
REVIEW
published: 20 November 2019

doi: 10.3389/fendo.2019.00788

Frontiers in Endocrinology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 788

Edited by:

Damian G. Romero,

University of Mississippi Medical

Center, United States

Reviewed by:

Julio Sartori-Valinotti,

Mayo Clinic, United States

Anne-Francoise Burnol,

Institut National de la Santé et de la

Recherche Médicale

(INSERM), France

*Correspondence:

Min Chen

drchenmin@126.com

Rong Yuan

ryuan@siumed.edu

Specialty section:

This article was submitted to

Cellular Endocrinology,

a section of the journal

Frontiers in Endocrinology

Received: 29 August 2019

Accepted: 29 October 2019

Published: 20 November 2019

Citation:

Hu Y, Zhu Y, Lian N, Chen M, Bartke A

and Yuan R (2019) Metabolic

Syndrome and Skin Diseases.

Front. Endocrinol. 10:788.

doi: 10.3389/fendo.2019.00788

Metabolic Syndrome and Skin
Diseases
Yu Hu 1,2, Yun Zhu 2, Ni Lian 1, Min Chen 1*, Andrzej Bartke 2 and Rong Yuan 2*

1 Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Institute of

Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China, 2Department of

Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States

The increasing prevalence of Metabolic syndrome (MetS) is a worldwide health problem,

and the association between MetS and skin diseases has recently attracted growing

attention. In this review, we summarize the associations between MetS and skin

diseases, such as psoriasis, acne vulgaris, hidradenitis suppurativa, androgenetic

alopecia, acanthosis nigricans, and atopic dermatitis. To discuss the potential common

mechanisms underlying MetS and skin diseases, we focus on insulin signaling and insulin

resistance, as well as chronic inflammation including adipokines and proinflammatory

cytokines related to molecular mechanisms. A better understanding of the relationship

between MetS and skin diseases contributes to early diagnosis and prevention, as well

as providing clues for developing novel therapeutic strategies.
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INTRODUCTION

Metabolic syndrome (MetS), first described in 1988 by GM Reaven as “syndrome X,” is a group of
abnormalities which includes abdominal obesity, hypertension, insulin resistance, and dyslipidemia
(1, 2). It is estimated that about one-quarter to one-third of the world’s population is affected by
MetS (3). Growing evidence from clinical studies suggests that there exists a strong connection
between MetS and skin diseases (4, 5). However, mechanistic insights regarding the relationship of
metabolic syndrome and skin diseases are notably lacking. In this review, we will summarize the
epidemiological evidence for the association between MetS and skin diseases, as well as discuss the
potential common mechanisms underlying MetS and skin diseases.

EPIDEMIOLOGICAL EVIDENCE OF THE CONNECTION BETWEEN
METS AND SKIN DISEASES

Psoriasis
Psoriasis is one of the most common chronic inflammatory skin diseases, with the prevalence
ranging from 0.51 to 11.43% in adults and from 0 to 1.37% in children (6). The association
between psoriasis and MetS has been investigated in numerous studies. Two recent systematic
reviews demonstrated that psoriasis patients have an increased risk for MetS (7, 8). Singh and
his colleagues (7) reviewed 17 articles involving 3,791 psoriasis patients in a group of 28,939
participants from January 1946 to June 2016, and reported a higher prevalence of both MetS
and the individual components of MetS including abdominal obesity, elevated fasting plasma
glucose, and high blood pressure in the psoriasis patients. The same group then updated
the data from June 2016 to January 2017 and conducted a meta-analysis. The meta-analysis
included 35 studies with 1,450,188 participants, of whom 46,714 were psoriasis patients.
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They found that, compared to the general population, psoriasis
patients had a higher prevalence of MetS with the pooled odds
ratio (OR) of 2.14 (95% CI 1.84–2.48) (9). Another systematic
review andmeta-analysis investigated 14 papers including 25,042
psoriasis patients and also found that 31.4% psoriasis patients had
MetS with the pooled OR of 1.42 (95% CI, 1.28–1.55) (8). When
examining the association between disease severity and MetS, a
dose-dependent relationship between Psoriasis Area and Severity
Index (PASI) and the prevalence of MetS was observed (9). The
adjusted ORs for MetS in severe, moderate, and mild psoriasis
were 1.98, 1.56, and 1.22, respectively. Additionally, a recent
population-based study in United Kingdom also supported a
positive correlation between PASI and the prevalence of MetS,
although it was not significant (OR = 1.18, 95% CI, 0.97–1.44,
p= 0.099) (10).

Acne Vulgaris
Acne vulgaris is an inflammatory disorder of the pilosebaceous
unit which affects many adolescents and young adults. A cross-
sectional study was performed by comparing the metabolic
conditions in 100 male acne patients and 100 male controls.
It showed that the prevalence of metabolic syndrome tends
to be higher in acne patients (17%) compared with controls
(9%) (p = 0.09), and also that prevalence of insulin resistance
is significantly higher in acne patients (22%) than controls
(11%) (p = 0.03) (11). Another study of 243 acne patients
and 156 controls also found that fasting insulin levels were
significantly higher in acne patients (12). However, a recent
nationwide study in Israel showed that acne and metabolism
have a complicated relationship. In this study, including 600,404
adolescents, the researchers found that overweight or obesity
is inversely associated with acne in a dose-dependent manner,
suggesting that excessive body mass index (BMI) has a protective
effect against acne (13). The possible mechanism of the protective
effect is increased aromatase activity, which leads to a greater
conversion of testosterone to estradiol (14). Estrogen is known
to act by anti-androgenic effect, inhibiting sebum secretion and
attenuating proinflammatory cytokine activity (15). Moreover,
obesity is reported to reduce the conversion of testosterone to the
more physiologically active dihydrotestosterone by suppressing
the activity of 5-α reductase-II (16).

Hidradenitis Suppurativa
Hidradenitis suppurativa (HS) is a chronic inflammatory skin
disease involving the follicular portion of folliculopilosebaceous
units with an estimated prevalence from 0.05 to 4.10% (17). The
accumulating data have shown a positive association between
HS and MetS (18–20). A cross-sectional study in Israel, which
included 3,207 HS patients and 6,412 controls, revealed that
HS was significantly associated with MetS (OR 1.61, 95%
CI 1.36–1.89) (18). When comparing the prevalence of MetS
in both hospital HS and population HS groups vs. non-HS
groups, the ORs were 3.89 (95%CI, 1.90–7.98) for hospital HS
and 2.08 (95%CI, 1.61–2.69) for population HS (19). Another
retrospective review, which enrolled 366 HS patients and 366
controls of all races, also indicated that patients with HS might
have a greater risk for MetS. They found the prevalence of MetS

in HS patients (50.6%) was significantly higher than controls
(30.2%, p= 0.001) (20).

Androgenetic Alopecia
Androgenetic alopecia (AGA) is a common type of progressive
non-scarring hair loss in both men and women. The incidence
of AGA varies by race and age. Around 30% of Caucasian men
will have AGA at the age of 30, 50% at the age of 50, and
80% at the age of 70. The prevalence of AGA in Caucasian
women is about 19%. Asians are less affected by AGA than
both male and female Caucasians (21). Numerous studies have
reported a strong association between AGA and MetS (22–26),
although one case-control study (27) in Turkey of 74 male AGA
patients and 42 controls, found that there was no difference in the
rate of MetS. However, another case-control study by Dharam
and his colleagues found a higher prevalence of MetS in AGA
patients (53%) than controls (17%) (P < 0.001) (26). Similar
findings were reported in a hospital-based cross-sectional study
in India, in which 19 of 85 (22.4%) AGA patients were affected
with MetS compared with 8 of 85 (9.4%) controls (p = 0.021)
(22). However, when analyzing the relationship between each
component of MetS and AGA, different results were reported. A
survey conducted in Taiwan noted that high-density lipoprotein
cholesterol (HDL-C) (OR 2.36, 95% CI 1.41–3.95; P= 0.001) was
the most significant factor associated with AGA (25). Another
case-control study reported that waist circumference (>102 cm)
was the most significant risk factor for AGA patients to develop
MetS with the value of 1.25 (95% CI = 1.10–1.42, P < 0.001)
(28). Similarly, the research in female AGA patients revealed
waist circumference (OR 5.6, 95% CI 2.2−13.9, P = 0.0002) and
hypertension (OR 3.5, 95% CI 1.3–8.9, P = 0.008) were the most
important factors for AGA (29).

Acanthosis Nigricans
Acanthosis nigricans (AN) is a common skin disorder
characterized by hyperpigmented, velvety patches and plaques
involving the intertriginous areas. The prevalence of AN varies
among different ages and ethnicities, reaching 25% in the general
population and even over 60% in overweight and obese children
(30). There is solid evidence for the existence of a link between
AN and MetS (31–33). For overweight and obese women, the
incidence of MetS is significantly higher in AN patients (60%)
than controls (37.6%) (p = 0.0001)(31). A case-control study,
which included 100 children who were overweight or obese,
showed that 73% of them had a diagnosis of MetS with a strong
association to AN (OR 1,872 [95% CI: 112.9–31,028]) (32).
Another cross-sectional study also found that AH in overweight
and obese children might be a clinical indicator of MetS, with the
elevation of body fat, blood pressure, insulin, and homeostasis
model assessment index (33). Furthermore, a 2-year multicenter
case-control study including 123 patients at the age of 38.83 ±

8.62 years in India, found that facial AN was strongly related to
impaired glucose tolerance, increased waist–hip ratio (WHR),
and increased BMI. The authors suggest that the facial AN might
be a potential clinical marker of MetS (34).
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Atopic Dermatitis
Atopic dermatitis (AD) is a chronic pruritic inflammatory
dermatosis which is commonly associated with other atopic
disorders including food allergies, asthma, hay fever, and allergic
rhinitis. The worldwide prevalence of AD is approximately
15–20% in children and 1–3% in adults (35). The association
between AD and MetS has not been fully clarified. A cross-
sectional study in 5,007 Korean adults reported that MetS (OR
2.92, 95% CI 1.49–5.73), central obesity (OR 1.73, 95% CI
1.09–2.75), and hypertriglyceridemia (OR 2.20, 95% CI 1.19–
4.05) correlated positively with AD in women (36). However,
unlike the psoriasis cohort, the prevalence ratios (PR) for MetS-
associated components including hypertension (PR 0.83, 95%
CI 0.81–0.85), hyperlipidemia (PR 0.94, 95% CI 0.91–0.95), and
diabetes (PR 0.82, 95% CI 0.80–0.86) showed no difference in AD
patients compared to non-AD patients (37). Moreover, a recent
systematic review, which included 14 studies evaluating the
relationship between AD and MetS, reported that the association
between AD and MetS was not causal. The associations between
hypertension, hyperglycemia, cholesterol levels, and AD all
remain unclear. According to the systematic review, central
obesity is the only component that correlates positively with AD
(38). This phenomenon was also reported in a case-control study
and a systematic review. These two studies both reported that
obesity is associated with increased prevalence and severity of
AD (39, 40).

MECHANISMS OF METS AND SKIN
DISEASES

Although the exact mechanisms of the association of MetS and
skin diseases remain vague, it is of great importance to identify
the potential common pathways behindMetS and associated skin
diseases in order to develop novel therapeutic strategies. Of all the
potential pathological mechanisms of MetS, emerging evidence
suggests that impaired insulin signaling and increased insulin
resistance, as well as elevated status of chronic inflammation, are
major risk factors that may induce skin diseases (41–43).

Insulin Signaling and Insulin Resistance
Insulin, secreted by the beta cells of the pancreas, is involved
in glucose homeostasis, lipid metabolism, and anabolic
processes by activating the insulin signaling pathways. Insulin
initiates its function by binding to insulin receptor (IR). After
stimulation, IR is activated via autophosphorylation and leads
to the phosphorylation and activation of the downstream
substrates, such as insulin receptor substrates (IRS-1, IRS-
2) and Shc. Then the phosphorylated tyrosine residues of
IRS and Shc can activate the two main insulin signaling
pathways: the phosphatidylinositol-3-kinase (PI3K)/Akt
pathway and the mitogen-activated protein kinases (MAPK)/Ras
pathway (44). In the PI3K/Akt pathway, the phosphorylated
tyrosine residues of IRS activate PI3K and phosphorylates
phosphatidylinositol (4, 5)-bisphosphate (PIP2), leading to
the formation of phosphatidylinositol 3–5 three phosphoric
acid (PIP3). Then, PIP3 facilitates the phosphorylation of Akt

by 3-Phosphoinositide-dependent protein kinase-1 (PDK1).
Once activated, Akt phosphorylates tuberous sclerosis complex
2 (TSC2) and suppresses its inhibitory effect on mechanistic
target of rapamycin complex 1 (mTORC1), thus upregulating
the activity of mTORC1, which regulates protein synthesis and
cell growth (45). The activated Akt may also phosphorylate
the downstream target FOXO1, leading to nuclear export and
inhibiting FOXO1 transcriptional activity (46). FOXO1 is
involved in adipogenesis and gluconeogenesis by controlling
the expression of lipogenic and gluconeogenic genes, as well as
cell proliferation and apoptosis (47, 48). The other branch of
the insulin signaling pathway is the MAPK/Ras pathway, which
is mediated by the growth factor binding protein 2 (Grb2).
Active Ras then interacts with, and leads to, the activation
of downstream Raf and MAP kinases ERK1/ERK2. After
activation, ERK1/2 regulates gene expression, cell proliferation,
differentiation, and cell growth by translocating to the nucleus
and catalyzing the phosphorylation of transcription factors, such
as Elk-1 and Sep-1a (Figure 1) (49, 50).

Insulin resistance is defined as the reduced responsiveness
of target tissues to normal insulin levels and is widely accepted
as the primary mechanism of the pathophysiology of MetS.
Though many cell types express insulin receptors, liver, skeletal
muscle, white adipose tissue, and brain are the main tissues
responsible for glucose homeostasis (51). In insulin resistance,
the cells are resistant to insulin and fail to maintain the
blood glucose level. To achieve a normal blood glucose
level, pancreatic β-cells secret excessive insulin, which leads
to hyperinsulinemia (52). With further resistance to insulin,
the function of β-cells is impaired and becomes insufficient
to maintain the normal blood glucose range, resulting in
hyperglycemia. A high plasma glucose level also results from
an impaired inhibitory action of insulin on hepatic glucose
production, a reduction of glycogen synthesis in hepatocytes
and the inability of skeletal muscle and adipocytes to take
up glucose (53). The possible pathophysiologic mechanisms
that provoke insulin resistance in MetS include defective
insulin signaling, impaired glucose disposal, lipotoxicity, and
inflammatory cytokines.

The two main target cell types in skin diseases, keratinocytes
and fibroblasts, both have insulin receptors and IGF receptors.
Insulin has been reported to cross the dermal-epidermal junction
to affect keratinocytes (54). The growth-promoting effects of
insulin in keratinocytes and fibroblasts rely on the following
mechanisms. First, insulin resistance and compensatory
hyperinsulinemia decrease the expression of insulin-like
growth factor binding proteins (IGFBPs) (55). IGFBPs bind
to IGFs and extend their half-life, thereby controlling the
transport of IGFs to target tissues and regulating the level
of circulation IGFs (56). The high levels of free IGF-1 lead
to the proliferation and differentiation of fibroblasts and
keratinocytes (57). IGFBPs also exert antiproliferative effects by
blocking the interaction of IGF and IGF-receptors because the
affinity of IGFs for IGFBPs is similar to that of the IGFs and
IGF-receptors (58). Second, under low insulin concentrations,
insulin is more likely to bind to its classic receptor and then
regulate glucose metabolism. Under insulin resistance and
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FIGURE 1 | The role of insulin signaling and insulin resistance in MetS and skin diseases. Insulin binds to insulin receptor (IR) and phosphorylates insulin receptor

substrates (IRS-1, IRS-2) and Shc, which activates the two main insulin signaling pathways: the phosphatidylinositol-3-kinase (PI3K)/Akt pathway and the

mitogen-activated protein kinases (MAPK)/Ras pathway. Under insulin resistance and compensatory hyperinsulinemia condition, insulin not only binds to IR, but also

binds to IGF-receptors and stimulates the proliferation of keratinocytes and fibroblasts. Moreover, insulin resistance and compensatory hyperinsulinemia could

decrease the expression of insulin-like growth factor binding proteins (IGFBPs), thus increasing biological active IGF-1 and resulting in the development of

hyperkeratosis and papillomatosis, which are demonstrated as the possible pathogenesis of acanthosis nigricans. As for acne vulgaris and hidradenitis suppurativa,

western diet and puberty increase PI3K/Akt signaling and activate mTORC1. mTOR causes the serine/threonine phosphorylation of IRS by activating S6K and

reduces its ability to be phosphorylated on tyrosine residues, which results in invalid insulin signaling and insulin resistance. mTORC1 also promotes lipid synthesis via

activating the transcription factor sterol regulatory element binding protein 1 (SREBP-1) and inducing the expression of acetyl CoA carboxylase (ACC), which is the

rate-limiting enzyme of fatty acid synthesis. In psoriasis, overactivation of PI3K and Akt phosphorylates FOXO and leads to its nuclear export, thus promoting cell

proliferation by suppressing its function of activating cell cycle inhibitors (p27KIP1 and p21) and repressing cell cycle activators (cyclin D1/D2), which contributes to

proliferation of keratinocytes. Moreover, in psoriatic condition, growth factors and relevant cytokines (IL-17A, TNF-α, and IL-1β) in psoriasis activate mTOR and then

promote keratinocyte hyperproliferation and inhibiting differentiation. In the MAPK/Ras pathway, ERK1/2 could activate upstream MEK, reduce Akt phosphorylation,

and contribute to insulin resistance. Furthermore, p-ERK1/2 have been identified to be increased in psoriatic skin, which results in the abnormal and proliferation and

differentiation of keratinocytes.

compensatory hyperinsulinemia condition, insulin might
have a potential to bind to IGF-receptors and stimulate the
proliferation of keratinocytes and fibroblasts (59). However, it
is reported that the affinity of insulin binding to IGF-receptors
is approximately 2000-fold lower than binding to IR (60). Thus,
we propose that the compensatory hyperinsulinemia exceeds
the binding capacity of IR, allowing the insulin to bind to

IGF-receptors. These two mechanisms have been proposed
as the possible pathogenesis of acanthosis nigricans. In brief,
hyperinsulinemia in acanthosis nigricans patients not only
can increase the binding of insulin and IGF-receptors, but
also can reduce IGFBPs, thus increasing biologically active
IGF-1, and resulting in the development of hyperkeratosis and
papillomatosis (54, 59).
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As for acne vulgaris and hidradenitis suppurativa, mechanistic
target of rapamycin complex 1 (mTORC1) is the key element that
associates with insulin signaling and insulin resistance (61–64).
Western diet and puberty, which are the two main risk factors of
acne vulgaris, increase insulin/IGF-1 signaling and activate Akt.
Active AKT stimulates mTORC1 activity by inhibiting TSC2.
Ribosomal S6 kinase 1(S6K1), which is a downstream target of
mTORC1, contributes to the serine/threonine phosphorylation
of IRS, thus inducing insulin resistance by antagonizing tyrosine
phosphorylation (65). mTORC1 also promotes lipid synthesis
via activating the transcription factor sterol regulatory element
binding protein 1 (SREBP-1) and inducing the expression of
acetyl CoA carboxylase (ACC), which is the rate-limiting enzyme
of fatty acid synthesis (66, 67). In acne vulgaris, overexpression
of free fatty acids such as sapienic acid, oleic acid, and palmitic
acid promotes propionibacterium acnes biofilm formation,
stimulates T helper cell 17 (Th17)-driven inflammation, and
disturbs follicular keratinization and barrier function (68). The
role of mTORC1 in hidradenitis suppurativa is related to its
function in cell proliferation, especially in sebaceous glands and
keratinocytes. Taken together, Western diet and puberty, in the
conditions of acne and hidradenitis suppurativa, increase insulin
signaling and activate mTORC1. Increased mTORC1 activity
then contributes to insulin resistance, which means acne vulgaris
and hidradenitis suppurativa are not only skin diseases but also
are more like systemic diseases.

A recent study has reported that the PI3K/Akt pathway is
overexpressed in peripheral blood mononuclear cells (PBMCs)
and keratinocytes of psoriasis patients (69, 70). Compared
with normal skin and uninvolved psoriatic skin, the psoriatic
skin has a repressed expression of FOXO1 (71). As described
above, Akt phosphorylates FOXO and leads to its nuclear
export, thus promoting cell proliferation by suppressing its
function of activating cell cycle inhibitors (p27KIP1 and p21)
and repressing cell cycle activators (cyclin D1/D2) (72). Thereby,
overactivation of PI3K and Akt and the downregulation of FOXO
contribute to proliferation of keratinocytes, which might be
the potential role of PI3K/Akt signaling in psoriasis. Another
downstream molecule of PI3K/Akt pathway, mTOR and its
phosphorylation, have also been reported to be hyperactivated
in lesional psoriatic skin. Buerger and his colleagues found
that mTOR is activated throughout the whole epidermis of
psoriatic skin, particularly in the basal layer, and the downstream
molecules S6K-1 and ribosomal protein S6 are only activated
in suprabasal layers in lesional skin (73). Their group also
proposed a model where mTORC1 functions as a central
switch between keratinocyte proliferation and differentiation
(74). In the basal layer of healthy skin, the mTORC1 signaling
pathway controls proliferation and blocks differentiation. When
keratinocytes leave the basal layer, the mTORC1 pathway is
switched off and this leads to the differentiation. Nevertheless,
in the psoriatic condition, the mTORC1 signaling pathway is
permanently switched on and results in epidermal hyperplasia
by promoting hyperproliferation and inhibiting differentiation
of keratinocytes (74, 75). Recent studies also revealed that
inflammatory cytokines are associated with the activation of
the mTORC1 signaling cascade. Patel and his colleagues found

that tumor necrosis factor α (TNF-α) can activate mTOR and
then stimulate IL-6, CXCL8, and VEGF secretion from both
HaCat cells and primary human keratinocytes (76). Another
study reported IL-17A-mediated inflammatory stimulation in
keratinocytes activates PI3K/AKT/mTOR signaling and inhibits
autophagy (70). Consistent with the previous studies, the Buerger
laboratory found that inflammatory cytokines, such as IL-1β, IL-
17A, and TNF-α, promote the mTOR pathway via PI3K signaling
and lead to enhanced proliferation in psoriatic keratinocytes (77).
Then, growth factors and relevant cytokines (IL-17A, TNF-α,
and IL-1β) in psoriasis activate mTOR and promote keratinocyte
hyperproliferation and inhibit differentiation, which might be
the mechanism underlying the PI3K/Akt pathway and psoriasis
(78). Therefore, we hypothesize that mTOR may function as a
key target by connecting psoriasis and MetS through insulin
resistance. mTOR causes the serine/threonine phosphorylation
of IRS by activating S6K, and reduces its ability to be
phosphorylated on tyrosine residues, which results in impaired
insulin signaling and insulin resistance (52). Moreover, insulin
resistance can exacerbate inactivation of the PI3K/AKT signaling
pathway, which is characteristic of metabolic syndrome (79, 80).

Although the main function of the MAPK/Ras pathway
was thought to be the regulation of mitogenesis, it has
been reported that ERK1/2 can activate upstream MEK,
reduce hepatic Akt phosphorylation, and contribute to insulin
resistance (80). Furthermore, p-ERK1/2 has been found to
be increased in psoriatic skin, which results in the abnormal
proliferation and differentiation of keratinocytes (81, 82). ERK
phosphorylation can also activate Th17 cells and then promote
the secretion of inflammatory cytokines TNF-α, IL-6, and IL-
17A, which positively correlate with psoriasis. A recent study
reported that ERK inhibitor JSI287 alleviates imiquimod-induced
psoriasis-like dermatitis by suppressing the ERK/IL-17 signaling
pathway (83).

Chronic Inflammation
It is evident that MetS is a chronic inflammatory status with
increased levels of proinflammatory cytokines, inflammatory
biomarkers, and altered adipokines. Liver, intestine, and adipose
tissue are the major three sites of the initiators of inflammation
in MetS, of which, adipose tissue is vital (84). Because of
nutritional excess in MetS, adipose tissue mass expands and
adipocytes become hypertrophic, which can lead to decreased
insulin sensitivity, hypoxia, altered autophagy, and apoptosis of
adipocytes (85). The dysfunction of adipose tissue and impaired
condition of adipocytes can also lead to overproduction of
proinflammatory cytokines, such as interleukin 6 (IL-6), TNF-
α, and C-reactive protein (CRP), thus resulting in macrophage
infiltration (41, 42). Adipokines, which are mainly secreted
by adipocytes, also play a significant role in MetS. In regard
to the relationship between adipocytes and skin diseases,
previous studies mostly focused on their role in regulating hair
regeneration, wound healing, and skin aging (86, 87). Recently,
the secretion of cytokines and adipokines by adipocytes has
received increased attention, which might provide a novel angle
in understanding the pathological and molecular connections
between MetS and skin diseases (Figure 2).
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FIGURE 2 | Chronic inflammation in MetS and skin diseases. Adipokines can be classified as pro-inflammatory and anti-inflammatory ones depending on their effects

on inflammation. Anti-inflammatory adipokines are represented by adiponectin, secreted frizzled-related protein 5 (SFRP5) and omentin-1, as well as classical

cytokines like IL-6, IL-10, IL-4. Chemerin, leptin, resistin and classical cytokines like TNF-α and IL-6 belong to pro-inflammatory adipokines. On one hand, for

metabolic syndrome patients, altered adipokines secretion may mediate cutaneous inflammatory response through autocrine, paracrine and endocrine. On the other

hand, the “inflammatory skin march” might be another mechanism underlying the connection of MetS and some skin diseases. The cutaneous inflammatory

mediators could migrate into the systemic circulation and the release of these proinflammatory cytokines results in the chronic systemic inflammation and MetS. The

activation of NFkB signaling pathway is a commom pathway underlying skin diseases and MetS, in the canonical NFkB pathway, the dimer of p65 and p50 is in an

inactive state by the inhibition of IκB in cytoplasm. Upon stimulation by various cytokine receptors, IKKs are activated, leading to phosphorylate IκB, which results in

their degradation and enables NFκB translocate to the nucleus to induce target gene expression. The activation of NFκB then produces a wide range of chemokines

and cytokines, which leads to the formation of a feed forward loop, and establishs a chronic inflammatory environment.

Adipokines
Adipokines represent a group of hormones and cytokines
secreted by adipose tissue, which are widely involved in a
variety of biological processes, including energy homeostasis,
inflammation, insulin resistance, and cell proliferation
(88). Impaired adipose tissue function, such as adipose
tissue inflammation, adipocyte hypertrophy, and ectopic
fat accumulation, causes an adverse adipose secretion and
contributes to metabolic and inflammatory diseases (87).
Adipokines can be classified as pro-inflammatory or anti-
inflammatory, depending on their effect on inflammation (89).
Chemerin, leptin, resistin, and classical cytokines like TNF-α
and IL-6, are pro-inflammatory adipokines. Anti-inflammatory
adipokines include adiponectin, secreted frizzled-related protein
5 (SFRP5), and omentin-1.

Chemerin has been found to be involved in energy
metabolism, adipogenesis, and inflammation. The role of
chemerin in body metabolism depends on its role in regulating
food intake, glucose homeostasis, and body weight. In adipose
tissue, chemerin is involved in the processes of hyperplasia,

angiogenesis, and inflammation by targeting adipocytes,
endothelial cells, and immune cells, separately. In both mice and
humans, chemerin levels are positively correlated with bodymass
index (BMI), inflammatory cytokines, and percentage of body
fat (90, 91). Notably, the expression of chemerin is increased
in psoriasis patients and is correlated to PASI (92). A recent
study found that chemerin induces the inflammatory response
in keratinocytes through reactive oxygen species (ROS)-sirtuin 1
(sirt1)-NFκB signaling (93).

Leptin is mainly produced by adipocytes and is associated
with waist circumference, insulin resistance, and MetS (94,
95). Moreover, leptin levels have been found to be higher in
psoriasis, Behçet’s syndrome, skin tags, and acanthosis nigricans
(96–100). The role of leptin in psoriasis is clearly related to
its proinflammatory actions. Leptin is reported to induce the
secretion of IL-6, TNF-α, IL-1, IL-8, CXCL-1, CXCL-8, and IL-
12 (101, 102). These proinflammatory mediators not only lead
to insulin resistance and modulate lipid metabolism in MetS,
but also contribute to the development of psoriasis. In Behçet’s
syndrome, apart from the role of leptin in inflammation, leptin
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also enhances the release of nitric oxide from endothelial cells
and is involved in the pathophysiology of vascular lesions (97). In
patients with skin tags, serum leptin is significantly upregulated
and positive correlations are also found between serum leptin and
insulin resistance calculated by homeostasis model assessment
(HOMA-IR). Importantly, serum leptin and number of skin
tags are significantly higher in patients with MetS compared
to patients without MetS (98, 103), indicating that leptin
may play a common pathologic role, although the underlying
mechanism remains to be elucidated. An immunohistochemical
study reported that the angiogenic effect and induction of cellular
proliferation of leptin might contribute to the development of
skin tags (104).

Resistin is another pro-inflammatory adipokine which is
mainly produced by white adipose tissue in mice. In humans,
resistin is mainly produced by cell populations such as
macrophages, PBMCs, and bone marrow cells (105, 106).The
previous data regarding correlation between resistin and
MetS or MetS-components was inconsistent (107). However,
it has been found that resistin plays an important role in
inflammation by increasing the secretion of several inflammatory
cytokines including TNF-α, CXCL8, IL-12, IL-1β, and IL-6 (108,
109). Interestingly, resistin has been shown to be associated
with psoriasis, AD, AN, and Behçet disease (100, 110–112).
Concerning the role of resistin in psoriasis, in addition to its effect
on proinflammatory cytokine production, its connection with
proprotein convertase subtilisin/kexin 9 (PCSK9) may represent
another key mechanism. PCSK9 is a chaperone protein of low-
density lipoprotein (LDL), which promotes the degradation of
LDL receptors and, therefore, increases the concentration of
circulating LDL. PCSK9 inhibitor is already approved to treat
hyperlipoproteinemia (113, 114). Our previous study reported
that suppressing PCSK9 inhibited the hyper-proliferation of
keratinocytes and reduced the psoriasis-like inflammation via the
NFκB pathway (115). Interestingly, according to the structure
analysis, PCSK9 C-terminal cysteine-rich domain (CRD) reveals
structural homology with resistin (116). Moreover, resistin has
also been shown to exhibit a positive correlation with PCSK9
levels by enhancing mRNA expression and protein stability (117,
118). As a result, resistin may act as an activator of PCSK9 in
the pathogenesis of psoriasis. Regarding its role in AD, resistin is
reported to increase the expression of monocyte chemoattractant
protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1),
and intercellular adhesion molecule 1 (ICAM-1) in endothelial
cells, which contributes to inflammation in AD (116). The
expression of resistin was found to be upregulated in AN and
Behçet disease, but further studies are still needed to reveal the
underlying mechanisms (119, 120).

Adiponectin, as an anti-inflammatory adipokine, has three
oligomeric isoforms: a low-molecular-weight trimer, a middle-
molecular-weight hexamer, and a high-molecular-weight
complex (121). High-molecular-weight adiponectin is reported
to be the most biologically active of the three. The circulating
levels of adiponectin are decreased in MetS, obesity, and type-2
diabetes mellitus (122). Furthermore, due to its association
with severity and incidence of MetS, adiponectin is reported to
function as a predictable marker for MetS (123, 124). The major

mechanism underlying the relationship between adiponectin and
MetS may be the potent insulin-sensitizing effect of adiponectin.
Adiponectin can also activate AMPK and PPAR-α pathways via
binding to two receptors, including AdipoR1 and AdipoR2 (125).
Growing data show that adiponectin is decreased in psoriasis,
acne vulgaris, AN, chronic urticaria, and AD (99, 100, 126, 127).
It has been suggested that adiponectin suppresses IL-17 synthesis
through AdipoR1 and regulates skin inflammation; therefore,
it might be a therapeutic target for psoriasis (128). The role of
adiponectin in acne vulgaris may be not only related with its anti-
inflammatory effects but also associated through its function in
inhibiting mTORC1 activity by activating AMP-activated protein
kinase (126). In other words, decreased adiponectin levels in acne
vulgaris could upregulate activity of the mTORC1 pathway and
increase the synthesis of pro-inflammatory cytokines. Although
it has been reported that adiponectin is reduced in AN, chronic
urticaria, and AD patients, the exact pathogenic role is still not
fully understood, which might due to the anti-inflammatory role
of adiponectin.

Proinflammatory Cytokines Related Molecular

Mechanisms
The “inflammatory skin march,” first identified in psoriasis
patients with systemic inflammatory condition, might be one
of the main mechanisms underlying the connection between
MetS and some skin diseases. As for psoriasis, activated
myeloid dendritic cells produce IL-12 and IL-23 to promote
the development of Th1, Th17, and Th22 cells in psoriasis
patients, thus leading to the overproduction of proinflammatory
cytokines in psoriatic lesions, including interferon-γ (IFN- γ),
IL-1, IL-17, IL-6, IL-12, IL-22, IL-23, and TNF-α (129). These
cutaneous inflammatory mediators can migrate into the systemic
circulation, which is identified as “inflammatory skin march.”
The release of these proinflammatory cytokines can result in
chronic systemic inflammation, which induces insulin resistance,
obesity, hypertension, and MetS (130, 131). Moreover, atopic
dermatitis is a T-cell-mediated disease, with the lesions also
characterized by increased expression of cytokines produced
by Th2, Th17, and Th22 cells (132). The “inflammatory skin
march” is also the reason for the systemic inflammation in AD
patients (133). Since the “inflammatory skin march” is reported
in psoriasis and AD, it is reasonable to hypothesize that this
mechanism could be the common reason for skin inflammation
in global inflammatory-related diseases, such as MesS, obesity
and, cardiovascular diseases.

Proinflammatory cytokines mediate their effects via binding
to their own cytokine receptors and then activating several
downstream pathways, including the JAK-STAT pathway, MAPK
pathway, and NFκB pathway, of which, the NFκB pathway has
been studied thoroughly. The NFκB transcription factor family
consists five members, NFκB1 (p105/p50), NFκB2 (p100/p52),
RelA (p65), RelB, and c-Rel. The activation of NFκB relies on
two major signaling pathways, the canonical and non-canonical
pathways, of which, proinflammatory cytokines are associated
with the former one, and the non-canonical pathway is associated
with differentiation and maturation of immune cells (134). In
the canonical NFκB signaling pathway, the dimer of p65 and

Frontiers in Endocrinology | www.frontiersin.org 7 November 2019 | Volume 10 | Article 788

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Hu et al. MetS and Skin Diseases

p50 is in an inactive state by the inhibition of IκB in cytoplasm.
Upon stimulation by various cytokine receptors, such as TNF
receptor superfamily members, IκB kinase (IKKs) are activated,
leading to phosphorylate IκB, which results in their degradation,
and enables NFκB translocate to the nucleus to induce the
expression of downstream genes, including TNF-α, as well as IL-
1, IL-6, and IL-12. The proinflammatory cytokines activate NFκB
and then induce the expression of these cytokines, leading to
the formation of a feed-forward loop. Recent studies have also
shown that NFκB exhibits an anti-inflammatory role, directly
inhibiting the expression of inflammatory cytokines by inducing
the apoptosis of leukocytes and by upregulating the expression
of anti-inflammatory cytokines such as IL-10 (135). Apart from
the positive loop, activated NFκB in the nucleus can promote the
expression of IκB-α, which binds to and inactivates NFκB in both
cytoplasma and nucleus, resulting in a negative feedback loop of
the NFκB pathway (136).

The association between NFκB and metabolic syndrome
has been studied extensively in obesity and insulin resistance.
In obesity, proinflammatory cytokines, free fatty acids, and
microbiota-derived LPS can activate IKKβ by directly binding
to cytokine receptors and Toll-like receptor 4 in adipocytes,
macrophage and muscle (137, 138). The activated IKKβ not
only phosphorylates the serine site of IRS, but also activates
mTOR and S6K1 by suppressing the TSC1/2 in adipocytes
and hepatocytes, both of which contribute to the induction
of insulin resistance (139). Besides the inhibition of insulin
signaling, activated IKKβ can induce the translocation of
NFκB to nuclear by phosphorylating IκB. The activation
of NFκB then produces a wide range of chemokines and
cytokines in most metabolic tissues, leading to chronic
inflammation (138).

In psoriasis, numerous effector cells including keratinocytes,
Th17 cells, and dendritic cells activated by TNF-α, plasmin
and TLRs could produce cytokines and chemokines via
the NFκB pathway, which leads to psoriatic phenotypes
(140). Moreover, our recent studies reported that metabolic-
associated genes PCSK9 and nuclear receptor interacting
protein 1 (NRIP1) both play important roles in psoriasis
via the NFκB pathway (115, 141). It has been reported that
PCSK9 silencing can suppress atherosclerosis by inhibiting
the TLR4/NFκB signaling pathway (142). Also, suppressing
PCSK9 can inhibit the NFκB mediated inflammatory response
in macrophages (143). In our study, we found that suppressing
PCSK9 inhibited the hyper-proliferation of keratinocytes
and reduced the RelA/p65-mediated inflammatory reaction
induced by imiquimod (115). Likewise, NRIP1, acting as
co-activator or co-repressor for several nuclear receptors
and transcriptional factors, was also reported to interact
with NFκB, thus participating in the inflammatory and
metabolic processes. NRIP1 functions as a co-activator in
macrophages for NFκB subunit RelA, and cAMP-responsive
element binding protein (CREB)-binding protein (CBP), and
promotes the TLR-induced production of proinflammatory
cytokines such as TNF-α, IL-1β, and IL-6 (144). NFκB
(RelA) can inversely resolute the inflammatory response
by targeting and degrading NRIP1 via recruiting the SCF

(Skp, culin, F-box-containing) E3 ligase complex (145).Our
laboratory revealed that suppression of NRIP1 in CD4+
T cells that were isolated from psoriasis patients could
downregulate the expression of RelA/p65 and decrease
the secretion of IL-17, thus inhibiting the inflammation in
psoriasis (141). Importantly, together, PCSK9 and NRIP1 may
be two potential therapeutic targets for both psoriasis and
metabolic syndrome by regulating the NFκB-associated chronic
inflammatory status.

Adipose-Derived Mesenchymal Stem Cells (ADMSCs)

Therapy in MetS and Skin Diseases
To date, applications of ADMSCs have been studied in
a variety of skin diseases, such as alopecia, scars, wound
healing, and psoriasis. Although the therapeutic mechanisms
of ADMSCs in these diseases remain vague, it has been
reported that the reduction of inflammation, the increase of
immune cell apoptosis, the promotion of collagen synthesis,
and the improvement of angiogenesis might be possibilities
(146, 147). It is well known that ADMSCs have the properties
of immunomodulatory, which can inhibit inflammation by
suppressing the production of proinflammatory cytokines, such
as IL-6, IL-17, and TNF-α (148). Moreover, because of the
multipotent function, anabolic activity, and immunomodulatory
effect, ADMSCs are reported to be a promising therapy for
MetS (149). According to the study of MSC transplantation in
obese mice, the MSC-based therapies not only reduce obesity-
associated metabolic syndromes including non-alcoholic fatty
liver disease, non-alcoholic steatohepatitis, glucose intolerance,
and inflammation, but also ameliorate high-fat diet-induced
obesity and hyperlipidemia (150). A systematic review showed
that ADMSCs therapy provides positive effects on body weight,
lipid profiles, glucose metabolism homeostasis, non-alcoholic
fatty liver disease, and systemic inflammation, which reflects
that ADMSCs therapy could be a potential and promising
strategy in obesity (151). Furthermore, ADMSCs therapy has
been reported in both an imiquimod (IMQ)-induced psoriasis
mouse model and in psoriasis patients. In the imiquimod-
induced psoriasis mouse model, the intradermal administration
of ADMSCs inhibits IL-17A and TNF-a, and suppresses the
IMQ-induced inflammation (152). In psoriasis patients (five
patients from three case reports), those who received the
intravenous injection of ADMSCs, all showed great improvement
of psoriatic erythema, scaling, and induration by significant
decrease of PASI scores with no severe adverse events (153–
155). Considering the chronic inflammatory status in both
MetS and psoriasis, along with the results of all these clinical
trials, ADMSCs therapy shows great potential to have clinical
benefits for patients with combined psoriasis and MetS by
reducing inflammation through an immunomodulatory cascade
of events (156). Nevertheless, a recent study indicated that
mesenchymal stem cells isolated from MetS patients have
abnormal apoptosis, autophagy, and mitochondria function,
which may limit their therapeutic potential (157). Moreover,
mesenchymal stem cells isolated from obese patients have an
altered secretome profile such as increased IL-6 and decreased
adiponectin (158). Thus, improving the function of the isolated
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mesenchymal stem cells by genetic treatment may provide a
new approach for better clinical outcomes. Several studies have
reported that the function of ADMSC can be improved by
genetic methods, such as Toll-like receptors depletion, and
chemical treatment such as melatonin and transforming growth
factor-β (TGF-β) pretreatment (159–161).However, more clinical
studies are needed to further evaluate the safety and efficacy of
ADMSCs therapy.

CONCLUSION

Evidence shows a strong connection between MetS and skin
diseases, indicating that some skin diseases may be the cutaneous
manifestations of systemic disorders. In this review, we have
shown the epidemiological evidence for the connection between
MetS and skin diseases, including psoriasis, acne vulgaris,
hidradenitis suppurativa, androgenetic alopecia, acanthosis
nigricans, and atopic dermatitis. Although the exact relationship
between MetS and skin diseases is still unclear, insulin signaling,
insulin resistance, and chronic inflammation are believed to
contribute. Understanding the mechanisms underlyingMetS and
skin diseases will help to improve clinical outcomes and guide the
development of new therapeutic treatments.
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