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Abstract. In Xenopus embryos, the successive and 
rapid cell divisions that follow fertilization are accom- 
panied by periodic oscillations of intracellular pH 
(pHi). Cycling of pHi occurs in phase with several 
other oscillatory activities, namely nuclear divisions, 
M phase-promoting factor (MPF) activity, and surface 
contraction waves (SCWs). We report that treatments 
that abolish cycling of MPF activity and the SCWs 
also suppress the pHi oscillations, whereas those that 
block cell division without affecting neither MPF ac- 
tivity nor the SCWs do not suppress the pHi oscilla- 
tions. Experiments on enucleated oocytes, matured in 
vitro and activated, demonstrated that the activity gov- 
erning the rhythmicity of the pHi oscillations resided 
in the cytoplasm of the oocyte. In this respect, the ac- 
tivity responsible for the pHi oscillations was different 
from that which drives the SCWs, which necessitated 
the presence of the oocyte germinal vesicle (Ohsumi et 
al., 1986), but more closely resembled MPF activity 

that did not require the presence of the oocyte germi- 
nal vesicle (Dabauvalle et al., 1988). In mature eggs 
enucleated at the time of egg activation, the pHi oscil- 
lations were similar to those in control nucleated eggs, 
whereas the period between two peaks of SCWs was 
35-60 min vs. 20-35 min in nucleated control eggs. 
Previous studies had shown that the periodicity of 
SCWs was larger in anucleate egg fragments than in 
their nucleate counterparts (Sakai and Kubota, 1981), 
the difference being on the order of 6-15 min 
(Shinagawa, 1983). However, in these previous 
studies, enucleation was performed 30-50 min after 
fertilization. Our results clearly demonstrate that the 
periodicity of the SCWs is lengthened when the inter- 
val between egg activation and enucleation is short- 
cried, thereby providing an easier way to assess the 
nuclear dependency of the SCWs. Finally, the various 
possibilities concerning the role of pHi cycling during 
cell division are discussed. 

I 
N many cells, biological activities have been found to os- 
cillate in relation with a particular physiological state. 
Oscillatory activities can involve simple ions (oscilla- 

tions of the intracellular pH or intracellular free calcium ac- 
tivity), molecules (oscillations in the M phase-promoting 
factor [MPF] ~ activity or enzymatic activities), or even 
more complex assemblies of several reactions, as is the case 
for the periodic surface contraction waves in dividing am- 
phibian eggs or the periodic rounding-up occurring at each 
cell cycle in dividing mammalian cells in culture. Oscillatory 
activities are most easily observed in dividing cells. In such 
cells, several biological activities have been shown to oscil- 
late in phase with each cell division. 

The egg of Xenopus laevis is probably the only cell in 
which several oscillatory activities can be recorded. So far, 
three main types of oscillatory activities have been shown to 
operate in Xenopus eggs during the embryonic development: 

1. Abbreviations used in this paper: MPE M phase-promoting factor; SCW, 
surface contraction waves; 6-DMAP, 6-dimethylaminopurine. 

surface contraction waves, MPF activity, and oscillations of 
the intracellular pH level. Surface contraction waves (SCWs), 
first observed by Hara (1971), occur periodically during 
Xenopus embryogenesis, with the same periodicity as the 
cleavage cycles. These SCWs appear to be independent of nu- 
clear activities as they also take place in anucleate egg frag- 
ments (Sawai, 1979; Hara et al., 1980), although at a lower 
periodicity than in nucleate egg fragments (Sakai and 
Kubota, 1981; Shinagawa, 1983). Moreover, oocytes in- 
duced to mature after removal of the germinal vesicle (nu- 
cleus) initially showed no SCWs when activated (Ohsumi et 
al., 1986). MPF, a universal M phase-promoting factor 
(Masui and Markert, 1971), has also been found to oscillate 
in Xenopus embryos (Gerhart et al., 1984). Contrary to the 
SCWs, MPF activity rises during oocyte maturation even in 
the absence of the germinal vesicle (Masui, 1972) and oscil- 
lates in activated enucleated oocytes (Dabauvalle et al., 
1988). Oscillations of the intraceUular pH (pHi) level have 
been described by Lee and Steinhardt (1981) and Webb and 
Nuccitelli (1981). Interestingly, Lee and Steinhardt (1981) 
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considered these pH~ oscillations, that they could record only 
in a minority of cases, as artefacts. However, further experi- 
ments provided clear evidence against Lee and Steinhardt's 
arguments (1981) and demonstrated that p ~  oscillations were 
not recording artefacts (Webb and Nuccitelli, 1982). The pHi 
oscillations were found to have a periodicity equal to that of 
the cell cycle, but out of phase with it, as far as cleavage 
(cytodieresis) was considered (Webb and Nuccitelli, 1981). 

In this study, we have investigated the relationships be- 
tween the three types of oscillations that take place during 
Xenopus embryo cell division, namely pHi oscillations, sur- 
face contraction waves, and oscillations in MPF activity. We 
report that the activity at the origin of the pHi oscillations 
resides in the cytoplasm, unlike the surface contraction 
waves, but similarly to the cycling activity of MPF. 

Materials and Methods 

Obtaining eggs and sperm from mature Xenopus laevis reared in the labora- 
tory, as well as activating and fertilizing eggs were performed according to 
previously described procedures (Charbonneau et al., 1986). The physio- 
lngieal solution, FI, modified from Hollinger and Corton (1980), contained 
(in millimolar): 31.2, NaC1; 1.8, KC1; 1.0, CaCI2; 0.1, MgC12; 1.9, NaOH; 
and 2.0, NaHCO3; buffered with 10 mM Hepes (pH 7.4). Mature jellied 
eggs or embryos were dejellied by gentle swirling (4-8 rain) in F1 contain- 
ing 2% cysteine (pH 7.8). For pH microelectrode impalement (see below), 
an F1 solution buffered with 10 mM Capso (pH 8.5-9.0) was used to visual- 
ize on the pen recorder the deflexion of the pH trace, indicating the entry 
of the microelectrode into the egg cytoplasm. 

Various chemicals and drugs were used to block cleavage at particular 
levels of the cell cycle. Nocodazole, an inhibitor of microtubule assembly, 
was prepared as a stock solution of 1 mg/ml in 50% 1-120-50% DMSO and 
used at a final concentration of 10/~g/ml. Cytochalasin B, an inhibitor of 
microfilament polymerization, was prepared as a stock solution of 5 mg/ml 
in DMSO, and used at a final concentration of 5/~g/ml. Cycloheximide, an 
inhibitor of protein synthesis, was used at 100-200/~g/ml (stock solution: 
5 mg/ml in H20). Aphidicolin, an inhibitor of DNA polymerase and hence 
of DNA replication, was dissolved in 50% ethanol-50% 1,2-propane diol 
(1 mg/ml) and injected (40-50 nl) into embryos, 30-45 rain after fertiliza- 
tion. Control embryos were injected with the mixture 1,2-propane diol- 
ethanol. 6-DMAP (6-dimethylaminopurine), which blocks the cell cycle 
without affecting protein synthesis (Rebhun et al., 1973) by inhibiting pro- 
tein kinase activity and triggering a dramatic global dephosphorylation 
(N&mt and Guerrier, 1988), was used at 300 to 600 ~M (stock solution: 
15 mM in H20). 

Intracellular pH (pHi) was measured using microelectrodes containing 
at their tips an H+-selective neutral carrier-based resin (Amman et al., 
1981), purchased from Fluka Chemical Corp. (Buchs, Switzerland) and 
fabricated and calibrated as described previously (Charbonneau et al., 
1985; Grandin and Charbormean, 1989a). The pH response of these 
microelectrodes was 54-61 mV per pH unit, with a full response time of 
a few seconds. Membrane potential recorded simultaneously in the same 
egg with a voltage microelectrode (G-C 150F; Clark Electromedical Instru- 
ments, Reading, England), filled with 3 M KCI, 10 mM EDTA and 10 mM 
potassium citrate, was subtracted from the pH microelectrode output at the 
pen recorder (Linseis) input, to give a trace corresponding to pHi. Electri- 
cal recordings were performed in 4-ml tissue culture plastic dishes (60 × 
15 mm), with a center well (Falcon Labware, Oxnard, CA). It is important 
to note that for each experimental condition tested, control experiments 
were run at the same time on a second electrophysiological set-up placed 
exactly under the same conditions. Microinjections were performed as de- 
scribed in Grandin and Charbonneau (1989b). 

Enucleation procedures were applied on immature oocytes or mature 
eggs. Full-grown oocytes (stage VI in Dumont, 1972) were manually defol- 
liculated in OR2, modified from Wallace et ai. (1973), which contained (in 
millimolar): 82.5, NaC1; 2.5, KC1; 1.0, CaCI2; 1.0, MgCI2; 3.8, NaOH; 
2.0, NaI-ICO3, buffered with 10 mM Hepes and adjusted at pH 7.4. The oo- 
cytes were enucleated according to a method similar to that described by 
Ford and Gurdon (1977) and shown in Fig. 1. The heading solution, in which 
the ooeytes recovered for '~1.5 h after enueleation, contained 90 mM 
KH2PO4-K2HPO4 (pH 7.2), 10 mM NaC1, and 1 mM MgSO4. Mature de- 

jellied eggs (metaphase II stage of meiosis) were enucleated according to 
the same method as for ooeytes, but were allowed to heal either in Fl solu- 
tion (measurements of pHi or SCWs) or in the healing solution (measure- 
merits of MPF activity). In the latter ease, MPF activity of control nucleated 
eggs was also measured in the healing solution. Eggs were activated with 
the syringe needle used for enucleation. 

To assay MPF activity, one or two eggs were placed on a piece of 
paratilm. Excess solution around the eggs was carefully removed and the 
eggs immediately homogenized in extraction buffer (80 mM sodium fl-glyc- 
erophosphate, 15 mM EGTA, 10 mM MgC12, 1 mid DTT, pH 7.4, 1 #l 
per egg), by several passages through an Eppendorf pipette tip. The crude 
extracts were diluted twofold in the extraction buffer, sedimented at 3,500 g, 
and ,~40 nl of the soluble fraction were immediately microinjected into 
stage VI immature Xenopus oocytes (four for each point). Successful oocyte 
maturation was scored by visualizing under a stereomicroscope the germi- 
nal vesicle moving up to the animal pole and its subsequent breakdown 
(GVBD), ,'ol.5-2.5 h after microinjection, ending in the formation of the 
maturation spot with the extremity of the second metaphase furrow in its 
center. In some cases, successful maturation was confirmed by dissecting 
on glutaraldehyde-fixed oocytes (2-3 h in 2.5% glutaraldehyde in F1) the 
piece of cortex corresponding to the animal pole and staining, after squash- 
ing between a glass slide and a coverslip, the chromosomes with bisbenzi- 
mide as described in Grandin and Charbormeau (1989b). 

For recording of the surface contraction waves (SCWs), dejellied 
nucleated eggs were activated by pricking, whereas dejellied enucleated 
eggs were activated by the syringe needle used to remove the nucleus. At 
the time the animal cap completed the relaxation following the cortical con- 
traction, ,020 rain after activation, the nucleated eggs were treated with 
0.5 % protease (from Streptomyces griseus, type XIV from Sigma Chemical 
Co., St. Louis, MO) for 5-10 rain to remove the vitelline envelope (Ohsumi 
et al., 1986). Enucleated eggs were dechorionated twenty rain after enuclea- 
tion, by treating for 1-3 rain with a cocktail containing 1.25 mg/ml papain, 
6.2 mM cysteine, pH 2.8, in F1 solution, as described by Richter (1980). 
The reaction was stopped with 3 mM monoiodo acetic acid (in H20, 10 
min). In these experiments, the control nucleated eggs were similarly 
dechorionated. After rinsing following protease or cystein-papain treat- 
ment, dechorionated eggs were transferred to various agarose-coated con- 
trol and experimental dishes. The diameters of the dechorionated eggs, 
placed animal pole up, were measured from above, under a stereomicro- 
scope, every 5 rain (Shinagawa, 1983). Control and experimental eggs were 
placed in exactly similar conditions of temperature. 

To visualize the state of the nucleus and chromosomes with respect to 
phi oscillations, eggs that were impaled with potential and pH microelec- 
trodes were removed from the recording chamber at intervals and immedi- 
ately fixed for 24 h in Smith's fixative (Humason, 1972). After dehydration 
in series of ethanol and butylic alcohol, and embedding in paraffin, eggs 
were sectioned at 5/~m and stained with bisbenzimide to detect chromatin 
and chromosomes. 

Results 

Relationships between IntraceUular pH Oscillations 
and Mitosis 
As first shown by Webb and Nuccitelli (1981), Xenopus egg 
fertilization is accompanied by a permanent increase in intra- 
cellular pH (pHi) which is followed during early embryo- 
genesis by periodic oscillations of phi around its elevated 
value, each oscillation corresponding to one cell division 
(Fig. 2). In this study, the exact relationship between the cell 
cycle and phi oscillations was analyzed by fixing eggs im- 
paled with pH microelectrodes at various ~/esaaharing the 
oscillation cycle and examining secfio~xs~l~ough the nuclei 
with the light microscope (Fig. 2). This clearly showed that 
the alkaline peak of the pH~ oscillation corresponded to mi- 
tosis, more precisely the metaphase stage, which also cor- 
responded to the completion of cleavage (cytodieresis), 
whereas at the acidic peak of the oscillation, nuclei were in- 
terphasic (Fig. 2). A point that had been previously verified 
(Webb and Nuccitelli, 1982) is that in artificially activated 
eggs, phi oscillations were exactly similar to those in em- 
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Figure 1. Schematic representation of the methods used for enucleating oocytes and eggs of Xenopus laevis. (A) In oocytes, the germinal 
vesicle was removed before maturation. Immature full-grown oocytes (prophase I-arrested) were defolliculated with forceps. A small inci- 
sion was made at the animal pole with a syringe needle (microlance 25 G 5/8, 0.5 x 16 mm). The syringe needle was then removed carefully, 
and the oocyte was slightly squeezed with forceps until the germinal vesicle appeared in the slit and emerged freely in the external solution, 
OR2 (see Ford and Gurdon, 1977). Control (nucleated) oocytes were also punctured with a syringe needle at the equator or in the vegetal 
hemisphere. Oocytes were subsequently allowed to recover for 1.5 h in the healing solution and transferred back to OR2 solution for a 
few hours. Oocytes were then induced to mature after addition of progesterone (3 #M). In oocytes stimulated in vitro with progesterone 
or in vivo (see below, B and C), maturation was characterized by a moving up of the germinal vesicle to the animal pole and disruption 
of the germinal vesicle envelope, allowing a mixing between nuclear and cytoplasmic materials (represented by the arrows in the schemes). 
In the absence of the germinal vesicle, successful maturation in enucleated oocytes was assessed by visualizing after egg activation (induced 
by pricking the egg cortex with a 50-#m-diam glass micropipette) the cortical contraction and the elevation of the vitelline envelope (a 
consequence of cortical granule exocytosis), two early events of egg activation. (B) In eggs, the nucleus was removed at the metaphase 
II stage of meiosis. Eggs matured in vivo were dejellied with cysteine, enucleated with a syringe needle, and allowed to recover in F1 
solution (measurements of pHi or SCWs) or in the healing solution (measurements of MPF activity). Control (nucleated) eggs were punc- 
tured with a syringe needle at any place distinct from the animal pole. In both enucleated and nucleated eggs, activation was triggered 
by the syringe needle. (C) Comparison with the methods used by Hara et al. (1980) and Sakai and Kubota (1981). Separation of fertilized 
eggs of Xenopus into a nucleate and an anucleate fragment was realized either with a newborn human hair, 40-50 min after fertilization 
(Hara et al., 1980) or with a glass rod, 30-45 rain after fertilization (Sakai and Kubota, 1981). The dividing fragment is regarded as the 
nucleated one. AP, animal pole; SEP, sperm entry point. 
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Figure 2. Intracellular pH variations during the early development ofXenopus laevis embryos. This egg was impaled with a potential micro- 
electrode (top trace) and a pH microelectrode (bottom trace), 30 min after fertilization. At this time, pH~ has already attained its plateau 
value, "opH 7.7, characteristic of activated or fertilized eggs. Starting "o60 min after fertilization, pHi oscillated in phase with the cell cy- 
cle. The alkaline peak of the first pH~ oscillation corresponded to the first cleavage (1 h 20 min after fertilization at 23-24°C). Each alka- 
line peak of the successive pH~ oscillations indicated the successive cell divisions of the embryo (cytodieresis). At the same time, the nuclei 
were metaphasic (metaphase of the next division), as seen on sections stained with bisbenzimide (c). Each acidic peak of the pHi oscilla- 
tions corresponded to interphasic nuclei (a). In embryos fixed between the acidic peak and the alkaline peak, the nuclei were at the prophase 
stage of mitosis (top panel in b: the two asters surround the prophasic nucleus, as seen with the light microscope; bottom panel in b: 
prophasic chromosomes stained with bisbenzimide), whereas in embryos fixed between the alkaline peak and the acidic peak, the nuclei 
were at the anaphase (top panel in d: one set of anaphasic chromosomes; bottom panel in d: the other set of anaphasic chromosomes in 
the same nucleus) or telophase (photograph d') stages of mitosis. The period of pH~ cycling, ,o30 min, was seen to correlate with the 
cell division cycle, and was lengthened as the latter was slowed down, at a lower temperature, for instance. 

bryos. The pH~ oscillation represents therefore an autono- 
mous oscillator that does not require sperm material or cell 
division. 

Treatments that Affect the Cycling of MPF 
Activity and Surface Contraction Waves also Affect 
pH, Oscillations 
To characterize the origin of the pHi oscillations, pHi was 
measured in eggs treated with drugs known to affect two 
other main oscillatory activities, MPF activity, and surface 
contraction waves (SCWs). 

Cycloheximide, which inhibits pro te in  synthesis, was 
found to completely abolish the pH~ oscillations in fertil- 
ized or artificially activated eggs (Fig. 3). Cycloheximide is 
known to inhibit the cycling of MPF activity (Gerhart et al., 
1984) and to suppress the SCWs (Kimelman et al., 1987), 
as confirmed in this study (Fig. 3). Together with protein 
syntheses, protein phosphorylations are known to be in- 
volved in egg activation and the subsequent cell divisions. 
6-DMAP (6-dimethylaminopurine) is an inhibitor of  protein 
phosphorylation which does not interfere with protein syn- 
thesis (Rebhun et al., 1974) and operates in sea urchin and 
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Figure 3. Effects of inhibition of protein synthesis by cycloheximide (100/xg/ml) on pHi oscillations of Xenopus embryos (A) and SCWs 
of artificially activated eggs of Xenopus (B). (A) p H i  r e c o r d i n g s  and membrane potential recordings (Em) in control embryos (left) and 
cycloheximide-treated embryos (right). As mentioned in Fig. 2, Em and pHi were recorded simultaneously in the same embryo with two 
intracellular microelectrodes. Membrane potential (E,), recorded by the potential microelectrode, was subtracted at the pen recorder in- 
put, from the total signal recorded by the pH microelectrode, which corresponded to the voltage proportional to the H ÷ ion activity mea- 
sured plus the membrane potential (pHi plus Em). pH~ oscillations were blocked by cycloheximide. In these experiments, both control 
and cycloheximide-treated embryos were impaled with microelectrodes 8 min after insemination. Note the fertilization-associated pH~ in- 
crease starting '~10 min after insemination, that is ,~5 min after fertilization. Cycloheximide was added 25 min after insemination (arrow); 
cell division was blocked as early as the first cleavage. A complete disappearance of pHi cycling after cycloheximide treatment was ob- 
served in all six experiments performed. (B) SCWs measurements, which were started 55 min after egg activation (arrowheads); cyclohexi- 
mide treatment was applied 50 min after egg activation. In all cases (nine experiments, see Table I), the blockade of protein synthesis 
resulted in a complete disappearance of SCWs. 

starfish eggs (N6ant and Guerrier, 1988) and in Xenopus egg 
cytoplasmic extracts (Felix et al., 1989). In eggs prein- 
cubated in a solution containing 6-DMAP and subsequently 
activated, the SC'~s and pHi oscillations were strongly per- 
turbed (Fig. 4). The periodicity of the SCWs was increased 
with respect to control eggs, and accompanied by a progres- 
sive and large increase in egg diameter (Fig. 4 and Table I). 
In some cases, the SCWs completely ceased (Fig. 4). Simi- 
larly, pH~ oscillations were considerably lengthened and 
eventually disappeared, accompanied in some cases by a 
progressive alkalinization of the cytoplasm (Fig. 4). 

Treatments that Block Cleavage without Affecting 
the Cycling of MPF Activity or SCWs Do Not Affect 
pHi Oscillations 

Nocodazole, an inhibitor of microtubule assembly, blocks 
cleavage by preventing nuclear divisions, but has no effect on 
MPF activity cycling (Gerhart et al., 1984) and SCWs 
(Kimelman et al., 1987), although Shinagawa (1983) demon- 
strated that another inhibitor of microtubule assembly, col- 
chicine, produced a lengthening of the periodicity of SCWs. 
In this study, fertilized eggs treated with nocodazole failed 
to cleave, but nevertheless displayed pH~ oscillations with 
the same periodicity as in dividing embryos (Fig. 5). Simi- 
larly, when cell division was blocked by microinjection of 

aphidicolin, an inhibitor of DNA synthesis, pHi oscillations 
were not inhibited (Fig. 5). MPF activity cycling and SCWs 
have also been shown to be independent of DNA synthesis 

(Kimelman et al., 1987). Finally, blocking cytodieresis, but 
not cytokinesis, with cytochalasin B, an inhibitor of 
microfilament assembly, did not result in an inhibition of 
pH~ oscillations that remained similar to those in untreated 
embryos (Fig. 5). 

Nuclear Material Is Not Needed for IntraceUular 
pH Cycling 

Nuclear material contained in the oocyte germinal vesicle is 
released into the cytoplasm after germinal vesicle break- 
down occurring during oocyte maturation. Material con- 
tained in this nuclear sap has been shown to participate in 
the subsequent SCgVs (Ohsumi et al., 1986; Dabauvalle et 
al., 1988), but not in MPF activity cycling (Dabauvalle et 
al., 1988), which occurs after activation of the mature oo- 
cyte. Enucleation therefore represents an appropriate proce- 
dure to determine whether the pHi oscillations have the 
same origin as the SCWs, or are independent of nuclear ac- 
tivity as is the case for MPF activity. In enucleated oocytes, 
subsequently matured with progesterone, pH~ oscillations 
were still generated (Fig. 6 A). To confirm the absence of a 
role of the nucleus in pHi cycling, eggs were also enucle- 
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Figure 4. Effects of protein phosphorylation inhibition by 300/zM 6-DMAP on pHi oscillations of Xenopus embryos (.4) and SCWs of 
artificially activated Xenopus eggs (B). 6-DMAP, which in this experiment was applied at the t ime the egg was impaled with the microelec- 
trodes (15 min after insemination), resulted in a lengthening of pHi oscillations with respect to the control (impaled 10 min after insemi- 
nation). The oscillations eventually disappeared, concomitantly with a sustained alkalinization of the cytoplasm. Similar patterns were 
observed in all 10 experiments performed. The SCWs shown here were measured starting 55 rain (control) and 50 rain (6-DMAE time 
of treatment: 45 min) after egg activation. The period of  SCW cycling in 6-DMAP-treated eggs was slightly lengthened with respect to 
control eggs (see also Table I). In some cases, as here, the SCWs of 6-DMAP-treated eggs ceased. In all cases, the treatment was accompa- 
nied by an increase in egg diameter (see Table I). These effects of 6-DMAP on SCWs were observed in 18 experiments. 

Table 1. Effects of  6-DMAP , * Cycloheximide,* and Nuclear Material on the SCWs of  Activated Eggs o f  Xenopus laevis~ 

Increase in egg Decrease in egg Egg diameter 
Egg diameter diameter during diameter during (off-peak) at 

before the the relaxation the contraction Periodicity of the end of 
Treatment SCWsll phase¶ phase the SCWs** treatment** 

mm rain mm 

Controls 1.64 4- 0.20§! 0.20 + 0.08 0.19 4- 0.07 25.70 -t- 6.00 1.67 4- 0.08 
(9 eggs) (35 SCW, 10 eggs) (33 SCW, 10 eggs) (33 SCW, 10 eggs) (9 eggs) 

6-DMAP 1.65 4- 0.15 0.23 4- 0.06 0.11 4- 0.06 28.70 ± 6.90 2.00 + 0.22 
(18 eggs) (44 SCW, 18 eggs) (41 SCW, 18 eggs) (39 SCW, 18 eggs) (17 eggs) 

Cycloheximide 1.63 -1- 0.09 No SCW No SCW No SCW 1.70 4- 0.14 
(9 eggs) (9 eggs) 

Nucleated 1.73 4- 0.08 0.23 + 0.08 0.24 4- 0.08 25.73 4- 5.44 1.75 4- 0.06 
(controls) (9 eggs) (44 SCW, 12 eggs) (37 SCW, 12 eggs) (34 SCW, 12 eggs) (12 eggs) 

1.58 4- 0.12 0.29 4- 0.07 0.26 + 0.08 44.00 4- 8.20 1.58 4- 0.16 
(7 eggs) (15 SCW, 7 eggs) (12 SCW, 7 eggs) (13 SCW, 7 eggs) (3 eggs) 

Enucleatedllll 
1.50 4- 0.00 No SCW No SCW No SCW 1.83 + 0.04 

(4 eggs) (4 eggs) 

* 6-DMAP was used at 300 ~,M (final concentration) to inhibit protein phosphorylation. 
t Cycioheximide (final concentration: 100 t~g/ml) was used to inhibit protein synthesis. 
0 Unactivated dejellied eggs were activated by pricking with a glass micropipette (5-10 ~m tip diameter) or with the syringe needle (0.5-mm diameter) used for 
enucleation, and, in all cases, SCWs were recorded in FI solution aRer removal of the vitelline envelope either with protease (6-DMAP- and cycloheximide-treated 
eggs and their controls) or with cystein-papaln (enucleated eggs and their controls) as described in Materials and Methods. 
U This value was obtained 40-50 rain al~er egg activation; the first SCW began 50-60 rain after egg activation. In control eggs, this value also corresponds to 
the minimal egg diameter at the peak of the contraction phase of each SCW (see Figs. 2 and 7). 
q The so-called "relaxation phase" refers to the "flattening" of the egg after each SCW, a term used by other authors. 
"* Periodicity corresponds to the duration of each SCW, measured between two successive peaks of contraction. 
t t  This value was obtained 2-3 h after egg activation. In eggs which still displayed $CWs at the end of the treatment, the diameter given here corresponds to 
the minimal diameter during a contraction phase (off-peak value of the trace; see Figs. 2 and 7). 
H All values are mean values :t: $D .  
|H Two classes of enucleated eggs were clearly discernible. A first class of eggs still displayed SCWs after treatment, whereas the second class corresponds to 
eggs in which SCWs have totally disappeared. 
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Figure 5. Intracellular pH cycling in cleavage-blocked Xenopus em- 
bryos, using'nocodazole (A), aphidicolin (B), and cytochalasin B 
(C). All treatments were found to block cell division, either as a 
result from the inhibition of microtubule assembly (nocodazole), 
or microfilament assembly (cytochalasin B) or DNA synthesis 
(aphidicolin). In such arrested embryos, pHi was nevertheless 
found to oscillate as in their respective controls. (A) 10 #g/ml 
nocodazole was applied around the embryos 1 h 30 rain after in- 
semination, and phi recording started at the same time. The con- 
trol embryo presented here was impaled with microelectrodes 2 h 
after insemination. These traces are representative of four experi- 
ments (four treated plus four controls). (B) Aphidicolin was injected 
into embryos (40 nl ofa 1 mg/ml stock solution) 20 min after insemi- 
nation; pHi recording began I h 55 min after insemination. Controls 
were injected with 40 nl of 1,2-propane diol-ethanol (0.5-0.5) 20 
min after insemination; this trace starts 1 h 30 min after insemina- 
tion. Results were similar in all four experiments performed (four 
treated plus four controls). (C) 5 #g/ml cytochalasin B was applied 
30 min after insemination. In this experiment, both the control and 
the treated embryos were impaled with microelectrodes 1 h after 
insemination. In all four experiments performed (four treated plus 
four controls), an absence of effect of cytochalasin B on pH~ oscil- 
lations was observed. 

ated at the end ofoocyte maturation. At this stage, the mature 
egg laid by the female is at the metaphase II stage of  meiosis, 
the metaphasic chromosomes being located at the animal 
pole, just beneath the plasma membrane. In such enucleated 
eggs, pHi oscillations were found to be exactly similar to 
those taking place in control nucleated eggs (Fig. 6 B). 

Nuclear Material Regulates the Periodicity of Surface 
Contraction Waves 
In a previous study, it had been demonstrated that anucleate 
egg fragments mechanically separated from the embryos 
30-50 rain after fertilization had a longer periodicity in their 
SCWs than their nucleate counterparts (Shinagawa, 1983). 
However, the difference between anucleate and nucleate 

egg fragments was small, on the order of a few minutes 
(Shinagawa, 1983), which explained that earlier investiga- 
tors had missed this phenomenon (Hara et al., 1980). We 
reasoned that this interval might be increased if the delay be- 
tween egg activation and enucleation were shortened. This 
can be achieved by enucleating eggs at the time of  activation. 
In addition, measurements of  MPF activity in enucleated 
eggs had not been previously reported in the literature. It was 
therefore necessary to obtain a pattern for these two oscilla- 
tory activities that could be compared with that of  pHi os- 
cillations in enucleated eggs. MPF activity was found to cy- 
cle in such enucleated eggs with a periodicity similar to that 
in nucleated eggs (Fig. 7), a finding that was not too surpris- 
ing since MPF activity had been found to cycle after activa- 
tion in matured enucleated oocytes (Dabauvalle et al., 
1988). Fig. 8 shows the results of  measurements of  SCWs in 
enucleated and control eggs. The periodicity of  the waves 

NUCLEATED ENUCLEATED 

A: OOCYTES 

• ~ BOmin 

B: EGGS 

Figure 6. Absence of a role of nuclear material in the generation 
of pH~ oscillations. (A) Oocytes were enucleated (immature stage 
VI), allowed to heal, matured with 3 #M progesterone, and acti- 
vated by pricking. In the experiments shown here, the control (also 
incubated in the healing solution and matured with progesterone) 
and the enucleated oocytes were respectively impaled with micro- 
electrodes (in F1 solution) 50 rain and 2 h 20 rain after egg activa- 
tion, which in both cases was triggered 10 h after progesterone ad- 
dition, '~2 h after completion of oocyte maturation. In enucleated 
oocytes, successful oocyte maturation and egg activation were as- 
sessed, in the absence of the nucleus, by observing the cortical con- 
traction and vitelline envelope lifting up. Intracellular pH oscilla- 
tions were present in enucleated oocytes, but were more or less 
regular. However, this was also the case for control oocytes. In addi- 
tion, the occasional observation, in both enucleated and nucleated 
oocytes, of a delay of ~ 2 h between egg activation and the begin- 
ning of pHi cycling, instead of 1 h in in vivo matured eggs, seemed 
to be due to the procedure used for oocytc maturation rather than 
to the absence of the nucleus. Oscillations of pHi were observed in 
11 cnucleated oocytes and 11 controls. (B) Eggs (matured in vivo 
and dejellied) were cnucleated with a syringe needle, which also 
triggered egg activation, and allowed to heal in FI solution. Control 
eggs were activated by pricking at the same time. The two traces 
presented here start 1 h after egg activation. Intracellular pH oscil- 
lations were exactly similar in enucleated and nucleated eggs, as 
was verified in six experiments (six cnacleated plus eight nucleated). 
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NUCLEATED Figure 7. MPF cycling in 
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ENUCLEATED plained in Materials and Meth- 
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, 5cI~(~ . . . . . . . . . . . . / \ / ~  / measured inthe healing solu- 
• " " tion. The arrowheads (110 and 
" 105 min) indicate the times af- 

ter egg activation at which mea- 
surements were started. In 

both enucleated and nucleated eggs, MPF was found to cycle, al- 
though not precisely with the same periodicity (two experiments for 
each). 

was found to be much longer in enucleated eggs (35-60 min 
interval between two waves; mean value 44 min, see Table 
I) than in control eggs (20-35-min interval between two 
waves; mean value 25 min, see Table I). In this study, the 
differences in SCW cycling between these two populations of 
eggs were much larger than in the experiments in which 
SCW cycling was compared in nucleate fragments and in 
nonnucleate fragments isolated 30-50 min after fertilization 
(Shinagawa, 1983). In addition, in 4 out of 11 experiments, 
enucleated eggs were completely devoid of SCW (Table I). 

Discussion 

The role of intracellular pH oscillations during the cell cycle 
of Xenopus embryos, first described by Webb and Nuccitelli 
(1981; 1982), is totally unknown. On the same material, Lee 
and Steinhardt (1981) were unable to detect any cycling of 
pHi in the majority of embryos. In only two recordings 
could these authors detect a very small pH cycle that they in- 
terpreted as being an artefact due to the fact that the two elec- 
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Figure 8. SCW cycling in enucleated eggs. Mature dejellied eggs 
were activated upon enucleation or by pricking (controls), and their 
vitelline envelopes removed as described in Materials and 
Methods. SCWs were measured in FI solution, 85 min after egg ac- 
tivation in these experiments. This is an example in which 
enueleated eggs displayed a considerable lengthening of the period 
between two waves. The mean values and number of experiments 
are given in Table I. In other cases, the SC-Ws were no longer gener- 
ated by the enucleated eggs (see Table I). 

trodes were inserted in partially uncoupled blastomeres with 
slightly different membrane potential cycling, thus generat- 
ing an artefactual mirror image. However, pH~ cycling re- 
mained well visible in uncleaving embryos (this study) or in 
artificially activated eggs (Webb and Nuccitelli, 1982; this 
study), as well as in embryos in which cleavage-associated 
membrane hyperpolarizations had been suppressed (Webb 
and Nuccitelli, 1982). 

In this report, we have tried to further analyze these pHi 
oscillations by affecting metabolic events classically known 
to be key components of the cell cycle, as well as by studying 
their relatiotlships with two other relatively well-studied os- 
cillatory activities taking place during the same period, 
namely MPF activity cycling and periodic surface contrac- 
tion waves. 

IntraceUular pH Cycling Depends on Protein 
Synthesis and Phosphorylation 
Intracellular pH oscillations were found to be completely 
suppressed when protein synthesis was inhibited and con- 
siderably lengthened and attenuated when protein phos- 
phorylation was inhibited. Of course, in the two situations, 
cell division was totally suppressed. Interestingly, MPF ac- 
tivity cycling (Gerhart et al., 1984) and the SCWs (Kimel- 
man et al., 1987) are also inhibited by cycloheximide. In ad- 
dition, the inhibition of protein phosphorylation by 6-DMAP 
produced a lengthening and an attenuation of the SCWs in 
the eggs, which also became abnormally large. 6-DMAP 
seems to act mainly as a protein kinase inhibitor (Ntant and 
Guerrier, 1988; Felix et al., 1989). However, as an ATP ana- 
logue, 6-DMAP could inhibit other processes than protein 
phosphorylation, which may be responsible for the increase 
in size of the eggs observed in this study. The histone H1 ki- 
nase activity of one of the components of MPF has also been 
shown to depend on both protein synthesis and phosphoryla- 
tion (Arion and Meijer, 1989). 

The requirement for pH~ oscillations of synthesis and 
phosphorylation of one or several proteins is not simply due 
to the resulting arrest of cell division. Indeed, our results 
clearly show that when cell division was inhibited by other 
means, such as an inhibition of microfilament or microtubule 
assembly, or an inhibition of DNA synthesis, phi continued 
to periodically oscillate in phase with neighboring untreated 
embryos. These latter treatments have been shown to sup- 
press cell division, but not other aspects of the cell cycle that 
are represented by MPF activity and SCW cycling (Hara et 
al., 1980; Gerhart et al., 1984; Kimelman et al., 1987). 
Therefore, our results suggest that pHi cycling also repre- 
sents a component of this cell cycle, still operating when cell 
division is arrested. 

To make the distinction between cell division and cell cy- 
cle (or basic cycle) clearer, it is important to stress that it is 
now admitted that the cell cycle of early embryos is deter- 
mined, independently of cell division, by the oscillation of 
the cdc2 mitotic kinase activity, which reflects MPF activity 
cycling (Arion et al., 1988; Labb6 et al., 1989; Felix et al., 
1989). This basic cycle, which is the "master oscillator" 
postulated by Hara et al. (1980), is responsible for the rapid 
alternation between interphase and mitosis, and does not re- 
quire nuclear components (Dabauvalle et al., 1988) or 
cytoskeletal structures (Gerhart et al., 1984; Kirschner et 
al., 1985; Kimelman et al., 1987). 
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Nuclear Material Is Necessary for the Generation of 
SCWs But Not for phi and MPF Activity Cycling 
On first analysis, the relationships between pH~ oscillations 
and the presence of the oocyte nucleus are similar to those 
between MPF activity and the presence of the germinal vesi- 
cle. Indeed, it was recently demonstrated that oocytes in- 
duced to mature after removal of their germinal vesicle did 
not exhibit any SCWs when they were activated (Ohsumi et 
al., 1986). In fact, some of these enucleated matured oocytes 
exhibited delayed transient flattenings of longer periodicity 
than in nucleated eggs (Ohsumi et al., 1986). Similar obser- 
vations made by others (DabauvaUe et al., 1988) also suggest 
that some material removed by enucleation is slowly 
resynthesized, since normal SCWs become visible after a 
time delay proportional to the period of time between enucle- 
ation and egg activation. On the other hand, the presence of 
the nucleus is not required for MPF activity cycling, as 
shown by removal of the nucleus in immature oocytes 
(Dabauvalle et al., 1988) or in mature eggs (present results). 
Similarly, the presence of the nucleus was not required for 
pH~ cycling, either in oocytes or in eggs, thereby demon- 
strating that pH~ oscillations represent a cytoplasmic activ- 
ity. This finding, together with the fact that cycloheximide 
or 6-DMAP prevent pH, oscillations, suggests that pH~ cy- 
cling might be tightly linked to the cdc2 kinase oscillations, 
which also represent a cytoplasmic activity depending on 
protein synthesis and phosphorylation. 

When enucleation was performed at the metaphase II 
stage of meiosis, the SCWs recorded after egg activation 
were considerably lengthened, and, in some cases, were to- 
tally nonexistent. Sakai and Kubota (1981) were the first to 
notice that SCW periodicity was larger in anucleate fragments 
than in nucleate fragments, contrary to previous results 
(Hara et al., 1980), but interpreted this as resulting from 
differences in the procedures used to obtain anucleate frag- 
ments. However, Shinagawa (1983) clearly demonstrated 
that using either the method of Hara et al. (1980) or that of 
Sakai and Kubota (1981), the anucleate fragments still had 
an interval between two SCWs of longer duration than in 
nucleate fragments. However, in these two methods, an 
anucleate fragment is separated from the nucleate fragment 
long after fertilization, 30-45 rain in the procedure of Sakai 
and Kubota (1981), 40-50 min in the procedure of Hara et 
al. (1980) (see a detailed comparison of the two methods in 
Shinagawa, 1983). The results presented here show that the 
periodicity of the SCWs is greatly increased if the delay be- 
tween activation and enucleation is reduced. The SCW peri- 
odicity relative to control fertilized eggs was lengthened by 
only 6-15 rain (39-48 min instead of 33-36 min) when 
enucleation was performed 30-50 rain after fertilization 
(Shinagawa, 1983), whereas the SCW period is much more 
lengthened (35-60 min instead of 20-35 min), in fact almost 
doubled (mean value: 25 min in nucleated eggs vs. 44 min 
in enucleated eggs), when enucleation is performed at the 
time of activation (Table I). During the period between egg 
activation and enucleation, redistribution of nuclear material 
necessary for the correct control of SCWs may occur. 

For the moment, the nature of the nuclear material that 
would be responsible for the synchronization between SCWs 
and the cell cycle oscillator (the cdc2 kinase oscillations) can 
be only a matter of speculation. In fact, most of the compo- 
nents of the germinal vesicle are dispersed into the cytoplasm 

during oocyte maturation, several hours before the metaphase 
II arrest. The most prominent difference between enucleat- 
ing an egg at the metaphase II stage of meiosis (as in the pres- 
ent experiments) and an already activated egg (as in Shina- 
gawa's experiments, 1983) is that the former procedure leads 
to the removal of the spindle, whereas in the latter the spindle 
dissociates after mitosis, and its components remain in the 
cytoplasm. It is therefore tempting to postulate that the nu- 
clear material which is necessary for the correct timing of 
the SCWs, is either a spindle component or a protein asso- 
ciated with metaphasic chromosomes. The two experimental 
procedures used also lead to another difference: that of the 
presence or absence of a nucleus during the 30-50 min after 
activation. As early as 10-15 min after egg activation, the nu- 
cleus has resumed meiosis and become interphasic (Grandin 
and Charbonneau, 1989a) and DNA replication is then initi- 
ated (Kirschner et al., 1980). At least some of the nuclear 
components released into the cytoplasm after germinal vesi- 
cle breakdown could migrate into this interphasic nucleus, 
as has been observed for "early shifting" proteins that are ac- 
cumulated by pronuclei soon after fertilization (Dreyer, 1987). 
When eggs are enucleated at the time of activation, this trans- 
location of nuclear proteins cannot occur. In enucleated eggs, 
the deregulation of the SCWs could therefore also be due to 
the artefactual presence of these nuclear proteins in the cyto- 
plasm. 

In conclusion, we think that SCW cycling represents a ba- 
sic oscillator, as first proposed by Kirschner and his co- 
workers (Hara et al., 1980; Kirschner et al., 1980; Gerhart 
et al., 1984; Kirschner et al., 1985; Kimelman et al., 1987), 
which needs redistribution of nuclear-associated material in 
order to be in phase with the cdc2 kinase oscillations. We 
have also shown that during the cell cycle of early embryos 
of Xenopus, pH, cycling represents a true cytoplasmic ac- 
tivity in phase with MPF activity cycling. Its other character- 
istics, principally its dependence on protein synthesis and 
phosphorylation, make it resemble MPF activity which is 
also a pure cytoplasmic activity. Therefore, we propose that 
phi oscillations might be an integral component of the cell 
cycle oscillator. It will now be of interest to determine the 
hierarchy of control between the cdc2 kinase oscillations and 
pH~ oscillations. 
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