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B cells and T cells are key players in the defence against infections and malignancies. To
exert their function, B cells and T cells differentiate into effector and memory cells. Tight
regulation of these differentiation processes is key to prevent their malfunction, which can
result in life-threatening disease. Lymphocyte differentiation relies on the appropriate
timing and dosage of regulatory molecules, and post-transcriptional gene regulation (PTR)
is a key player herein. PTR includes the regulation through RNA-binding proteins (RBPs),
which control the fate of RNA and its translation into proteins. To date, a comprehensive
overview of the RBP expression throughout lymphocyte differentiation is lacking. Using
transcriptome and proteome analyses, we here catalogued the RBP expression for
human B cells and T cells. We observed that even though the overall RBP expression
is conserved, the relative RBP expression is distinct between B cells and T cells.
Differentiation into effector and memory cells alters the RBP expression, resulting into
preferential expression of different classes of RBPs. For instance, whereas naive T cells
express high levels of translation-regulating RBPs, effector T cells preferentially express
RBPs that modulate mRNA stability. Lastly, we found that cytotoxic CD8+ and CD4+ T
cells express a common RBP repertoire. Combined, our study reveals a cell type-specific
and differentiation-dependent RBP expression landscape in human lymphocytes, which
will help unravel the role of RBPs in lymphocyte function.

Keywords: RNA binding protein, T cells, B cells, B and T cell differentiation, T cell cytotoxicity, post transcriptional
regulation (PTR)
INTRODUCTION

B cells and T cells are essential to eradicate microbial infections and malignant cells. Upon antigen
recognition through their receptors, B cells produce antibodies and T cells produce cytokines and
chemokines, respectively. Cytotoxic T cells also acquire the capacity to kill target cells. The critical
contribution of these lymphocyte subsets to anti-microbial and anti-tumor responses was evidenced
by the discovery of genetic mutations in humans that result in immune dysfunction in response to
infections (1). Similarly, effective T cell responses are key for tumor immunosurveillance (2).

Importantly, tight regulation of B cell and T cell effector function is key for effective clearance of
infections. The aberrant production of antibodies by B cells, and the overproduction of effector
molecules by T cells has been correlated with several autoimmune disorders, including systemic
org November 2021 | Volume 12 | Article 7173241
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lupus erythematosus, rheumatoid arthritis and multiple sclerosis
(3–6). Likewise, patients suffering from severe disease upon
COVID-19 infection developed auto-antibodies against type-I
interferons (7), and an excess cytokine production in COVID-19
patients can result in organ dysfunction (8). Conversely, in
chronic HIV infections or in tumors, T cells gradually lose
their capacity to produce effector cytokines and to kill target
cells (9, 10). These findings combined highlight the necessity to
fine-tune the effector function of B cells and T cells.

To perform their effector function, B cells and T cells need to
undergo an intricate process of differentiation. B cells
differentiate into antibody-producing plasmablasts in germinal
centers (GC), and upon pathogen clearance into long-lived
memory B cells. Likewise, upon T cell priming, T cells
differentiate into effector T cells, and upon pathogen clearance
are maintained as memory T cells to ensure long-term
production from recurring infections. In the past decennia,
important insights have been obtained how B cells and T cell
differentiate. In particular, the role of transcription factors and of
metabolic regulators was extensively studied (11–14).

For appropriate lymphocyte differentiation, the regulators of
differentiation processes must be produced at the right time and
the right amount. In fact, gene dosage of transcription factors
was shown to be key for B cell and T cell differentiation (15–18).
This fine-tuning of gene expression is - at least in part - regulated
by post-transcriptional events governed by RNA-binding
proteins (RBPs) and non-coding RNAs (19, 20). RBPs control
a plethora of processes. They orchestrate RNA splicing, RNA
polyadenylation and the subsequent export from the nucleus to
the cytoplasm (21, 22). RBPs can also modify the RNA (23).
Furthermore, RBPs control mRNA localization, translation and
stability. For instance, the RBPs ZFP36L1 and ZFP36L2 induce
quiescence in developing B cells to allow for efficient B cell
receptor rearrangement (24). ZFP36L1 is also required for the
maintenance of the marginal-zone B cell compartment (25). For
germinal center B cells that undergo cell cycle progression and
affinity maturation, the expression of the RBP PTBP1 is key (26).
In thymocytes, ZFP36L1 and ZFP36L2 dampen the DNA-
damage response, which promotes their differentiation into
mature T cells (27). In the periphery, Roquin suppresses T
helper cell differentiation (28, 29). Also m6A modifications are
important for T helper cell differentiation, as evidenced in mice
lacking the methyltransferase METTL3 in T cells (30).

Not only T cell differentiation, but also T cell effector function
is tightly regulated by RBPs. Genetic ablation of the RBP
Regnase-1 reprogrammed CD8+ T cells into long-lived effector
CD8+ T cells, resulting in increased tumour control (31). In a
patient, a nonsense-mutation in ROQUIN-1 resulted in
hyperinflammation, including hypercytokinemia in T cells and
monocytes (32). Another example is ZFP36L2, which blocks the
cytokine production in memory CD8+ T cells from pre-formed
mRNA in the absence of activation signals, thereby preventing
aberrant production of effector molecules (33).

Even though these examples clearly highlight the importance
of RBPs in regulating gene expression in lymphocytes, studies
have thus far only addressed the contribution of individual RBPs.
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The overall expression profile of RBPs in primary human B cells
and T cells is not well-documented yet critical for our
understanding of regulation of gene expression in lymphocytes.

In this study, we combined lists of previously experimentally
defined and computationally predicted RBPs to generate a list of
putative RBPs. As a proxy for RBP expression, we catalogued the
mRNA and protein expression of these putative RBPs in primary
human B cells and T cells. We observed clear differences of RBP
expression levels between lymphocyte subsets. Furthermore,
upon differentiation, the RBP expression profile significantly
altered, which resulted in a shift of functional annotations of
RBPs. Lastly, we identified an RBP signature that is specific for
CD4+ T cells and CD8+ T cells with a high cytotoxic potential. In
conclusion, RBP expression is lymphocyte-type specific and the
RBP expression shows dynamic changes upon differentiation.
RESULTS

RNA-Binding Proteins Are Abundantly
Expressed in Human B and T Lymphocytes
To investigate the overall mRNA and protein expression of RBPs
in human lymphocytes, we first generated a comprehensive list of
putative RBPs. We included RBPs that were identified by RNA-
interactome capture on multiple cell lines including, HEK293,
HeLa-S3, MCF7, MCF10A, U2OS and Jurkat cells (34–36). This
list was supplemented with computationally predicted RBPs
based on the presence of a defined list of RNA-binding
domains (RBDs) (36, 37). This compiled list resulted in 3233
unique putative RBPs (from here on defined as ‘RBPs’)
(Figure 1A and Supplementary Table 1).

To define the global RBP gene expression in human B and T
lymphocytes, we compiled previously published RNA-
sequencing (RNA-seq) data on human CD19+ B cell, CD4+ T
cell and CD8+ T cell subsets that were isolated from the blood of
3-4 healthy human donors (38). On average, 12.5x106 reads per
sample (range: 7.97x106-19.15x106 reads) could be mapped onto
the human transcriptome. A total of 12,830 gene products (>0.1
TPM) were detected in all lymphocyte subsets combined. 2983 of
the 3233 RBPs (92.3% of our reference list) were detected at the
RNA level in human B and T lymphocytes (>0.1 TPM, Figure 1B
and Supplementary Table 1), of which 2189 were identified in
RNA-interactome capture studies and 794 were computationally
predicted RBPs. The number of RBP transcripts in human B and
T lymphocytes was similar to that of the epithelial cell line HeLa-
S3 and the myelogenous leukemia cell line K562 cells, and
overlapped for 90.1% [HeLa-S3: 2843 RBPs, K562: 2826 RBPs,
Supplementary Figures 1A, B (39)].

To calculate the number of RBPs expressed at the protein
level in B and T lymphocytes, we used previously published mass
spectrometry (MS) data of B cell and T cell subsets of 4 donors
(40) that were similarly prepared and selected as the ones in the
RNA-seq dataset we used (38). In total, 9436 proteins were
identified in all B cell and T cell subsets combined, of which
96.8% (9136 proteins) were also expressed at the RNA level
(Supplementary Figure 1C). Overall, 2617 RBPs (80.9% of our
November 2021 | Volume 12 | Article 717324
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reference list) were detected at the protein level (Figure 1B), and
2596 RBPs (80.2%) were detected at both RNA and protein level
(Figure 1B). This high overlap corroborated with the overall
high expression levels of RBPs (Figure 1C; p-value: 6.2e-12 for
RNA and 2.1e-12 for protein). The top 20 expressed RBPs at
RNA level included several ribosomal proteins (RPL3, RPL4,
RPS3, RPS27), translation-related proteins (EEF1A1, EEF1G,
EIF1) and splicing-related proteins DDX5 (41), SRSF5 (42),
HNRNPA1 (43); Figure 1D). At the protein level, the top 20
expressed RBPs included the RNA stability-related protein [VIM
(44)], the splicing-related protein HNRNPA2B1 (45), the
ribosomal protein RPS27A, and the moonlighting RBPs ENO1
and GAPDH [Figure 1D (46, 47)].

We next determined which RNA-binding domains (RBDs)
are present in the RBPs detected at the RNA level. Using
previously reported RBDs [Supplementary Table 1 (36, 37)]
and the protein families database [Pfam (48)], we detected a
broad range of RBDs. (Supplementary Table 1). The top 20
RBDs included classical RBDs, such as the RNA-recognition
motif (RRM; 5.8%, present in e.g. CELF2, CNOT4, ELAVL2,
HNRNPLL and PABPC1) and the DEAD helicase motif (DEAD;
2.1%, present in e.g. DDX1, DDX10, DHX16). We also found a
variety of zinc-finger protein domains, including the zinc-finger
C2H2 (zf-C2H2; 3.2%, present in e.g. ZNF638, ZMAT3), zinc-
finger metazoans (zf-met; 1.1%, present in e.g. ZFR2, TUT1),
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zinc-finger CCCH (zf-CCCH; 1.0%, present in e.g. ZFP36L1,
RBM27, ZC3H10), zinc-finger CCHC (zf-CCHC; 0.5%, present
in e.g. ZCRB1, CPSF4) and the zinc-finger Ran binding protein
(zf-RanBP; 0.5%, present in e.g. RBM5, RBM10, Figure 1E). In
addition, RBPs containing the top 20 RBDs were commonly
ident ified us ing RNA-interactome capture s tudies
(Supplementary Figure 1D). This included RBPs containing
the zf-C2H2 domain, a known DNA-binding domain that has
recently also been identified as a RNA binding domain (49, 50).
52.8% of the RBPs contained non-canonical RNA-binding
domains (1574 RBPs; Figure 1E), which were by and large
present in experimentally identified RBPs (Supplementary
Figure 1D). These included ribosomal proteins (RPL18 and
RPL5), the RNA processing molecule DUSP11, RNA splicing-
related RBPs (AHNAK, PCF11, SNIP1, SCAF11, SNRNP40) and
the exoribonuclease EXOSC3. A similar distribution of the top 20
RBDs was present in RBPs detected in HeLa-S3 and K562 cells
(Supplementary Figure 1E), indicating that the RBD
distribution is not a specific feature of lymphocytes.

RBPs regulate many processes, which includes RNA splicing,
stability, subcellular localization of RNA, RNA modification, and
translation (51). Using protein annotations from the human
protein atlas database (52), we found that 1178 RBPs (41.7%)
were annotated as regulators of at least one of these five RNA-
related processes (Figure 1F, left panel), of which 24% were
A B
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C

FIGURE 1 | Characterization of RNA-binding protein expression in human B and T lymphocytes. (A) Reference list of RNA binding proteins (RBPs) was generated
by integrating experimentally validated RBPs (34–36) with computationally predicted RBPs based on the presence of a defined list of RNA-binding domains (36, 37).
(B) RBPs that are detected in human lymphocytes at RNA level (left panel), at protein level (middle panel), and at both RNA and protein level (right panel). RNA: n=3-
4 donors. Protein: 4 donors. (>0.1 TPM) (C) RNA abundance in transcript per kilobase per million (TPM) and protein abundance in protein copy number (CN) for all
genes (gray) and RBPs (red) in human B cells and T cells. (D) Expression levels of RBPs detected at RNA level (left panel) and at protein level (right panel) was
ranked according to expression levels. Names of the top 20 expressed RBPs are indicated. (E) Frequency of RNA-binding domains among the 2983 RBPs that
were detected at RNA level. (F) Left panel: RBPs detected at RNA level in human B and T lymphocytes that are annotated for RNA splicing, stability, subcellular
localization of RNA, RNA modification, and translation (dark blue), or for other processes (light blue). Right panel: Distribution of RBPs annotated for the five RNA-
related processes as indicated. Each line depicts one RBP. TPM, Transcripts per kilobase per million; CN, Protein copy number.
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annotated for multiple RNA-related processes (Figure 1F, right
panel). Combined, these data show that human lymphocytes
express a wide variety of RBPs with a diverse set of RBDs.

Human B Cells and T Cells Have a Distinct
RBP Signature
To determine whether and how RBP expression differed between
B cells and T cells, we analyzed CD19+ B cells, CD4+ T cells, and
CD8+ T cells separately in the RNA-seq and MS datasets
employed in Figure 1. Overall, 2923 RBPs (97.0%) and 2551
RBPs (97.5%) were detected in all three subsets at the RNA and
protein level, respectively (Supplementary Figures 2A, B and
Supplementary Table 2). Only a few RBPs were detected in one
specific cell type (Supplementary Figures 2A, B). B cells
exclusively expressed members of the ribonuclease A super-
family (RNASE1, RNASE2 and RNASE3) and the RBP DAZL.
The RBPs RBM24 and PABPC3 were only detected in CD4+ T
cells, andNCBPL2 and A1CF were specifically expressed in CD8+

T cells (Supplementary Table 2). At the protein level, 6 RBPs
were specifically detected in CD19+ B cells, which included the
ribonuclease RNASE7. The RBPs CPEB2, PAIB2B and TRMT44
were exclusively detected in CD4+ T cells, and the RBPs AICDA
and HENMT1 were specifically detected in CD8+ T cells
(Supplementary Table 2).

For the majority of RBPs detected in CD19+ B cells (85.1%,
2550 RBPs), CD4+ T cells (86.0%, 2571 RBPs) and CD8+ T cells
(85.6%, 2560 RBPs) transcript and protein expression was co-
detected (Supplementary Figure 2C). Only 425 RBPs, 386 RBPs
and 400 RBPs, were only detected at the RNA level, and 22 RBPs,
31 RBPs and 32 RBPs at the protein level in CD19+ B cells, CD4+

T cells and CD8+ T cells, respectively (Supplementary Figure 2C
and Supplementary Table 2). In line with the substantial overlap
of RBPs co-detected at RNA and protein level, the correlation
between the RNA and protein abundance for RBPs was high in
CD19+ B cells (Pearson’s coefficient: 0.60), CD4+ T cells
(Pearson’s coefficient: 0.60) and CD8+ T cells (0.61) compared
to non-RBP genes (Pearson ’s coefficients: 0.42-0.44,
Supplementary Figure 2D).

We next questioned whether the global RBP expression
differed between the three lymphocyte subsets. Principal
Component Analysis (PCA) revealed that the RBP mRNA and
protein expression alone separates B cells from T cells just as
effectively as a PCA performed on all genes (Figure 2A and
Supplementary Figure 2E). Differential expression (DE) analysis
on all genes and protein, followed by filtering for RBPs, revealed
clear differences between B cells and T cells. 695 and 644 DE
RBPs (82.3% and 76.3% of the total DE RBPs) were found DE at
the mRNA level between CD19+ B cells and CD4+ T cells, or
CD8+ T cells, respectively (Figure 2B and Supplementary
Table 2; LFC > 0.5; p-adjusted<0.01). CD4+ T cells and CD8+

T cells were more closely related, with only 68 DE RBPs (8.1% of
all DE RBPs, Figure 2B and Supplementary Table 2). Of note, to
prevent a bias towards DE genes with relatively low transcript
abundance we utilized the lfcShrink function, which shrinks log2
fold change (LFC) values of genes with low counts [(53), see
Methods]. RBP protein expression showed similar trends, with 40
Frontiers in Immunology | www.frontiersin.org 4
and 24 DE RBPs between CD19+ B cells and CD4+ T cells or
CD8+ T cells, respectively, and only 6 DE RBPs between CD4+ T
cells and CD8+ T cells (Supplementary Figure 2F and
Supplementary Table 2; LFC > 0.5; p-adjusted<0.05). 84.4% of
the DE RBPs at protein level were also DE RBPs at RNA level
(Supplementary Figure 2G). Indeed, unsupervised clustering of
the DE RBPs clearly distinguished B cell- from T cell-associated
RBP clusters (Figures 2C, D).

To investigate the functional annotation of the DE RBPs, we
focused on RBPs that were significantly higher expressed by
either B cell or T cell populations (Figure 2E). We studied RBPs
that are annotated regulators of RNA splicing, stability,
subcellular localization of RNA, RNA modification, and
translation, as defined by protein annotation from the human
protein atlas database. Of note, although we focus on individual
RNA processes, every known RNA-related function of each
individual RBP was included in this analysis. We examined
107 (32.5%) of the B cell-associated RBPs and 49 (28.0%) of
the T cell-associated RBPs (Figure 2F, left panel). The majority
of these RBPs (B cell RBPs: 82.2%, T cell RBPs: 83.7%) were
annotated for one function, and 17.8% and 16.3% for multiple
functions for B cells and T cells, respectively (Figure 2F, middle
panel). Interestingly, the relative distribution of RBPs annotated
for these five RNA processes differed between B cells and T cells.
Whereas 52.3% of RBPs in B cells were annotated for translation,
this was only the case for 30.6% in T cells (Figure 2F, right
panel). Conversely, only 17.8% was annotated for RNA splicing
in B cells, but reached 30.6% in T cells (Figure 2F, right panel).
In conclusion, the overt differential RBP expression between
human B cells and T cells shown here possibly reflects a distinct
distribution between different classes of RBPs.
RBP Expression Changes Upon
B Cell Differentiation
Several B cell subsets can be found in the peripheral blood
including naive B cells, memory B cells and plasmablasts
(Figure 3A). Whereas plasmablasts produce vast quantities of
antibodies and are short-lived, memory B cells are long-lived and
for the most part quiescent (54). We found that the phenotypical
differences between these three B cell subsets is echoed in their
RBP expression profile. We identified 1308 DE RBPs at RNA
level, and 96 DE RBPs at protein level between naive B cells,
memory B cells and plasmablasts (Supplementary Figures 3A, B
and Supplementary Table 3). 69.1% of the DE RBPs at protein
level are detected also at the RNA level (Supplementary
Figure 3C). In particular, although only 151 DE RBPs were
found between naive and memory B cells, plasmablasts showed a
distinct RBP profile, with 1185 and 891 DE RBPs between naive
or memory B cel l s and plasmablasts , respect ive ly
(Supplementary Figure 3A and Supplementary Table 3). The
top 20 DE RBPs at both the RNA and protein level spanned a
wide range of abundance, and included RRM2, APOBEC3B,
METTL5 and LGALS3 (Figures 3B, C and Supplementary
Table 3). Hierarchical clustering of DE RBPs at RNA level
revealed three clusters between B cell subsets (Figure 3D and
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Supplementary Table 3). 188 RBPs were highly expressed in
plasmablasts (cluster 1), 541 RBPs were highly expressed in
memory B cells (cluster 2) and cluster 3 with 579 RBPs were
highly expressed in naive and memory B cells, respectively
(cluster 3). Hierarchical clustering on protein levels revealed
similar differential RBP expression patterns (Figure 3E). Within
these three clusters of DE RBPs at the RNA level, we isolated
RBPs annotated for RNA splicing, stability, subcellular
localization of RNA, RNA modification, and translation. This
included 67 (35.6%) RBPs in cluster 1, 204 (44.4%) RBPs in
cluster 2, and 214 (37%) RBPs in cluster 3 (Figure 3F, left panel).
Again, 75-78% of the RBPs was annotated for one function
(Figure 3F, middle panel), and the prime annotation of RBPs
was translation in all three clusters (Figure 3F, right panel).
Interestingly, whereas RBPs annotated for RNA splicing were
also abundant in naive and memory B cell subsets with 31.3%
and 40.2%, respectively, plasmablasts (cluster 1) contained only
Frontiers in Immunology | www.frontiersin.org 5
6.0% RBPs annotated for RNA splicing (Figure 3F, right panel).
Instead, 44,8% of RBPs expressed in plasmablasts annotated for
RNA transport (Figure 3F, right panel). STRING-analysis on
splicing-related RBPS from cluster 3 (naive-memory B cells)
revealed networks consisting of known splicing factors, such as
the SR protein family members SRSF1, SRSF4, SRSF3, SRSF6, in
addition to NUDT21 andHNRNPLL (Figure 3G). For transport-
annotated RBPs from cluster 1 (plasmablast), the interaction
networks included the RBP SLBP, which regulates mRNA export
(55), and the RBP TST, which regulates the transport of
ribosomal RNA [Figure 3H (56)].

Gene Ontology (GO) analysis on the DE RBPs identified in
cluster 2 and 3 showed a shared enrichment of GO-terms
associated with various RNA-related processes, including RNA
splicing, translation and RNA processing, while cluster 1 showed
an enrichment of the GO-term associated with translation
(Supplementary Figure 3D and Supplementary Table 7).
A B
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FIGURE 2 | Differential RBP expression between human B cells and T cells. (A) Principal component analysis (PCA) of RBP RNA (left panel) and protein (right panel)
expression in CD19+ B cells, CD4+ T cells and CD8+ T cells (n=4 donors). Each dot depicts one specific B cell or T cell subset from each donor. (B) Volcano plots of
all differentially expressed genes (gray) and of differentially expressed RBPs (DE RBPs) (red) between CD19+ B cells, CD4+ T cells and CD8+ T cells (LFC>0.5, P-
adjusted<0.01). (C, D) Heatmap of unsupervised clustering of DE RBPs at RNA (C) or at protein level (D) in CD19+ B cells, CD4+ T cells and CD8+ T cells. Each
column corresponds to one T/B cell differentiation subset of a donor (n=4 donors). (E) Log2 Fold Change (LFC) of RBP mRNA expression between CD19+ B cells
and CD4+ T cells (y-axis) and between CD19+ B cells and CD8+ T cells (x-axis). Red dots depict RBPs that are significantly upregulated in B cells, and blue dots
indicate RBPs significantly upregulated in CD4+ T cells and CD8+ (significant in both comparisons, LFC>0.5, P-adjusted<0.01). (F) Left panels: RBPs annotated for
RNA splicing, stability, subcellular localization of RNA, RNA modification, and translation (dark colors) or for other processes (light colors) that are upregulated in
CD19+ B cells (top row) or T cells (bottom row) as defined in (E) Middle panels: relative distribution between the 5 specific RBP classes. Right panels: Percentage of
RBPs annotated for the indicated RNA-related biological processes.
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Cluster 3 displayed a moderate enrichment for GO-terms related
to RNA stabi l i ty (3 ’-UTR-mediated mRNA, mRNA
destabilization) and regulation of RNA splicing (mRNA splice
site selection, positive regulation of RNA splicing, negative
Frontiers in Immunology | www.frontiersin.org 6
regulation of RNA splicing; Supplementary Figure 3D and
Supplementary Table 7). In conclusion, the RBP expression
differs between B cell subsets, and involves different types of
post-transcriptional regulatory functions.
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FIGURE 3 | RBP expression alters upon B cell differentiation. (A) Diagram depicting the analysed CD19+ B cell subsets. (B, C) Expression levels of RBPs
detected in B cells at RNA level (B) and at protein level (C), ranked according to expression levels. Red dots indicate the top 20 most differentially expressed
RBPs, ranked on Log2 Fold Change). (D, E) Heatmap of unsupervised clustering of DE RBPs at mRNA (D) and at protein level (E) between naive CD19+ B
cells, memory CD19+ B cells and plasmablasts. n=4 donors. (F) Left panels: RBPs annotated for RNA splicing, stability, subcellular localization of RNA, RNA
modification, and translation (dark colors) or for other processes (light colors) in the three clusters defined in (D). Middle panels: relative distribution between the
5 specific RBP classes. Right panels: Percentage of RBPs annotated for the indicated RNA-related biological processes. (G, H) String analysis on splicing-
related RBPs (G) identified in cluster 3 and on RNA transport-associated RBPs (H) identified in cluster 1. TPM, Transcripts per kilobase per million; CN, Protein
copy number.
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RBP Expression Changes Upon CD4+

T Cell Differentiation
Naive T cells (Tnaive) undergo differentiation into effector T
cells, which are rarely found in the peripheral blood of healthy
donors (57). Rather, central memory (Tcm) and effector memory
Frontiers in Immunology | www.frontiersin.org 7
(Tem) CD4+ T cell subsets, which develop during the course of
infections, are present in the blood and differentially contribute
to recall responses upon recurring infections [Figure 4A (58)].
Similar to B cells, we find RBPs differentially expressed in the
CD4+ T cell subsets Tnaive, Tcm and Tem at RNA (n=774), and
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FIGURE 4 | RBP expression alters upon CD4+ T cell differentiation. (A) Diagram depicting the analysed CD4+ T cell subsets. (B, C) Expression levels of RBPs
detected at RNA (B) or protein level (C) in human CD4+ T cells ranked according to expression levels. Red dots indicate top 20 most differentially expressed RBPs
based on Log2 Fold Change. (D, E) Unsupervised clustering of DE RBPs at RNA (D) or at protein level (E) between naive (Tnaive), central memory (Tcm) and
effector memory (Tem) CD4+ T cells depicted in a heatmap. RNA: n=5 donors, protein: n=4 donors. (F) Left panels: RBPs annotated for RNA splicing, stability,
subcellular localization of RNA, RNA modification, and translation (dark colors) or for other processes (light colors) in the three clusters defined in (D). Middle panels:
relative distribution between the 5 indicated RBP classes. Right panels: Percentage of RBPs annotated for indicated RNA-related biological processes. (G, H) String
analysis on translation-related RBPs (G) identified in cluster 3 and on RNA transport-associated RBPs (H) identified in cluster 2. TPM, Transcripts per kilobase per
million; CN, Protein copy number.
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at protein level (n=115; Supplementary Figures 4A, B and
Supplementary Table 4). 48% of the DE RBPs at protein level
are detected also at the RNA level (Supplementary Figure 4C).
The top 20 DE RBPs included RBPs such as, APOBEC3H and
PAPBC3 (RNA level) and OASL and ANXA2 (protein level,
Figures 4B, C and Supplementary Table 4).

Hierarchical clustering of the DE RBPs revealed three clusters
(Figures 4D, E), with cluster 1 (Tnaive) containing 145 RBPs,
cluster 2 (Tem) containing 366 RBPs, and cluster 3 (Tcm)
containing 263 RBPs (Supplementary Table 4). This
differential expression of RBPs was also apparent at the protein
level (Figure 4E, 115 DE RBPs, Supplementary Table 4). To
gain more insights into the biological processes of the RBPs in
the different clusters, we performed Gene Ontology (GO)
analysis (Supplementary Table 7). Whereas metabolic
processes were enriched in all three clusters, cluster 2 and 3
were enriched for GO-terms associated with translation
(translation initiation, cytoplasmic translation) and with RNA
transport (Supplementary Figure 4D and Supplementary
Table 7). Cluster 2 also showed a moderate enrichment for
RBPs associated with regulation of RNA stability (RNA
destabilization, 3’-UTR-mediated mRNA destabilization;
Supplementary Figure 4D and Supplementary Table 7).

When we specifically isolated RBPs annotated for RNA
splicing, stability, subcellular localization of RNA, RNA
modification, and translation, we found that 103 (39.2%) RBPs
of the DE RBPs belong to these 5 RBP classes in cluster 1, 148
RBPs in cluster 2 (40.4%) and 84 RBPs in cluster 3 (57.9%)
(Figure 4F, left panels). Only a fraction of RBPs is associated
with more than one of these functions (cluster 1: 17.5%, cluster 2:
26.4%, cluster 3: 25%; Figure 4F, middle panel). When CD4+ T
cells differentiate, the relative distribution of functional RBP
annotation alters. 83.3% of the RBPs associated with the 5 RBP
classes were linked to translation in cluster 3 (Tcm), compared to
51.5% and 43.2% in cluster 1 (Tnaive) and cluster 2 (Tem),
respectively (Figure 4F, right panels). Conversely, in cluster 2
(Tem), the percentage of RBPs annotated for RNA transport are
with 41.2% primarily found in cluster 2 and much less so in
cluster 2 and 3 with 15.5% and 13.1%, respectively (Figure 4F,
right panels). STRING-analysis on the translation-related RBPs
of cluster 3 revealed an enrichment of 53 ribosomal proteins and
of other translation-associated RBPs, such as PABPC1, YBX1 and
FAU (Figure 4G). The RNA-transport-related RBPs of cluster 2
included the mRNA export-associated RBPs DDX19B, SARNP,
MAGOH and THOC2 (Figure 4H). Combined, our findings
reveal that the RBP expression landscape changes throughout
CD4+ T cell differentiation, which results in a relative enrichment
of specific RBP classes in different CD4+ T cell subsets.

RBP Expression Changes Upon CD8+ T Cell
Differentiation
We then focused on the CD8+ T cell differentiation subsets. Our
dataset also included effector CD8+ T cells (Teff), which was
included in the analysis, in addition to Tnaive, Tcm and Tem
CD8+ T cell subsets (Figure 5A). 707 RBPs were differentially
expressed at the RNA level between Tnaive, Tcm and Tem and
Teff, and 115 RBPs at the protein level (Supplementary
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Figures 5A, B and Supplementary Table 5). 44.1% of DE
RBPs at protein level were also detected at the RNA level
(Supplementary Figure 5C). The top 20 DE RBPs included
RBPs like JAKMIP1 and OASL (RNA level) and EIF4EBP3 and
FLNB (protein level, Figures 5B, C and Supplementary
Table 5). Hierarchical clustering of RBP expression resulted 3
clusters (Figure 5D). Cluster 1 contained 297 RBPs highly
expressed in Tem and Teff CD8+ T cells (Figure 5B and
Supplementary Table 5). Cluster 2 (176 RBPs) also included
Tem an Teff CD8+ cells, and to a lesser extent in Tcm cells.
Cluster 3 (234 RBPs) included primarily Tnaive cells, but also
Tcm cells (Figure 5B and Supplementary Table 5). Similar
clusters were identified at RBP protein level (Figure 5E, 177 DE
RBPs, Supplementary Table 5).

In CD8+ T cell subsets, 67 RBPs in cluster 1 (38.1%), 84 RBPs
in cluster 2 (35.9%), and 143 RBPs in cluster 3 (48.1%) were
annotated as regulators of RNA splicing, stability, subcellular
localization of RNA, RNA modification, or translation
(Figure 5F, left panels), with a minority of RBPs (20-28%)
linked to multiple functions (Figure 5F, middle panels). We
found that cluster 3 was relatively enriched for translation-
associated RBPs (71.3%), compared to cluster 1 and cluster 2
with 34.5% and 44.8%, respectively (Figure 5F, right panels).
Conversely, cluster 1 and 2 were enriched for RBPs associated
with RNA transport (cluster 1: 43.3%, cluster 2: 46.4%), and this
RBP class was 12.6% only minor in cluster 3 (Figure 5F, right
panels). STRING-analysis on translation-associated RBPs from
cluster 3 revealed the interaction network between 56 ribosomal
proteins and 10 eukaryotic translation initiation factors
(Figure 5G). The RNA-transport associated RBPs in cluster 2
and 3 included RBPs involved in RNA export (THOC5 (59) and
SARNP (60), Figure 5H).

Gene Ontology (GO) analysis on the DE RBPs also showed in
cluster 3 - in addition to catabolic processes - an enrichment of
GO-terms associated with translation, i.e. cytoplasmic
translation, translation initiation and positive regulation of
translation (Supplementary Figure 5D and Supplementary
Table 7). Cluster 1 displayed a moderate enrichment for GO-
terms related to RNA stability (3’-UTR-mediated mRNA
destabilization, regulation of mRNA stability, Supplementary
Figure 5D and Supplementary Table 7). In conclusion, CD8+ T
cells change their RBP expression landscape throughout
differentiation, with specific RBP classes enriched in different
CD8+ T cell subsets.

Specific RBP Expression Associates With
T Cell Cytotoxicity
T cells can acquire cytotoxic function when they differentiate
into effector cells. Importantly, whereas CD8+ T cells are
generally classified as cytotoxic, not all CD8+ T cells display
cytotoxic features (61–63). Conversely, a subset of human CD4+

T cells also shows cytolytic features (64–66). We therefore sought
to identify RBPs that were associated with a high cytotoxic
capacity in human CD8+ T cells and CD4+ T cells. As source
of T cells, we used previously published single-cell RNA-seq
(scRNA-seq) data on blood-derived human CD8+ and CD4+ T
cells (67–69).
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Because only memory and effector T cells can be cytotoxic, we
excluded naive T cells from our analysis based on their high
gene expression of CCR7, LEF1 and SELL (Supplementary
Figures 6A–D). We then identified and integrated the
expression of 8 cytotoxic genes (9) i.e. FGFBP2, GZMB,
Frontiers in Immunology | www.frontiersin.org 9
GZMH, PRF1, NKG7, CX3CR1, GNLY and ADGRG1 into a
cytotoxic score (see Methods; Figure 6A and Supplementary
Figures 6E, F). Dimensional reduction analysis revealed that
CD8+ and CD4+ T cells with a low (bottom 10%) or high
cytotoxic score (top 10%) form two distinct clusters
A B

D

E

F

G H

C

FIGURE 5 | RBP expression alters upon CD8+ T cell differentiation. (A) Diagram depicting the analysed CD8+ T cell subsets. (B, C) Expression levels of RBPs
detected at RNA (B) and at protein level (C) in human CD8+ T cells ranked according to expression levels. Red dots indicate top 20 most differentially expressed
RBPs based on Log2 Fold Change. (D, E) Unsupervised clustering of DE RBPs at RNA (D) or protein level (E) between naive (Tnaive), central memory (Tcm),
effector memory (Tem) and effector (Teff) CD8+ T cells depicted in a heatmap. n=4 donors. (F) Left panels: RBPs annotated for RNA splicing, stability, subcellular
localization of RNA, RNA modification, and translation (dark colors) or for other processes (light colors) in the three clusters defined in (D). Middle panels: relative
distribution between the 5 indicated RBP classes. Right panels: Percentage of RBPs annotated for indicated RNA-related biological processes. (G, H) String analysis
on translation-related RBPs (G) identified in cluster 3 and on RNA transport-associated RBPs (H) identified in clusters 2 and 3. TPM, Transcripts per kilobase per
million; CN, Protein copy number.
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(Figures 6B, C). High expression of ITGB1 in CD8+ and CD4+ T
cells with a high cytotoxic score confirmed the selection for
cytotoxic T cells [(61, 64), Figures 6D, E]. In addition, 16 RBPs
were significantly upregulated in CD8+ T cells with a low
cytotoxic score, whereas 36 RBPs were preferentially expressed
in CD8+ T cells with a high cytotoxic score (Figure 6D and
Supplementary Table 6; LFC>0.5; P-adjusted<0.01). Likewise,
87 RBPs and 41 RBPs were upregulated in CD4+ T cells with a
low and with a high cytotoxic score, respectively (Figure 6E and
Supplementary Table 6).
Frontiers in Immunology | www.frontiersin.org 10
Intriguingly, the differential RBP expression between CD8+

and CD4+ T cells with a low or high cytotoxic score was
strikingly similar (Figure 6F). 13 RBPs were upregulated in
CD8+ and CD4+ T cells with a low cytotoxic score
(Figure 6F), which included 8 ribosomal proteins, e.g.
RPL13A, RPL10 and RPL4 which are accessory to the
translation regulation (70), and the translation initiation factor
EEF1G (Figures 6G, H). 25 RBPs that were upregulated in both
CD8+ and CD4+ T cells with a high cytotoxic score (Figure 6F)
included cytidine deaminases APOBEC3G and APOBEC3C,
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FIGURE 6 | Cytotoxic CD4+ and CD8+ T cells share an RBP expression profile. (A) Diagram indicating the cytotoxic gene signature shared by CD4+ T cells and
CD8+ T cells as defined in Supplementary Figures 6E, F. (B, C) Uniform Manifold Approximation and Projection (UMAP) plot on non-naive CD8+ T cells (B) and
CD4+ T cells (C) with a high (top 10%, red) or low (bottom 10%, green) cytotoxic score. (D, E) Volcano plot d DE RBPs (red) and other genes (gray) between non-
naive CD8+ T cells (D) and CD4+ T cells (E). Blue dot depicts ITGB1. (F) Log2 Fold Change values for RBPs with a high or low cytotoxic score of non-naive CD4+ T
cells (y-axis) and non-naive CD8+ T cells (x-axis). Red and green dots indicate DE RBPs associated with a high and low cytotoxic score in both T cell types (LFC>0.5
P-adjusted<0.05). (G, H) Violin plots depicting expression levels and expression density of selected RBPs in CD8+ T cells (G) or CD4+ T cells (H) with a high (top
10%), intermediate (10-90%) or low (bottom 10%) cytotoxic score.
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the poly(G) binding protein ANXA2 (71), the viral dsRNA
binder OASL (72) and the translational repressor PATL2
[Figures 6G, H (73)]. In summary, CD8+ and CD4+ T cells
with a high cytotoxic potential express a specific set of RBPs.
DISCUSSION

In this report, we catalogued the transcript and protein
expression of putative RBPs in human B cells and T cells. We
found that the overall expression pattern of RBPs is remarkably
well conserved between lymphocytes and HeLa-S3 and K562
cells (>90% overlap), and >97% of the RBPs were co-detected in
B cells, CD4+ and CD8+ T cells. Nonetheless, differential
expression analysis of RBPs clearly distinguishes B cells from T
cells. RBP expression also alters during differentiation. This
finding suggests - similar to what is observed for transcription
factors (15, 16) - that the relative abundance of RBPs defines the
fate of RNA and of translation into proteins, and thus the
differentiation status of lymphocyte subsets.

Intriguingly, the differential expression of RBPs upon
lymphocyte differentiation resulted in a shift of functional
annotations of the expressed RBPs. For instance, plasmablasts
are enriched for RBPs annotated for RNA transport, a feature
that may support their antibody producing function. Effector and
effector memory type CD4+ and CD8+ T cells also showed a
preference of RBPs annotated for RNA transport, albeit to a
lesser extent. Conversely, central memory CD4+ T cells, and
naive and central memory CD8+ T cells preferentially express
RBPs that are annotated for translation regulation. Even though
this finding may be counter-intuitive, it is important to note that
quiescent naive or memory T cells continuously receive signals
that drive their survival and their state of alertness for activation
(74). Indeed, recent studies indicated a tight gene-specific
regulation of translation in naive T cells (75–78), and the
concept of translational preparedness of naive and memory T
cells (75). It is therefore tempting to speculate that the
enrichment for RBPs involved in translation regulation we find
here contributes to the translation control in naive and memory
T cells. Tem cells were also enriched for RBPs involved in RNA
stability. This finding correlates with our previous observations
that RNA stability is a key driver in defining the magnitude and
duration of cytokine production in T cells and that the strength
and type of signal a T cell receives defines the level of RNA
stability (79–81). We therefore hypothesize that RBPs defining
RNA stability are critical to modulate the T cell effector function
and are therefore enriched in Tem cells.

Although significant differences in RBP mRNA expression
were observed upon lymphocyte differentiation, these differences
were not reflected to the same extent at the protein level. This
discrepancy can be partially attributed to post-transcriptional
regulation of RBPs as previously described (82). Secondly,
quantitative proteomics analysis is less sensitive and may thus
have a decreased ability to detect low abundance proteins (83).
More in depth studies of specific DE RBPs will thus be required
Frontiers in Immunology | www.frontiersin.org 11
to determine whether the difference in RNA abundance is also
echoed at the protein level.

Also, cytotoxic T cells display a unique RBP expression
profile. Compared to non-cytotoxic T cells, cytotoxic T cells
express lower mRNA levels of several ribosomal proteins.
Whether the differences at the mRNA level for ribosomal
proteins is also reflected at the protein level is still unknown.
In addition, whether some of these ribosomal proteins display
any transcript specificity, as was shown for RPL10A and RPS25
(70), remains to be defined. Interestingly, a T-cell specific loss of
Rps26 did not affect overall translation rates, but rather increased
p53 signalling, and thus resulted in cell death (84). A significant
increase of p53 expression was also observed in HeLa cells upon
knock down of 24 out of 80 ribosomal proteins and has been
attributed to the accumulation of free ribosomal proteins in the
nucleus (85, 86). This decreased viability will thus impede the
study of at least a subset of ribosomal proteins in T cells.

Cytotoxic T cells also exhibited an increased expression of the
mRNA cytidine deaminases APOBEC3C and APOBEC3G.
Previous studies reported that APOBEC expression increases
upon T cell activation (87), which was primarily associated with
viral restriction (88). It is also conceivable that increased
APOBEC expression is involved in regulating the fate of
endogenous mRNAs in cytotoxic T cells. Interestingly, the
specific RBP profile linked to cytotoxicity is shared by CD4+ T
cells and CD8+ T cells, a feature which may point to a similar
differentiation program towards cytotoxicity.

RNA-binding proteins are critical mediators in shaping
lymphocyte differentiation and effector function (24–28, 30–
33). The RBP expression catalogue we provide here should
help to further dissect the role of RBPs in B cell and T cell
differentiation and function. It is important to note that this RBP
catalogue primarily serves as a resource, and thus as a starting
point for uncovering the RBP-mediated regulation in
lymphocyte differentiation. Indeed, whether alterations in the
RBP signature during lymphocyte differentiation are the cause or
consequence of differentiation is yet to be determined.
Furthermore, RBP expression by itself cannot be interpreted as
direct interaction of RBPs with RNA. In fact, RNA interactome
capture in cell-cycle arrested U2OS cells revealed that increases
in protein abundance of some RBPs did not result in increased
RNA binding (89). In addition, the regulation of RBPs is highly
context-dependent and is most likely variable between cell types
(90). The recent development of novel RNA interactome capture
methodologies will be instrumental in identifying the RBPs that
truly interact with RNA in human lymphocytes (89, 91, 92).

RBP interactions with RNAs can be highly versatile and are
subject to rapid changes upon extrinsic signals. For instance, the
RBP ZFP36L2 is expressed to a similar extent in memory T cells
and re-activated T cells, yet only blocks translation in resting
memory T cells (33). Similarly, a large fraction of ribosomal
proteins does not interact with ribosomal RNA. The mode of
action of these non-ribosomal RNA binding ribosomal proteins
(RPs) is to date enigmatic and requires further investigation.
Lastly, in addition to classical RBPs, recent studies have revealed
the presence of enigmatic RBPs, which are primarily annotated
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for other cellular, non-RNA binding related functions. This is
exemplified by metabolic enzymes from the tricarboxylic acid
(TCA) cycle (93–95). Their relative contribution to RNA
regulation during lymphocyte differentiation and effector
function is yet to be experimentally confirmed. Nonetheless,
the role of RBPs in genetic diseases is becoming appreciated (96),
and defining the RBP expression presented in the study
presented here may contribute to deciphering dysregulated
RBP expression and function also in immune-related diseases.
MATERIAL AND METHODS

Data Sets
RawRNA-sequencing (RNA-seq)datawere retrieved fromthegene
expression omnibus repository (GEO,NCBI) or fromtheEuropean
Nucleotide Archive (ENA). Data from CD19+ B cells and from B
cell differentiation subsets (n=4 donors with 4 B cell populations
each), from CD4+ T cells (n=3-4 donors with 7-8 CD4+ T cell
populations each) and CD8+ T cells and respective differentiation
subsets (n=4 donors with 4 CD8+ T cell populations each) were
retrieved from Monaco et al. [(38); accession number:
GSE107011)]. RNA-sequencing libraries from Monaco et al. (38)
were composed of poly(A) enrichedRNA. RNA seq data ofCD4+T
cell subsets (n=5 donors with 3 CD4+ T cell populations each) were
retrieved from Ranzani et al. [(97); PRJEB5468]. RNA-sequencing
libraries from Ranzani et al. (97) consisted of poly(A) enriched
RNA. RNA-seq data of HeLa-S3 cells and K562 cells were obtained
from Martinez et al. [(39); GSE125218] and were comprised of
RNA-sequencing libraries composed of poly(A) enriched RNA.
Quantitative mass spectrometry (MS) data, consisting of imputed
label-free quantification (LFQ) and protein copy numbers (CN),
were retrieved fromRieckmann et al. (40) and encompassedCD19+

B cells, CD4+ and CD8+ T cells and their respective differentiation
subsets (n=4 donors). Data sets were selected based on using near
identical markers for selecting lymphocyte subsets: Lymphocyte
subsets in the RNA-seq andMS data sets were prepared as follows:
CD19+ B cells: naive (RNA-seq: CD27- IgD+, MS: CD27-

Mitotracker-), memory (RNA-seq: CD27+ CD38- IgD-, MS:
CD27+ CD38- Mitotracker-) and plasmablasts (RNA-seq: CD27+

CD38+ IgD-, MS: CD27+ CD38+Mitotracker-); CD4+ T cells: naive
(RNA-seq: CCR7+ CD45RA+ CD45RO-, MS: CCR7+ CD45RA+),
memory (RNA-seq: CCR7+ CD45RA- CD45RO+, MS:
CCR7+ CD45RA-), and effector memory (RNA-seq: CCR7-

CD45RA- CD45RO+, MS: CCR7+ CD45RA-); CD8+ T cells: naive
(CCR7+CD45RA+),memory (CCR7+CD45RA-), effectormemory
(CCR7- CD45RA-) and effector CD8+ T cells (CCR7- CD45RA+).

Single-cell RNA-sequencing (scRNA-seq) data of blood-
derived CD4+ and CD8+ T cells were retrieved from the GEO
repository: Zheng et al. (69); GSE98638, Guo et al. (67);
GSE99254, Zhang et al. (68); GSE108989.

RBP Reference List
The list of annotated human RNA-binding proteins (RBPs) was
created by aggregating published data of RNA interaction
capture assays that were performed on HEK293, HeLa, MCF7,
MCF10A, U2OS and Jurkat cells (34–36), which resulted in a list
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of 2356 RBPs. This list was supplemented with 977
computationally identified RBPs from Gerstberger et al. (37),
and the EuRBP-DB (36), http://eurbpdb.syshospital.org/,
accessed on 19-11-2019. This RBP list with 3333 proteins was
manually curated to exclude histones (18 histones), possible
contaminants (ITGA1 and ITGB1), and mitochondrial RBPs
(80 RBPs), resulting in a list of 3233 RBPs.

RNA-Sequencing Analysis
RNA-sequencing reads were quasi-mapped using Salmon
[version 1.0 (98)] onto the human coding transcriptome
GRCh38 from Gencode (v36, May 2020). Of the CD4+ T cell,
CD8+ T cell and CD19+ B cell samples retrieved from Monaco
et al. (38), an average of 12.5 x 106 reads was quasi-mapped onto
the human coding transcriptome. For the CD4+ T cell
differentiation samples, retrieved from Ranzani et al. (97), an
average of 11.4 x 106 reads was quasi-mapped onto the human
coding transcriptome. Transcript-level estimates were imported
and summarized to the gene-level by using the tximport function
[tximport package, version 1.16.1 (99)]. To define the overall
expression of RBPs subsets were grouped together as indicated.
Differential gene expression analysis was performed on all
detected genes using DESeq2 [version 1.28.1 (53)]. P-value was
adjusted using the Bejamini-Hochberg procedure. Log2 fold
change values were adjusted using the lfcShrink function,
which is part of the DESeq2 package. Genes were considered
differentially expressed with an absolute log2 fold change
(LFC) >0.5 and a p-adjusted <0.01. RBPs that were
differentially expressed were filtered from the list of
differentially expressed genes. For differential gene expression
analysis of total B cells, CD4+, and CD8+ T cells populations, we
averaged the RNA-seq counts of differentiation subsets per
donor. TPM (transcript per kilobase per million) counts were
calculated by Salmon and used for plotting. Of note, TPM counts
are corrected for library depth, library size, and transcript length,
and thereby allow a fair comparison between populations. The
number of detected RBPs per cell type, and the RBP expression
rank were based on averaged TPM per cell type. Top 20
differentially expressed proteins were identified based on the
log2 fold change values.

Single Cell RNA-Seq Data Analysis
ScRNA-seq datasets were analysed using Seurat [version 4.0.1
(100)]. Count matrices of (67–69) were filtered for “PTC”,
corresponding to peripheral blood-derived CD8+ T cells
(CD3+CD8+). To identify conventional blood-derived CD4+ T
cells, count matrices of references (67–69) were filtered for
“PTH” (CD3+CD4+CD25-) and “PTY” (CD3+CD4+CD25int).
To correct for dataset specific effects from the three individual
scRNA-seq datasets, we employed a published scRNA-seq data
integration method (101). The inter-individual donor batch-
effect was corrected using the vars.to.regress argument in
SCTransform (Seurat v4). Unsupervised clustering was
performed on Uniform Manifold Approximation and Project
(UMAP) dimensional reduction using the top 30 principal
components (PCs). Cells expressing high levels of naive T cell
associated genes like CCR7, LEF1 and SELL (102, 103) were
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excluded from downstream analysis. Differential gene expression
analysis was performed using the Model-based Analysis of
Single-cell Transcriptomics (MAST) test (104). Genes were
considered differentially expressed based on a p-adjusted < 0.05
and an absolute log2 fold change > 0.5.

Cytotoxic Score Calculation
The cytotoxic score of CD4+ T cells and CD8+ T cells was obtained
from the scRNA-seq data by selecting for the top 7 most correlated
(Pearson’s correlation) genes with FGFBP2 expression (9).
(Supplementary Figures 6A, B). To obtain the cytotoxic score
for eachcell, a Z-score of expression for eachof the 8 cytotoxic genes
(FGFBP2, GZMB, GZMH, PRF1, NKG7, CX3CR1, GNLY and
ADGRG1) was calculated for the whole dataset. Z-scores from all
8 genes were averaged per cell and served as the cytotoxic score.
Cells with high (top 10%), intermediate (10-90%) or low (bottom
10%) cytotoxic score were selected and used for analysis.

Mass Spectrometry Analysis
Differential protein expression analysis was performed with
Differential Enrichment analysis of Proteomics data (DEP)
[version 1.12.0 (105)] using the imputed LFQ values. LFQ
values of all detected proteins were used for differential protein
expression analysis. Proteins were considered differentially
expressed with a p-adjusted value < 0.05 and an absolute log2
fold change > 0.5. RBPs that were differentially expressed were
filtered from the list of differentially expressed proteins. Protein
abundance was presented in CN values and were filtered for
expression levels (CN > 1). The number of RBPs detected among
the different cell types was based on averaged CN values across
cell types obtained from 4 donors. RBP rankings according to
protein abundance was performed by using averaged CN values
per cell type. The top 20 differentially expressed proteins were
identified based on the log2 fold change values.

RBD Annotation
RNA-binding domain names were obtained from Gerstberger et
al. (2014) and Liao et al. (2020). The existence of each RNA-
binding domain was verified and updated based on information
present in the protein families database [Pfam (48)]
(Supplementary Table 1). Proteins containing RNA-binding
domains were obtained from the PFAM database. When RBPs
contained more than one RBD, each RBD was counted and
included in the analysis. Human Protein Atlas annotations
[HPA, https://www.proteinatlas.org on 28-03-2021 (52)] were
used to classify proteins associated with RNA modification
(keywords: “RNA AND Modification”), RNA splicing
(keywords: “Spliceosome”), RNA stability (keywords: “RNA
AND Stability”), RNA transport (keywords: “RNA AND
Transport”), and Translation (keywords: “Translation”).
Protein-protein association networks were generated using the
STRING database [https://string-db.org/ (106)]. Gene ontology
analysis was performed with the Panther database [version 16.0
(107)] on differentially expressed RBPs. A statistical
overrepresentation test (Fisher’s exact with FDR multiple test
correction) was performed with a reference list composed of all
Homo Sapiens genes in the database. Overrepresented GO terms
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(FDR<0.05) were filtered for RNA-related functions. Full lists of
overrepresented GO terms are provided in Supplementary Table 7.

Plots and Graphs
Plots and graphs were generated using ggplot2 [version 3.3
(108)]. Principal components analysis was performed using the
plotPCA function from DESeq2 (53). Heatmaps were generated
using the Pheatmap package [version 1.0.12 (109)] in R (version
4.0.3). Venn diagrams were generated using the Venn diagram
tool from the University of Gent (accessed at http://
bioinformatics.psb.ugent.be/webtools/Venn/).
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