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Abstract
We have known since the late 1980s that the function of classical major
histocompatibility complex (MHC) class I molecules is to bind peptides and
display them at the cell surface to cytotoxic T cells. Recognition by these
sentinels of the immune system can lead to the destruction of the presenting
cell, thus protecting the host from pathogens and cancer. Classical MHC class I
molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and
exceptionally polymorphic and have significant sequence diversity. Thus, in
most species, there are many different MHC I allotypes expressed, each with
different peptide-binding specificity, which can have a dramatic effect on
disease outcome.
Although MHC allotypes vary in their primary sequence, they share common
tertiary and quaternary structures. Here, we review the evidence that, despite
this commonality, polymorphic amino acid differences between allotypes alter
the ability of MHC I molecules to change shape (that is, their conformational
plasticity). We discuss how the peptide loading co-factor tapasin might modify
this plasticity to augment peptide loading. Lastly, we consider recent findings
concerning the functions of the non-classical MHC I molecule HLA-E as well as
the tapasin-related protein TAPBPR (transporter associated with antigen
presentation binding protein-related), which has been shown to act as a second
quality-control stage in MHC I antigen presentation.
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Loading of MHC I with peptides is a two-step iterative 
process
In order to present a snapshot of the intracellular protein content, 
nascent MHC I heavy chains (HCs) non-covalently associate with 
β

2
-microglobulin (β

2
m) (Figure 1A) and form a tri-molecular 

complex with a peptide. Binding of β
2
m and peptide to HC 

is co-operative and stabilises the trimer1,2. The peptides pre-
sented by MHC I molecules are predominantly generated in the 
cytoplasm and are transported into the endoplasmic reticulum 
(ER) by the transporter associated with antigen presentation (TAP)  
(Figure 1B), where they are considered for binding to MHC I  
molecules. Loading of MHC I with peptides occurs while MHC 
I–β

2
m heterodimers are incorporated into the peptide-loading  

complex (PLC) (Figure 1C) comprising one TAP heterodimer,  
two molecules of tapasin each covalently bound to a molecule of 
ERp57 and non-covalently bound to an MHC I molecule, and two 
calreticulin molecules per complex3,4.

Most of the peptides pumped into the ER by TAP will bind to 
whichever MHC I allotypes are present, but very few are likely 
to complement the specificity-determining pockets of the MHC I 
allotype completely. Therefore, most peptides transported into 
the ER are unlikely to bind with high enough affinity to stabi-
lise the MHC I molecules sufficiently to allow effective antigen 
presentation5,6. Therefore, efficient peptide selection cannot 
ensue if MHC I molecules simply bind the first peptide that they 
encounter in the PLC. Evidence suggests that peptide loading is 
an iterative process in which an initial, suboptimal peptide cargo 
is bound followed by rounds of peptide exchange gradually replac-
ing this with a cargo of a high average affinity, producing stable 
MHC I molecules and conferring increased expression at the cell 
surface (Figure 1D)7,8. Investigations into this peptide exchange by 
Garstka et al. showed that all peptides bind to MHC I molecules at 
similar rates but that suboptimal peptides dissociate more rapidly 
at physiological temperatures, which is discussed in detail later9.

Figure 1. An overview of major histocompatibility complex (MHC) I antigen processing and presentation. (A) Nascent MHC I heavy chains 
(HCs) fold in the endoplasmic reticulum (ER). The co-ordinated activities of the ER-resident enzymes dolichyl-diphosphooligosaccharide 
protein glycotransferase and glucosidases I and II generate the mono-glucosylated N-linked glycan required for HCs to interact with the 
chaperone calnexin, which together with ERp57 monitor the glycosylation and oxidative status of HCs and facilitate the formation of non-
covalently bound HC-beta2 microglobulin (HC-β2m) heterodimers. (B) A proportion of the intracellular proteome is pumped into the ER via the 
transporter associated with antigen presentation (TAP). TAP supplies peptides for the consideration of MHC I molecules for binding. Each TAP 
heterodimer associates with up to two molecules of tapasin, each of which is disulphide-linked to ERp57. Aminopeptidases are also present 
within the ER and can trim peptides to their optimal length for MHC I binding. (C) MHC I becomes loaded with peptides while associated 
with the peptide-loading complex (PLC). MHC–β2m heterodimers are escorted to the PLC by calreticulin81, where the weak interactions that 
exist between individual components of the PLC are synergistically strengthened as part of the PLC. (D) MHC I undergoes tapasin-mediated 
peptide exchange. All MHC I allotypes have an intrinsic ability to optimise their peptide cargo which is enhanced by the action of tapasin 
and the PLC. Once a sufficiently stable peptide–MHC I complex is formed, dissociation from the PLC occurs. (E) TAP binding protein-related 
(TAPBPR)-mediated quality control of the MHC I peptide repertoire. TAPBPR is not a member of the PLC and appears to function further along 
the secretory pathway. TAPBPR refines the peptide repertoire by the removal of low-affinity peptides from MHC I molecules. (F) Peptide–MHC 
I complexes present a proportion of the intracellular proteome to the immune system. Most species express several MHC I allotypes (six 
in humans), each of which is capable of binding a variety of peptides. The expression of multiple copies of each MHC I allotype at the cell 
surface cumulatively allows the internal health to be efficiently monitored by cytotoxic T cells.
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The efficiency of peptide optimisation varies between MHC I allo-
types. This is most apparent when the loading co-factor tapasin is 
not expressed10 or is unable to function because of viral immune-
evasion molecules11–13 and the intrinsic “peptide selector” function 
of MHC I allotypes is revealed. Allotypes with poor peptide 
selector function depend upon tapasin to optimise their peptide 
repertoire8,14. Point mutations in either MHC I or tapasin that pre-
vent MHC I from binding to the PLC limit the ability of “tapa-
sin-dependent” MHC I allotypes to select a high-affinity cargo 
but do not prevent peptide binding7,15–18. Until recently, it has not 
been clear why even a single amino acid polymorphism between 
allotypes could change the manner in which MHC I molecules 
assemble with peptides. Before we consider how tapasin aug-
ments peptide loading, we will discuss the mechanistic basis by 
which “tapasin-independent” classical MHC I allotypes select and 
assemble with high-affinity peptides without assistance from 
tapasin and the PLC.

MHC I allotypes are plastic and differ in their ability 
to explore different conformations
Comparison of the numerous peptide–MHC I X-ray crystallo-
graphic structures that are available shows that although they share 
a common fold, they are not super-imposable structures; subtle dif-
ferences are apparent19. It is clear from these structures, and a recent 
study9, that the peptide-binding domain can undergo quite marked 
structural rearrangements in order to accommodate peptides, some 
of which may bind suboptimally because they are longer or have 
incompatible residues for the pockets of the MHC I allotype. Sup-
porting these crystallographic observations, early experiments 
showed that peptide binding to MHC I can alter recognition by anti-
bodies specific for particular conformations of MHC I molecules 
(for example,20–23) or result in conformation-specific changes in the 
intramolecular transfer of fluorescence (for example,24). Analysis 
of peptide–MHC I interactions by fluorescence energy transfer or 
fluorescence anisotropy experiments also supports the notions that 
peptide, β

2
m, and HC binding are synergistic and that peptide bind-

ing or dissociation involves a change in the conformation of MHC 
I molecules1,25.

The conformation of peptide–MHC I complexes appears to be 
influenced not just by the MHC I molecule but also by the peptide 
that is bound, which can have profound effects on T-cell recogni-
tion (for example, differential recognition of two peptides presented 
by HLA-A*02:01 by the A6 T-cell receptor26). Protein crystallog-
raphy has shown that although the two unligated peptide–MHC 
I complexes closely resemble each other, there are differences in 
peptide, T-cell receptor, and the A*02:01 molecule itself when 
the two T-cell-ligated peptide–MHC I structures are compared. A 
combination of fluorescence anisotropy, molecular dynamics 
simulations (MDS), and crystallography experiments attributed 
the different interfaces formed with the A6 T-cell receptor to 
variations in the molecular motions of the peptide, which in turn 
resulted in differences of the motions of the A*02:01 molecule. 
Hawse et al. extended this study by comparing complexes of 
HLA-A*02:01 loaded with these or other peptides via hydrogen-
deuterium exchange (HDX) and mass spectrometry as well as 
fluorescent anisotropy experiments27. The results allowed the 
authors to infer peptide-dependent flexibility of the HLA-A*02:01 
peptide-binding domain, which included the α helices and β-sheet 

floor. HDX reports on motions on the millisecond timescale and 
slower, MDS reports on motions up to the microsecond timescale, 
whilst fluorescence anisotropy reports motions on the nanosec-
ond timescale motions. These findings, collected using a range of 
experimental techniques and sampling different timescales, dem-
onstrate that peptide–MHC I complexes are not static structures 
but are intrinsically conformationally flexible, plastic molecules.

The importance of plasticity for determining the function of  
proteins has been extensively demonstrated. For example, a variety 
of ways have been described in which signals are passed within 
and between cells, reviewed in 28, where the initiation of a 
signalling event modulates the conformation of an upstream 
signalling molecule, which in turn alters the dynamic properties 
of downstream components of the signalling pathways in order 
to propagate the signal. This has prompted investigations to 
determine whether differences in plasticity might explain the 
variable intrinsic ability of MHC I allotypes to select and assemble 
with high-affinity peptides.

Characterisation of the conformational status of MHC I molecules 
prior to peptide loading has been complicated by the propensity 
of empty MHC I molecules to aggregate and denature. However, 
nuclear magnetic resonance (NMR) spectral and biophysical analy-
ses suggest that the peptide-binding domain undergoes significant 
conformational alteration in the absence of bound peptide29,30. 
In contrast, however, the three-dimensional structures of the α3 
domain and β

2
m remain relatively insensitive to the presence or 

absence of peptide. NMR spectroscopy is the best technique for 
observing protein dynamics and can report on conformational 
changes over a range of timescales, from picoseconds to milli-
seconds and slower31. Yanaka et al. used NMR to show that while 
the membrane-proximal α3 domains of HLA-B*35:01 molecules 
loaded with a panel of peptides were similar, the peptide-binding 
domains exhibited peptide-dependent conformational fluctua-
tions over a wide area32. These findings are supported by those of 
Sgourakis et al., who also observed several flexible regions of a 
truncated peptide–MHC I complex by NMR33. Yanaka et al. also 
found that the peptide-binding domain of peptide–MHC I com-
plexes transiently exists in two conformational states, which they 
designated as major and minor states. The proportions of molecules 
adopting each state varied according to the bound peptide; however, 
for each of the peptide–MHC I complexes studied, the minor state 
formed tighter contacts with the peptide than did the major state. 
This led the authors to propose that peptide binding occurs via a 
two-step transient induced-fit model, in which a peptide is loosely 
bound by the major state and then conformational rearrangements 
occur as the MHC I molecule transitions to the minor state in which 
the peptide is bound more tightly. These findings mirror observa-
tions made with MHC class II molecules, which present peptides 
to helper T cells expressing CD4 co-receptors and which suggest 
that alternative MHC class II conformations are required for pep-
tide exchange to occur34.

Collectively, these observations imply that the primary sequence 
not only changes the chemistry of the peptide-binding site but also 
determines the intrinsic plasticity of the peptide-binding site. As 
discussed below, the emerging principle appears to be that more 
conformational plasticity will allow MHC molecules to visit 
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multiple different conformations, which in turn is likely to increase 
the ability to bind and exchange peptides. Attempts are now being 
made to provide a full mechanistic description of MHC peptide 
selector function in terms of MHC protein dynamics.

A plasticity-based mechanism for peptide 
optimisation
Several groups have employed MDS to investigate the peptide-
empty state of MHC I, which confirms that MHC I exhibits more 
conformational plasticity in the absence of peptide, consistent with 
NMR and biophysical data23,35–40. Reassuringly, MDS localises 
much of the molecular motions to regions of the peptide-binding 
domain implicated in both crystallographic9 and HDX27 experi-
ments of peptide–MHC complexes.

Comparison of different MHC I allotypes by MDS reveals different 
intrinsic levels of plasticity37,39–42. We have observed a correlation 
where MHC I allotypes possessing an intrinsic ability to select high-
affinity peptides are better able to explore distinct conformational 
states compared with allotypes with poor selector function39,40,43. 
We have hypothesised that the rate that different intermediate struc-
tures are sampled dictates how often conformations conducive to 
peptide binding are adopted. Increased adoption of peptide-binding 
conformations in turn will facilitate peptide exchange, culminating 
in the selection of a high-affinity peptide and the closed, compact 
MHC I conformation (Figure 2A).

Fitting a range of kinetic models to experimental data, we  
found that the model that most closely predicted experimental 

Figure 2. Plasticity in major histocompatibility complex (MHC) I peptide selection. (A) In an uncatalysed reaction, the intrinsic ability 
of MHC I (yellow) to select peptide is determined by the plasticity encoded into each allotype by its primary sequence. Some allotypes are 
intrinsically more able to sample the higher-energy peptide-receptive conformations than others and therefore have better intrinsic peptide 
selector function. The degree of complementarity between the peptide and MHC I allotype in stabilising the peptide-receptive conformation 
then determines whether the peptide is selected leading to a stable native conformation or whether the iterative peptide exchange process 
continues. (B) In a tapasin-catalysed reaction, tapasin (green) modulates MHC I allotypes to first enhance sampling of the peptide-receptive 
conformations and then destabilises peptide binding to enhance exchange of suboptimal peptides for optimal peptides. The modulation of 
MHC conformation by tapasin occurs via interactions at both the peptide-binding domain and the membrane-proximal α3 domain, leading to 
faster peptide exchange, which in turn leads to increased presentation of MHC I molecules at the cell surface.
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observations is one which involves a conformational change  
occurring in MHC I during peptide selection, as suggested by 
NMR and biophysical analyses1,2,25,39,44. The model makes two 
mechanistic predictions: firstly, that the intrinsic differential pep-
tide selector function of MHC I allotypes correlates with the rate at  
which MHC I transits from an open, peptide-receptive conforma-
tion to the closed (crystallisable) conformation and, secondly, that 
the rate that peptide-loaded complexes revert from closed to open 
conformations depends upon the affinity with which the peptide 
is bound. Taken together, this suggests that MHC I allotypes with  
fast “closing” rates will get to the peptide-dependent re-opening 
stage faster. Thus, in an iterative process, these allotypes will  
optimise their peptide cargo more efficiently as a result of the  
faster and greater progression through these cycles45–48.

Allosteric communication within MHC I
Unsurprisingly, most reports of MHC I plasticity are focused on 
the dynamics of the peptide-binding domain, as demonstrated by 
the NMR, MDS, HDX, and fluorescence anisotropy experiments 
discussed above. However, MDS analysis of the dynamic motions 
of the entire peptide–MHC I complex reveals significant flexibility 
between the peptide binding and the membrane-proximal α3 and 
β

2
m domains (Figure 2A)39,40,43. In the absence of peptide, MDS 

analysis showed that those MHC I allotypes with good intrinsic 
peptide selector function sampled distinct conformational popula-
tions, defined by the orientations between the membrane-proximal 
α3 domain and peptide-binding domains. These coupled “domain-
domain” motions were not observed for allotypes with poor peptide 
selector function39,40,43.

Allostery in proteins, which can be defined as a change in protein 
structure and function at one site resulting from the modification 
of a distant site, has long been considered an essential part of pro-
tein function, modulating protein plasticity and sending signals in 
a variety of ways28,49. For example, at one extreme, cyclic AMP 
(cAMP) binding to the cAMP-binding domain of the catabolite 
activator protein (CAP, also known as cAMP receptor protein) 
causes the reorientation and activation of the CAP DNA-binding 
domain without large conformational rearrangements occurring50. 
At the other extreme, oxygenation of haemoglobin initiates large 
domain rearrangements51. It is therefore conceivable that the bind-
ing of peptides to MHC I might modulate a conserved allosteric 
network52 and lead to population shifts amongst the ensemble of 
MHC I conformations34.

The observation that efficient peptide selector function correlates 
with the co-ordinated positioning of the α3 and β

2
m domains 

relative to the peptide-binding domain suggests that allosteric 
domain-domain communication is a key determinant of MHC I 
peptide selection properties. This suggests that movements of the 
membrane-proximal domains must be aligned with those of the  
peptide-binding domain in order for peptide-binding or dissociation 
events to occur and are not restricted exclusively to the dynamic 
events involving just the peptide-binding domain.

The notion that the dynamic properties of the α3 and β
2
m domains 

are linked to those of the peptide-binding domain raises the possibil-
ity that receptors interacting with the membrane-proximal domains, 

which are invariant in sequence in most species, may interact  
differently depending on the allosteric influence of the peptide-
binding domain dynamics. One obvious candidate is the CD8 
co-receptor53. Additionally, there are several examples where 
the inhibitory receptors on natural killer (NK) cells bind to the 
membrane-proximal MHC I domains (reviewed in 54). One inter-
esting case is the murine homodimeric NK Ly49 receptor family 
that bind to a cavity beneath the peptide-binding domain of MHC I 
molecules comprising residues of the α2, α3, and β

2
m domains. 

Ly49 receptors have been shown to adopt open or closed confor-
mations, which determines whether the dimer interacts bivalently 
or monovalently with MHC I molecules. Furthermore, most Ly49 
receptors can participate in either cis or trans interactions with 
MHC I (that is, MHC I molecules that are expressed on the same 
or different cell surfaces).

Plasticity as the mechanism by which tapasin 
enhances MHC I peptide selection
Since the identification of tapasin in the mid-1990s, the multiple 
ways in which tapasin enhances peptide selection have been well 
documented: tapasin clusters peptide-receptive MHC I molecules 
around the TAP peptide transporter within the PLC55–59; tapasin 
enhances the quantity of MHC I molecules and the rate at which 
they are presented; and tapasin improves discrimination between 
peptides, ensuring that MHC I molecules are loaded with high-
affinity peptides8,60,61. The extent to which tapasin assists peptide 
loading varies between MHC I allotypes10, but in doing so tapasin 
normalises the differences in intrinsic peptide selection between 
allotypes such that in the presence of tapasin there is equally rapid 
and efficient peptide selection by all allotypes8,14.

Moreover, in vitro experiments have shown that tapasin achieves 
its function by accelerating peptide binding and dissociation  
rates62,63, and direct binding experiments showed that tapasin pref-
erentially binds peptide-empty MHC I molecules and that peptide 
binding enhances the dissociation of peptide–MHC I complexes 
from tapasin47,63.

These observations suggest that tapasin binds to peptide-empty 
MHC class I molecules and enhances maintenance of a peptide-
receptive state from which peptides bind and dissociate rapidly. 
Following peptide binding, the closed (native) MHC I state is 
adopted, from which peptides dissociate more slowly and from 
which tapasin dissociates. Such a possibility is consistent with the 
notion that tapasin catalyses both the closure of open peptide–MHC 
I conformations and the peptide-dependent re-opening of closed 
peptide–MHC I conformations39,47,48.

Two sites of interaction have been identified between tapasin and 
MHC I via targeted mutagenesis studies and molecular docking 
simulations16,48,64,65. Understandably, much attention has focussed 
on the interaction involving the N-terminal domain of tapasin and 
the MHC I peptide-binding domain. Recently, it has been suggested 
that this interaction is centred on two loops (residues 12–18 and 
77–85) of tapasin binding the MHC I α

2-1
 helix, with the underly-

ing β
7,8

 strands of MHC I binding to a loop in tapasin (residues 
187–196)48. Indeed, a mechanism by which tapasin enhances pep-
tide selection was proposed by the authors involving the N-terminal 
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domain of tapasin pulling on the β-sheet floor of the MHC I 
peptide-binding domain to widen the peptide-binding domain, 
opposing the peptide-induced forces attempting to close the 
peptide-binding domain48.

However, the interaction between the membrane-proximal domain 
of tapasin and the MHC I α3 domain (involving residues 299, 328, 
330, 333, 334, 335, and 345 of tapasin interacting with MHC I 
residues 222–227 and 22948) is also important for tapasin-assisted 
MHC I selector function as indicated by numerous mutagenesis 
studies17,18,62. The functional relevance of this membrane-proximal 
interaction is supported by two further findings: firstly, that muta-
genesis of a natural polymorphism in the α3 domain of chicken 
MHC I allotypes, that is predicted to participate in this interaction, 
influences the ability of tapasin to enhance peptide dissociation63; 
secondly, that mimicking the membrane-proximal interaction 
between the α3 domain and tapasin increases the exploration of 
different peptide-binding domain conformations39.

Taken together, these observations are consistent with a model 
where tapasin binding to MHC I via two distinct sites modulates 
the plasticity of the bound MHC I molecule in such a way as to 
shift the equilibrium towards peptide-receptive MHC I conforma-
tions (Figure 2B). In such a state (or states), peptides are sampled 
by MHC I more rapidly, leading to enhanced selection of high- 
affinity peptides. In this speculative model, interaction between 
tapasin and the membrane-proximal α3 domain of MHC I is 
important for two reasons: firstly, it may have an allosteric effect 
on the dynamic properties of the peptide-binding domain modu-
lating plasticity such that conformations that can bind peptides 
rapidly are more likely to be adopted. Secondly, simultaneous 
engagement of the α3 and peptide-binding domain sites by tapasin 
might align these domains in such a way as to preferentially 
stabilise an orientation that is optimal for peptide exchange. This 
conformation would predispose to rapid peptide-binding kinetics 
and rapid transition to the closed conformation39,40,43.

In summary, similar to the picture emerging for MHC class II 
molecules and their peptide loading co-factor molecule named  
DM34, we hypothesise that the plasticity of MHC I allotypes is 
modulated by tapasin to allow greater exploration of conformations 
that catalyse and enhance peptide exchange. Therefore, the rate of 
selection of high-affinity peptides is increased via a mechanism that 
is underpinned by modulation of protein plasticity39.

The non-classical molecule HLA-E
In comparison with classical MHC I molecules, non-classical 
MHC I molecules (including HLA-E, -F, and -G in humans) are 
non-polymorphic or have limited polymorphism, have a restricted 
expression pattern, and are recognised by specific T-cell receptor 
subsets or by innate immune receptors. Recently, vaccine-encoded 
peptides presented by HLA-E were shown to confer protection 
against simian immunodeficiency virus in macaques via CD8 T-cell 
responses66–69.

Normally, HLA-E molecules bind peptides derived from the  
signal sequences of classical MHC I molecules and present these to 
NK cells bearing CD94/NKG2 receptors70. However, it has become 
apparent that HLA-E molecules can bind a wider selection of  
peptides than canonical MHC I leader sequence-derived peptides 

and that these peptides can be presented to CD8 T cells68,71–73. 
Interestingly, many of these “atypical” peptides do not match the 
canonical HLA-E peptide motif, suggesting that the different types 
of peptides are bound in different ways. Comparison by MDS of 
HLA-E to HLA-A*02:01, which share similar peptide-binding 
preferences, revealed that HLA-E has a more rigid peptide-binding 
groove, which significantly remains open even in the absence of 
peptide, in contrast to classical MHC I molecules, such as HLA-
A*02:01, whose empty grooves collapse inwards68. Docking 
simulations suggest that the atypical peptide repertoire can be 
accommodated by binding higher in the HLA-E groove, where 
there is a different chemical environment from that experienced 
by the deeply anchored canonical leader sequence-derived 
peptides.

Whether the leader sequence peptides are loaded into HLA-E  
molecules and subsequently exchanged for different peptides or 
whether different HLA-E binding groove chemistries are exposed 
to the peptidome depending on the “ground-state” conformation of 
HLA-E remains to be seen. However, it seems likely that confor-
mational plasticity of the rigid peptide-binding groove of HLA-E, 
perhaps even co-ordinated with the α3 domain, will play a role.

TAPBPR
The gene encoding TAPBPR was identified in 200274, but it has 
only recently been shown that TAPBPR is involved in MHC I 
peptide loading75–78. Despite having only 22% homology with 
tapasin at the sequence level74, TAPBPR is predicted to fold in a 
similar way to tapasin and uses an equivalent site of interaction 
to bind to MHC I:β

2
m molecules as tapasin does16,75,76. Like tapa-

sin, TAPBPR preferentially binds peptide-empty MHC I and is 
displaced by peptide binding to MHC I, increases the rate that 
peptides bind to peptide-receptive MHC, enhances dissociation of 
peptides from peptide–MHC I complexes, and increases discrimi-
nation between peptides77,78. These findings are consistent with the 
observation that TAPBPR influences the rate that MHC I molecules 
transit through the secretory pathway and the incorporation of 
MHC I molecules into the PLC75.

Despite these similarities, functional differences show that TAPBPR 
is not a simple duplicate of tapasin. For example, while tapasin 
deficiency severely downregulates the expression of most MHC I 
allotypes79,80, TAPBPR deficiency has only a modest effect75. Also, 
while tapasin is the keystone in the PLC, TAPBPR does not interact 
with ERp57 or any other PLC members and may function in secre-
tory compartments downstream of the ER/cis Golgi75. Furthermore, 
differences are apparent in the functional properties of tapasin and 
TAPBPR as measured by fluorescence polarisation assays, where 
dissociation of some peptides was enhanced by one protein more so 
than the other, or where binding or dissociation of certain peptides 
was unaffected by TAPBPR but augmented by tapasin77. Further 
compelling data attesting to the function of TAPBPR in MHC I 
antigen presentation are that TAPBPR deficiency or overexpression 
alters the number and the nature of the peptides presented by 
MHC I allotypes77. Analysis of the MHC I immunopeptidome, cell 
surface expression levels, and thermal stability of MHC I molecules 
expressed in TAPBPR-deficient or TAPBPR-overexpressing cells 
suggests that TAPBPR functions to further focus the repertoire of 
peptides presented at the cell surface after tapasin-mediated loading 
and editing in the PLC77.
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This difference in the function of the two MHC I-specific co-factors 
may relate to the environment in which the two proteins operate: 
tapasin in a compartment rich in competing peptides delivered to 
the PLC, and TAPBPR in an environment where peptides are likely 
to be less abundant. Here, peptide dissociation rather than peptide 
exchange may be the prevailing TAPBPR-catalysed function.

Concluding remarks
There is a huge array of potential peptide epitopes that could bind 
to MHC I molecules and be presented to the immune system, but 
only a small fraction are actually bound by MHC I molecules and 
presented. Given that cytotoxic T cells can bring about the destruc-
tion of the presenting cell, understanding the processes governing 
peptide selection is of fundamental importance. Any attempts we 
might one day wish to make to manipulate the immune response 
will surely be more likely to succeed if they are based on a deep 
mechanistic understanding of how particular peptides are selected 
for presentation in the presence or absence of tapasin and edited 
further by TAPBPR.

Perhaps the biggest recent advance concerning MHC I antigen pres-
entation is that we have greater appreciation that MHC I molecules, 
particularly in the empty state, are dynamic proteins that bend, flex, 
twist, and crunch with consummate ease. The conformational plas-
ticity of MHC I molecules carries functional significance in that the 
ability of the empty MHC I molecules to adopt different confor-
mations determines how MHC I allotypes assemble with peptides. 
We suggest that a key component determining the conformational 
plasticity of the entire MHC I molecule is the coupling of motions 
between membrane-proximal and peptide-binding domains. These 
ideas may also extend to non-classical MHC I molecules such as 
HLA-E.

We have proposed that the loading co-factor tapasin uses its dual 
interaction surfaces to modulate the conformational plasticity of 
MHC I molecules and increase the exploration of different MHC 

I conformations. This allows MHC I molecules to sample peptide-
receptive conformations more frequently and enhances selection 
and assembly with high-affinity peptides.

Lastly, it has recently become clear that TAPBPR fine-tunes the 
MHC I peptide repertoire. Whereas in vitro experiments have 
generally shown that tapasin and TAPBPR possess many similar 
functional properties, results from cellular studies generally show 
that these MHC I-specific co-factors have opposing functions. 
Given the similarities in structure, interaction surfaces and in vitro 
peptide-binding assays, we suggest that the opposing function of 
these proteins is not related to differences in the ability of these 
proteins to modulate MHC I plasticity but instead is dependent 
on the subcellular environment in which the proteins operate.
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