that we want to find the two el-
ements x1 and x2 that minimize the function J(x) of Fig. 5A. According to the MM process, if it
is difficult to minimize function J(x), another function, G(x) is minimized for which, G(x)�
J(x) 8 x and G(xk) = J(xk) (Fig. 5B, yellow surface), where xk is the initialization point for vector
x (Fig. 5D, black arrow). As soon as the vector x0, that minimizes G(x), is found (blue arrow in
Fig. 5D), then xk x0 and the MM process continues with a new G(x). The DG-IST algorithm,
chooses a different G(x) (see Fig. 5C) such that, G(x)� J(x) 8 x2 with x1 = const (this value rep-
resents actually the second dominant element to be approximated, see Fig. 3, left panel, first
row, green line) and G(xk) = J(xk). For instance, in Fig. 5E, a different G(x) is chosen but the
optimization process starts from the same xk (black arrow). The DG-IST algorithm finds the
minimum of G(x) with constant x1 by changing x2 (in Fig. 3: constant green line in left panel
while most dominant value (blue line) is under approximation, i.e., changes). Thus faster ap-
proximation of x2 is accomplished in comparison with the IST algorithm (see blue dashed lines
in Fig. 5D and 5E. In Fig. 5E, the approximated x2 is closest to the global minimum of J(x)). As
soon as the elimination of the inhibition for element x1 happens, the whole process resembles
the one of the simple IST algorithm for the particular cluster where x1 and x2 elements reside.
Finally, the same mechanism applies for three or more elements within the same, e.g., column
(cluster) of matrix xm.

Case independent evaluation of the DG-IST algorithm
The experiments described so far evaluated the performance of the new DG-IST algorithm in a
case-specific manner. In order to evaluate the algorithm independently of the x vector, the
sparsity-undersampling tradeoff must be tested by estimating the phase transition (PT)
curve [26]. Fig. 6 illustrates the PT of IST (blue) and DG-IST (red) with d = 96. The domain of
(δ, ρ) = (M/N,a/M) 2 (0,1) is divided in two phases: the “success” phase and the “failure”
phase. The former refers to the case where sparse approximation is successful in terms of a pre-
defined target (See Materials and Methods) and the latter refers to the failure of the sparse ap-
proximation process. The region above the PT curve represents the “failure” case whereas the
region below it represents the “success” case. Thus, better performance is depicted as a larger
lower region compared to the upper one. As declared from its definition, d ¼ M

N
, is the under-

sampling fraction, i.e., how many measurements of a signal f are used for the approximation,
in relation to the size of that signal. Furthermore, r ¼ a

M
, is a measure of the sparsity of the sig-

nal x. According to Fig. 6, DG-IST outperforms the simple IST algorithm, except for the cases
where, approximately, δ� 0.7. For large δ values, the sparsity degree α = ρM rises accordingly
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and, as a result, the probability of having many non-zero elements within a single column or
row of matrix xm rises as well. The PT curve of DG-IST (red) in Fig. 6 is estimated with d = 96.
Note that as the signal becomes denser, i.e. less sparse (i.e., δ� 0.7), faster elimination of inhi-
bition (smaller d) is necessary in order to approximate less dominant elements within, e.g.,
a cluster. Moreover, for d = 96, at most 10 elements can be relieved from inhibition after

Figure 5. Majorization-Minimization by IST and DG-IST. (A) the J(x) function to be minimized. (B) TheG(x) (yellow surface) function whereG(x)� J(x) 8 x
andG(xk) = J(xk), IST algorithm. (C)G(x)� J(x) 8 x2 with x1 = const andG(xk) = J(xk), DG-IST algorithm. (D) xk is the initialization point of vector x (black
arrow) and blue arrow indicates the x0 ¼ ðx01; x02Þ whereG(x) is minimized, IST algorithm. (E) xk is the initialization point of vector x (black arrow, same as in
(D)) and blue arrow indicates the x@ ¼ ðx@1; x@2Þ whereG(x) is minimized, DG-IST algorithm. Notice that, x@2 < x02, thus closer to the point where J(x) is
minimized (see (A)).

doi:10.1371/journal.pone.0117023.g005
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T = 1000 iterations whereas, theoretically, it is possible to have 40 non-zero elements within a
cluster as the xm matrix in our simulations is a 40 × 25 matrix. In order to overcome this issue,
the PT transition curve was re-estimated for DG-IST with much faster elimination of inhibi-
tion, using d = 20 (Fig. 6, green). Thus, all possible inhibition eliminations were accomplished
until T = 800. In this case, DG-IST outperforms the IST algorithm for all undersampling frac-
tions δ and, more importantly, with higher “success” than in the case of d = 96.

Finally, the cases where intra- (INT) or inter- (MC) inhibition is not used (i.e. Is orMs are
omitted, respectively), were also investigated for the 100 instances of x vectors previously de-
scribed (N = 1000, a = 2%,M� a log(N/a)). Fig. 7A shows the mean MSE of all 100 vectors x
for T = 1000 iterations. Note that after 1000 iterations the MSE differences between DG-IST
(with optimal d value for each case) and its alterations without MC- or INT- dependent inhibi-
tion are not significant (see magnification insert). This is also evidenced by the box plot of the
MSEs for the different cases after 1000 iterations (Fig. 7B). There is no significant difference be-
tween the various versions of the DG-IST algorithm but only between DG-IST and simple IST.
Nevertheless, the analysis presented here incorporated both MC and INT inhibition as there
were cases like the one in Fig. 7C where both inhibition mechanisms played an important role
in sparse approximation. Overall, these results suggest that the two types of inhibition are im-
portant, but one can often correct for the biases introduced by the elimination of the other, im-
plying some form of redundancy.

Figure 6. Phase transition curves for DG-IST with d = 96 (red line), d = 20 (green line) and IST (blue
line).

doi:10.1371/journal.pone.0117023.g006
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Discussion
This work uses features of the DG circuitry to extend and improve the state of the art IST algo-
rithm which is extensively used for sparse approximation tasks. Like other approximation algo-
rithms, the performance of the simple IST can be improved by optimizing its parameters, e.g.,
the threshold for the soft thresholding function ηs [19]. This work has shown that incorpo-
ration of DG features is sufficient to improve performance of the simplest form of IST, without
extensive parameter optimization. Moreover, as shown in Fig. 7, incorporation of either the
intra- or inter- cluster inhibition would generally lead to similar results as in the case were both
inhibitory mechanisms are used. Hence, the usage of only one inhibitory mechanism and, thus,
the discretization into clusters or groups of inter-cluster neurons reveals the potential

Figure 7. DG-IST without INT- or MC- mediated inhibition. (A) Mean MSE of 100 instances of x vectors with: N = 1000, a = 2%,M� a � log(N/a) estimated
using IST (blue), DG-IST with d = 96 (red), DG-IST with d = 96 without INT-mediated inhibition (green), and DG-IST with d = 96 without MC-mediated
inhibition (black) (Inset: magnification of the last 100 iterations). (B) Boxplots of the MSE of 100 instances of x vectors with: N = 1000, a = 2%,M� a � log(N/a)
estimated using IST, DG-IST with d = 96, DG-IST with d = 96 without INT-mediated inhibition, and DG-IST with d = 96 without MC-mediated inhibition. (C)
MSE of a specific instance of vector x with: N = 1000, a = 2%,M� a � log(N/a) estimated using IST (blue), DG-IST with d = 96 (red), DG-IST with d = 96
without INT-mediated inhibition (green), and DG-IST with d = 96 without MC-mediated inhibition (black).

doi:10.1371/journal.pone.0117023.g007
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parallelization of the IST algorithm provided that lateral inhibition along with functional mod-
ules of gradual elimination of inhibition are used for each parallel module.

The Error term of the GC input (see Eq. 3) implies the need of a plausible biological sub-
strate for such an error signaling mechanism. Taking into account models that describe self-or-
ganized representations in hippocampus we assume that the Error term is provided by a
hippocampal region other than the DG. Particularly, except for the direct projection of DG to
CA3 there is also a backprojection path from CA3 to DG [27, 28]. The role of this backprojec-
tion on pattern separation in the DG was previously theoretically investigated [15] revealing its
contribution to sparsity promotion through inhibition. Based on this evidence, we propose that
the Error term is produced in the CA3 region and is fed back to DG in an effort to find the
sparsest population in DG, i.e., the vector x. Then, the algorithm evolves and the next step
(each step is considered as the loop DG-CA3-DG) incorporates the sparser projection from
DG to CA3 causing a new CA3 representation that is iteratively compared with the initial re-
presentation caused by the perforant path [29].

Gradual elimination of inhibition and the corresponding, case-specific, step value d are im-
portant elements for the improved performance of the DG-IST algorithm. The requirement for
case-specific, optimal parameters is definitely a drawback of any sparse approximation algo-
rithm, which should be applicable to different case scenarios independently of vector x size,
sparsity level, and the undersampling parameter. Note that elimination of inhibition is neces-
sary to allow approximation of more than one element within, e.g., a cluster (column of xm).
Since the elements of matrix xm are considered to be the firing rates of GCs, in a winner-take-
all scheme of inhibition, the most excited GCs do not allow other GCs to fire, i.e., increase their
firing rate, through feedback inhibition (each GC excites an interneuron which projects back to
inhibit all GCs within a cluster but the one that initially excited the interneuron). Thus, elimi-
nation of inhibition serves as a correction step to the winner-take-all scheme of inhibition that
has been implemented, by allowing slightly less stimulated GCs to fire, i.e., x vector elements to
be approximated. The biophysical substrate of this regulation of inhibition may reside in the
synaptic plasticity mechanisms that have been documented for DG interneurons [30]. More-
over, a mechanism that explains which GC fire within an inhibition framework like the one im-
plemented here would further elucidate the importance of the d value and provide valuable
insights on its robust determination and, simultaneously for its possible biological substrate.
Such a mechanism was recently proposed [22] and is highly related to gamma oscillations, a
prevalent rhythm within DG and hippocampus in general [31].

According to [22], gamma oscillations arise through feedback inhibition [31] but in a win-
ner-take-all framework, in many cases, there are more than one winners (as desired for a clus-
ter-column of xm with multiple elements to be approximated). Thus, an alternative theory, the
E%-max winner-take-all has been proposed, according to which in any given gamma cycle,
principal cells fire only if their excitation level is within E% of the excitation level of the most
excited cell [22]. For instance, consider two neurons, N1 and N2, with N1’s activity being
slightly higher (within E%) than N2’s. N1 will fire first and will trigger an interneuron. Because
N2’s activity is only slightly lower than N1’s, it will reach the firing threshold before inhibition
is fed back by the triggered interneuron. Thus, the E%-max mechanism is highly related to the
artificially imposed relaxation of inhibition adopted in this work. Further investigation of the
aforementioned mechanism is likely to reveal a global rule for the determination of d. Accord-
ing to this mechanism, the optimal d will be such that if the DG-IST algorithm is segmented to
gamma cycles, the number of elements of the xmmatrix (per column or row) that remain active
and, thus, eligible for approximation, depends on the balance between excitation and inhibi-
tion. Specifically, it is evidenced that, cycle-by-cycle, gamma oscillations exhibit variations on
amplitude that reflect changes in synaptic excitation spanning an order of magnitude [32]. In

Dentate Gyrus and Sparse Approximation

PLOS ONE | DOI:10.1371/journal.pone.0117023 January 30, 2015 13 / 17



turn, excitation is proportionally counterbalanced through inhibition. Thus, this interplay be-
tween excitation and inhibition, which depends on the amplitude of gamma oscillations, may
influence the E% criterion and subsequently determine the time point that an increasing num-
ber of cells become activated (d value in the DG-IST algorithm). We assume that, the algorith-
mic step is defined by the reciprocal connection of DG and CA3 regions whereas the
determination of the time point d is influenced by the gamma-based excitation-inhibition
counterbalance. Gamma oscillatory dynamics that account for DG-CA3 coupling have already
been described [33], making possible a potential functional synergism between these two re-
gions for the sparse approximation task described in this paper. Finally, we predict that the
theta-based regulation of inhibition in hippocampus [34] corresponds to the regulation of the
approximation task in terms of the fulfillment of the stopping criteria of the approximation, i.
e., theta oscillations determine the number of required iterations for the DG-IST algorithm.
Further investigation of this issue will not only clarify the role of d in the approximation proce-
dure but will also reveal its biological substrate, presuming that it is related with the E%-max
mechanism and active population selection in DG.

Finally, the improved performance seen by dissociating the approximation of multiple ele-
ments within a cluster (multiple GC activities) sheds new light on the contribution of MC- and
INT-mediated inhibition for the pattern separation task. Pattern separation guarantees that
two separate inputs from EC, even slightly different from each other, are coded by two separate
activation patterns in CA3 [35]. The dissociation of the approximation imposed by DG-IST
may relate to the fact that slight differences in EC input can recruit new GCs, that were initially
inactive. In a sparse approximation task, pattern separation refers to the fact that measure-
ments, y1 and y2 of different signals, f1 and f2 are due to the different representations, x1and x2
(see S1 Text for more information on sparse representations of signals based on a dictionary
setC). Thus, it would be interesting to investigate whether DG performs pattern separation in
terms of estimating a sparse representation of two slightly different sources of activation in the
cortex, as recently proposed [29]. For instance, assuming that the EC input refers to a dictio-
naryC. This dictionary could be the activity of grid cells [36] which can be considered as peri-
odic basis functions. It has been proposed that grid fields of different spacing, combine linearly
to generate place fields in the hippocampus, and could, thus, comprise a respective dictionary
for place cells. Slightly different activation sources in the cortex that have sparse representa-
tions in a grid-cell-dictionary may have significantly different representation in DG, assuming
that GCs activation is the product of a sparse approximation process. This will also elucidate
the advantages that inter- or intra- inhibition provides to sparse approximation algorithms as
illustrated here for the DG-IST approach. Nevertheless, the idea that DG performs pattern sep-
aration as an alternative manifestation of a sparse approximation task demands further experi-
mental and computational investigation.

In sum this work shows that there are certain features in the DG that can account for the re-
quirements imposed by an optimization algorithm such as the IST and can significantly im-
prove its performance. These findings suggest that DG may play a key role in both sparse
approximation and pattern separation functions, much like the two sides of the same coin.

Materials and Methods
In this section we briefly describe the implementation of the algorithmic constituents of the
DG-IST algorithm that were added to the original IST, i.e., the estimation of the Is andMs ma-
trices and the gradual elimination of inhibition. We also give a comprehensive algorithmic de-
scription of the PT curve estimation.
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DG-IST algorithm
The main additions to the common IST algorithm was the Is andMs matrices, inspired by the
intra- and inter- inhibition processes within DG. As illustrated in Fig. 1, GCs excite interneu-
rons and MCs and then receive inhibitory feedback (explicitly or implicitly). In a winner-take-
all scheme, only one neuron does not receive inhibition whereas that rest neurons within a
cluster (or inter-cluster group of neurons) are inhibited. In the E%-max-winner-take-all
scheme, more than one neurons, e.g., r neurons, may be active and not suppressed by the feed-
back inhibition. Thus, the rmost excited GCs within a cluster or an inter-cluster group (i.e.,
within a column or row of matrix xm) are considered to surpass inhibition. Thus, in order to
model this mechanism in a matrix-like and algorithmically efficient implementation, matrices
Is andMs equal matrix xm except for the r largest elements of each row and column, respective-
ly, which were substituted with zeros. More particularly, each column of matrix Is contains the
same values of the corresponding column of matrix xm, except for the r largest values of that
column which where substituted with zeros. The same row-wise estimation was implemented
for matrixMs Finally, these matrices were subtracted from the initial xm matrix after being
multiplied by the scaling factor κ (see Eq. 3).

The elimination-of-inhibition module is implemented by changing the r value. Thus, every
d iteration steps we set r r +1, where initially r = 1.

Phase Transition curve estimation
For each one of the two sparse approximation algorithms a specifically designed phase transi-
tion measurement experiment was conducted as follows [26]. A problem suite was defined, i.e.,
a matrix A and a vector x that comprise a problem instance (A,x). A grid of δ values is also de-
fined in [0,1]. In particular, 50 equispaced values between 0.005 and 0.95 were used for δ grid
construction. Subordinate to δ grid, another ρ grid is considered with 100 equispaced values be-
tween 0.01 and 0.99. For each (δ, ρ) 2 [0,1]2, F problem instances are generated; here F = 20. In
particular if the problem size, i.e., N is defined, we setM = d δ�N e and α = d ρ�M e and generate
the aforementioned problem instances. The sparse approximation algorithms are called with
the arguments (y,A) and lead to a solution, x̂ , which corresponds to a measure of success, de-
clared as:

ky � Ax̂k2
kyk2

� tol; ð4Þ

where tol = 10−1. The phase transition curve is defined as the value ρ at which success probabil-
ity is 50%. We conduct this experiment 100 times and the median of the 100 individual curves
are considered the final PT curve depicted in Fig. 6 for each algorithmic implementation.

Supporting Information
S1 Fig. Finding optimal d for certain x vector construction. 100 instances of vector x were
generated with: N = 1000, a = 2%,M� a�log(N/a). Blue line illustrates the mean MSE of these
instances by DG-IST for d = 1,. . .,500. MinimumMSE value is at d = 96.
(TIF)

S2 Fig. Evolution of approximation for orange-highlighted elements in Fig. 2B, using DG-IST
with d = opt = 171 (left panel) and DG-IST with d = inf (right panel). First row of each panel
shows the evolution of the three elements, black horizontal lines declare the original elements to
be approximated and vertical pink lines (only left panel) show the iterations at which elimina-
tion of inhibition takes place for the second and third largest elements in the corresponding row
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of matrix xm. The second row of each panel illustrates the Input to each GC through the iterative
process, input ¼ k � ½ðATðy � Axmi ÞÞm � Is �Ms� ¼ k � ðError þ INT þMCÞ. The Error, MC,
and INT values that add up to form the Input value are shown in the remaining rows of each
panel.
(TIF)

S3 Fig. Evolution of approximation for brown-highlighted elements in Fig. 2B, using
DG-IST with d = opt = 171 (left panel) and DG-IST d = inf (right panel). First row of
each panel shows the approximation evolution for the element, black horizontal lines
declare the original element to be approximated and vertical pink lines (only left panel)
show the iterations at which elimination of inhibition takes place. The second row of
each panel illustrates the Input to the GC through the iterative process,
input ¼ k � ½ðATðy � Axmi ÞÞm � Is �Ms� ¼ k � ðError þ INT þMCÞ. The Error, MC, and INT
values that add up to form the Input value are shown in the remaining rows of each panel.
Note, that for this case there are no MC and INT variables for the Input and the only parameter
that changes is the Error. Magnifications show the difference in Error change between the two
methods and the corresponding impact on the value approximation due to the soft threshold-
ing process.
(TIF)

S1 Text. Iterative Soft Thresholding (IST) algorithm as a Majorization-Minimization
(MM) optimization process and basic principles of Compressed Sensing theory.
(PDF)

Author Contributions
Conceived and designed the experiments: PCP PP. Performed the experiments: PCP. Analyzed
the data: PCP. Contributed reagents/materials/analysis tools: PCP. Wrote the paper: PCP PP.

References
1. Moser EI, Kropff E, Moser M-B (2008) Place cells, grid cells, and the brain’s spatial representation sys-

tem. Annu Rev Neurosci 31: 69–89. doi: 10.1146/annurev.neuro.31.061307.090723 PMID: 18284371

2. Rolls ET (2010) A computational theory of episodic memory formation in the hippocampus. Behav
Brain Res 215: 180–196. doi: 10.1016/j.bbr.2010.03.027 PMID: 20307583

3. Nicoll R, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci
6: 863–876. doi: 10.1038/nrn1786 PMID: 16261180

4. Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical orga-
nization (dentate gyrus for dummies). Prog Brain Res 163: 3–22. doi: 10.1016/S0079-6123(07)63001-
5 PMID: 17765709

5. Myers CE, Scharfman HE (2009) A role for hilar cells in pattern separation in the dentate gyrus: a
computational approach. Hippocampus 19: 321–337. doi: 10.1002/hipo.20516 PMID: 18958849

6. Freund TF, Buzsáki G (1998) Interneurons of the hippocampus. Hippocampus 6: 347–470. doi: 10.
1002/(SICI)1098-1063(1996)6:4%3C347::AID-HIPO1%3E3.0.CO;2-I

7. Jinde S, Zsiros V, Nakazawa K (2013) Hilar mossy cell circuitry controlling dentate granule cell excit-
ability. Front Neural Circuits 7: 14. doi: 10.3389/fncir.2013.00014 PMID: 23407806

8. Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, et al. (2012) Hilar mossy cell degeneration causes tran-
sient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76: 1189–1200.
doi: 10.1016/j.neuron.2012.10.036 PMID: 23259953

9. Rolls ET, Kesner RP (2006) A computational theory of hippocampal function, and empirical tests of the
theory. Prog Neurobiol 79: 1–48. doi: 10.1016/j.pneurobio.2006.04.005 PMID: 16781044

10. Neunuebel JP, Knierim JJ (2014) CA3 retrieves coherent representations from degraded input: direct
evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron 81: 416–427. doi:
10.1016/j.neuron.2013.11.017 PMID: 24462102

Dentate Gyrus and Sparse Approximation

PLOS ONE | DOI:10.1371/journal.pone.0117023 January 30, 2015 16 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117023.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117023.s004
http://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
http://www.ncbi.nlm.nih.gov/pubmed/18284371
http://dx.doi.org/10.1016/j.bbr.2010.03.027
http://www.ncbi.nlm.nih.gov/pubmed/20307583
http://dx.doi.org/10.1038/nrn1786
http://www.ncbi.nlm.nih.gov/pubmed/16261180
http://dx.doi.org/10.1016/S0079-6123(07)63001-5
http://dx.doi.org/10.1016/S0079-6123(07)63001-5
http://www.ncbi.nlm.nih.gov/pubmed/17765709
http://dx.doi.org/10.1002/hipo.20516
http://www.ncbi.nlm.nih.gov/pubmed/18958849
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:4%3C347::AID-HIPO1%3E3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:4%3C347::AID-HIPO1%3E3.0.CO;2-I
http://dx.doi.org/10.3389/fncir.2013.00014
http://www.ncbi.nlm.nih.gov/pubmed/23407806
http://dx.doi.org/10.1016/j.neuron.2012.10.036
http://www.ncbi.nlm.nih.gov/pubmed/23259953
http://dx.doi.org/10.1016/j.pneurobio.2006.04.005
http://www.ncbi.nlm.nih.gov/pubmed/16781044
http://dx.doi.org/10.1016/j.neuron.2013.11.017
http://www.ncbi.nlm.nih.gov/pubmed/24462102


11. McClelland JL, Goddard NH (1996) Considerations arising from a complementary learning systems
perspective on hippocampus and neocortex. Hippocampus 6: 654–665. doi: 10.1002/(SICI)1098-1063
(1996)6:6%3C654::AID-HIPO8%3E3.3.CO;2-D PMID: 9034852

12. Leutgeb JK, Leutgeb S, Moser M-B, Moser EI (2007) Pattern separation in the dentate gyrus and CA3
of the hippocampus. Science 315: 961–966. doi: 10.1126/science.1135801 PMID: 17303747

13. Treves A, Tashiro A, Witter MP, Moser EI (2008) What is the mammalian dentate gyrus good for? Neu-
roscience 154: 1155–1172. doi: 10.1016/j.neuroscience.2008.04.073 PMID: 18554812

14. Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to
the hippocampal CA3 network. Hippocampus 2: 189–199. doi: 10.1002/hipo.450020209 PMID: 1308182

15. Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3 backprojec-
tion. Hippocampus 21: 1190–1215. doi: 10.1002/hipo.20828 PMID: 20683841

16. Acsády L, Káli S (2007) Models, structure, function: the transformation of cortical signals in the dentate
gyrus. Prog Brain Res 163: 577–599. doi: 10.1016/S0079-6123(07)63031-3 PMID: 17765739

17. Candes EJ, Tao T (2006) Near-Optimal Signal Recovery From Random Projections: Universal Encod-
ing Strategies? IEEE Trans Inf Theory 52: 5406–5425. doi: 10.1109/TIT.2006.885507

18. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52: 1289–1306. doi: 10.1109/TIT.
2006.871582

19. Maleki A, Donoho D (2010) Optimally Tuned Iterative Reconstruction Algorithms for Compressed Sens-
ing. IEEE J Sel Top Signal Process 4: 330–341. doi: 10.1109/JSTSP.2009.2039176

20. Sardy S, Bruce AG, Tseng P (2000) Block Coordinate Relaxation Methods for Nonparametric Wavelet
Denoising. J Comput Graph Stat 9: 361–379. doi: 10.1080/10618600.2000.10474885

21. Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse prob-
lems with a sparsity constraint. Commun Pure Appl Math 57: 1413–1457. doi: 10.1002/cpa.20042

22. De Almeida L, Idiart M, Lisman JE (2009) A second function of gamma frequency oscillations: an E
%-max winner-take-all mechanism selects which cells fire. J Neurosci 29: 7497–7503. doi: 10.1523/
JNEUROSCI.6044-08.2009 PMID: 19515917

23. Schmidt B, Marrone DF, Markus EJ (2012) Disambiguating the similar: the dentate gyrus and pattern
separation. Behav Brain Res 226: 56–65. doi: 10.1016/j.bbr.2011.08.039 PMID: 21907247

24. Candes EJ, Wakin M (2008) An Introduction To Compressive Sampling. IEEE Signal Process Mag 25:
21–30. doi: 10.1109/MSP.2007.914731

25. Figueiredo MAT, Bioucas-Dias JM, Nowak RD (2007) Majorization–Minimization Algorithms for
Wavelet-Based Image Restoration. IEEE Trans Image Process 16: 2980–2991. doi: 10.1109/TIP.
2007.909318 PMID: 18092597

26. Donoho DL, Maleki A, Montanari A (2009) Message-passing algorithms for compressed sensing. Proc
Natl Acad Sci U S A 106: 18914–18919. doi: 10.1073/pnas.0909892106 PMID: 19858495

27. Scharfman HE (2007) The CA3 “backprojection” to the dentate gyrus. Prog Brain Res 163: 627–637.
doi: 10.1016/S0079-6123(07)63034-9 PMID: 17765742

28. Lisman JE, Talamini LM, Raffone A (2005) Recall of memory sequences by interaction of the dentate
and CA3: a revised model of the phase precession. Neural Netw 18: 1191–1201. doi: 10.1016/j.
neunet.2005.08.008 PMID: 16233972

29. Petrantonakis P, Poirazi P (2014) A Compressed Sensing Perspective of Hippocampal Function.

30. Ross ST, Soltesz I (2001) Long-term plasticity in interneurons of the dentate gyrus. Proc Natl Acad Sci
U S A 98: 8874–8879. doi: 10.1073/pnas.141042398 PMID: 11438685

31. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibito-
ry interneuron networks. Nat Rev Neurosci 8: 45–56. doi: 10.1038/nrn2044 PMID: 17180162

32. Atallah B V, Scanziani M (2009) Instantaneous modulation of gamma oscillation frequency by balancing
excitation with inhibition. Neuron 62: 566–577. doi: 10.1016/j.neuron.2009.04.027 PMID: 19477157

33. Akam T, Oren I, Mantoan L, Ferenczi E, Kullmann DM (2012) Oscillatory dynamics in the hippocampus
support dentate gyrus–CA3 coupling. Nat Neurosci 15: 763–768. doi: 10.1038/nn.3081 PMID:
22466505

34. Royer S, Zemelman B V, Losonczy A, Kim J, Chance F, et al. (2012) Control of timing, rate and bursts
of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci 15: 769–775. doi: 10.
1038/nn.3077 PMID: 22446878

35. Bakker A, Kirwan C, Miller M, Stark C (2008) Pattern separation in the human hippocampal CA3 and
dentate gyrus. Science (80- ) 319: 1640–1642. doi: 10.1126/science.1152882

36. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the ento-
rhinal cortex. Nature 436: 801–806. doi: 10.1038/nature03721 PMID: 15965463

Dentate Gyrus and Sparse Approximation

PLOS ONE | DOI:10.1371/journal.pone.0117023 January 30, 2015 17 / 17

http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:6%3C654::AID-HIPO8%3E3.3.CO;2-D
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:6%3C654::AID-HIPO8%3E3.3.CO;2-D
http://www.ncbi.nlm.nih.gov/pubmed/9034852
http://dx.doi.org/10.1126/science.1135801
http://www.ncbi.nlm.nih.gov/pubmed/17303747
http://dx.doi.org/10.1016/j.neuroscience.2008.04.073
http://www.ncbi.nlm.nih.gov/pubmed/18554812
http://dx.doi.org/10.1002/hipo.450020209
http://www.ncbi.nlm.nih.gov/pubmed/1308182
http://dx.doi.org/10.1002/hipo.20828
http://www.ncbi.nlm.nih.gov/pubmed/20683841
http://dx.doi.org/10.1016/S0079-6123(07)63031-3
http://www.ncbi.nlm.nih.gov/pubmed/17765739
http://dx.doi.org/10.1109/TIT.2006.885507
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/JSTSP.2009.2039176
http://dx.doi.org/10.1080/10618600.2000.10474885
http://dx.doi.org/10.1002/cpa.20042
http://dx.doi.org/10.1523/JNEUROSCI.6044-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.6044-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19515917
http://dx.doi.org/10.1016/j.bbr.2011.08.039
http://www.ncbi.nlm.nih.gov/pubmed/21907247
http://dx.doi.org/10.1109/MSP.2007.914731
http://dx.doi.org/10.1109/TIP.2007.909318
http://dx.doi.org/10.1109/TIP.2007.909318
http://www.ncbi.nlm.nih.gov/pubmed/18092597
http://dx.doi.org/10.1073/pnas.0909892106
http://www.ncbi.nlm.nih.gov/pubmed/19858495
http://dx.doi.org/10.1016/S0079-6123(07)63034-9
http://www.ncbi.nlm.nih.gov/pubmed/17765742
http://dx.doi.org/10.1016/j.neunet.2005.08.008
http://dx.doi.org/10.1016/j.neunet.2005.08.008
http://www.ncbi.nlm.nih.gov/pubmed/16233972
http://dx.doi.org/10.1073/pnas.141042398
http://www.ncbi.nlm.nih.gov/pubmed/11438685
http://dx.doi.org/10.1038/nrn2044
http://www.ncbi.nlm.nih.gov/pubmed/17180162
http://dx.doi.org/10.1016/j.neuron.2009.04.027
http://www.ncbi.nlm.nih.gov/pubmed/19477157
http://dx.doi.org/10.1038/nn.3081
http://www.ncbi.nlm.nih.gov/pubmed/22466505
http://dx.doi.org/10.1038/nn.3077
http://dx.doi.org/10.1038/nn.3077
http://www.ncbi.nlm.nih.gov/pubmed/22446878
http://dx.doi.org/10.1126/science.1152882
http://dx.doi.org/10.1038/nature03721
http://www.ncbi.nlm.nih.gov/pubmed/15965463


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


