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Abstract
Analysis of the SARS-CoV-2 transcriptome has revealed a background of low-frequency intra-host genetic changes with a 
strong bias towards transitions. A similar pattern is also observed when inter-host variability is considered. We and others 
have shown that the cellular RNA editing machinery based on ADAR and APOBEC host-deaminases could be involved in 
the onset of SARS-CoV-2 genetic variability. Our hypothesis is based both on similarities with other known forms of viral 
genome editing and on the excess of transition changes, which is difficult to explain with errors during viral replication. 
Zong et al. criticize our analysis on both conceptual and technical grounds. While ultimate proof of an involvement of host 
deaminases in viral RNA editing will depend on experimental validation, here, we address the criticism to suggest that viral 
RNA editing is the most reasonable explanation for the observed intra- and inter-host variability.
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Main Text

We and others have hypothesized that the genetic informa-
tion of the SARS-CoV-2 could be affected by the cellular 
RNA editing machinery based on the ADAR and APOBEC 
proteins. The hypothesis originates from two observations: 
(a) several viral genomes show mutational patterns that 
could be ascribed to the activity of host deaminases (Cat-
taneo et al. 1988; Vartanian et al. 1991; Harris et al. 2003; 
Mahieux et al. 2005; Noguchi et al. 2005; Taylor et al. 2005; 
Zahn et al. 2007; Phuphuakrat et al. 2008; Vartanian 2008; 
Carpenter et al. 2009; Doria et al. 2009, 2011; George et al. 
2009; Clerzius et al. 2011; Pfaller et al. 2011; Suspene et al. 

2011; Samuel 2012; Cuevas et al. 2015; Tomaselli et al. 
2015; Peretti et al. 2018; Rosani et al. 2019)—this has been 
confirmed experimentally in several cases—and (b) there is 
an excess of transition changes occurring both at the intra-
host (Di Giorgio et al. 2020; Farkas et al. 2020; Popa et al. 
2020; Wang et al. 2021; Graudenzi et al. 2021; Gregori et al. 
2021; Lythgoe et al. 2021; Song et al. 2021; Tonkin-Hill 
et al. 2021; Voloch et al. 2021; Picardi and Mansi 2022) 
and inter-host scale (Simmonds 2020; van Dorp et al. 2020; 
Jacob-Hirsch et al. 2020; Klimczak et al. 2020; Kosuge 
et al. 2020; Mourier et al. 2020; Popa et al. 2020; Azgari 
et al. 2021; Deng et al. 2021; Rice et al. 2021; Sadykov 
et al. 2021; Simmonds and Azim Ansari 2021; Tasakis et al. 
2021; Matyášek et al. 2021; Pang et al. 2021; Ramazzotti 
et al. 2021). Such excess is not explainable with the known 
mutational pattern introduced by the RNA-dependent RNA 
polymerase or by the SARS-CoV-2 proofreading machin-
ery (Smith et al. 2013; Kabinger et al. 2021). It is still not 
clear whether the involvement of the cellular RNA editing 
machinery affects the onset/progression of the COVID-19 
infection. On the other hand, the outcomes of such editing 
heavily skew the evolutionary trajectory of the virus (Sim-
monds 2020; van Dorp et al. 2020; Jacob-Hirsch et al. 2020; 
Klimczak et al. 2020; Kosuge et al. 2020; Mourier et al. 
2020; Popa et al. 2020; Azgari et al. 2021; Deng et al. 2021; 
Sadykov et al. 2021; Simmonds and Azim Ansari 2021; 
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Tasakis et al. 2021; Matyášek et al. 2021; Pang et al. 2021; 
Ramazzotti et al. 2021).

As currently available studies are all based on mutational 
analyses of the viral genome/transcriptome, we wholeheart-
edly agree with Zong et al. (2022) that final proof of ADAR 
and APOBEC involvement will be only obtained through 
genetic analysis, by infecting ADAR- and APOBEC-defi-
cient cells with the SARS-CoV-2 virus.

Zong et al. (2022) criticize our analysis based on both 
conceptual and technical grounds and we think it is useful to 
address the criticism in order to clarify the issues for future 
studies. Here, we address their criticism following the order 
outlined in their abstract:

(1)	 No prediction of what the mutation profile should 
be.

	   The authors suggest we did not have a null hypoth-
esis against which to test the possibility of RNA editing 
in the viral transcriptomes. This probably depends from 
their misunderstanding of our analysis: they compare 
our claims to those presented in a report that hypothe-
sized that every possible type of RNA–DNA mismatch 
could represent a post-transcriptional modification in 
the human transcriptome (Li et al. 2012). Our scope 
was far more limited, as we just wanted to see whether 
ADAR and APOBEC editing, the only well-character-
ized RNA modifications easily identifiable by direct 
sequencing, could represent a source of variability in 
the virus.

	   With this aim, our expectations were quite clear: if 
RNA editing by ADARs and/or APOBECs plays a role 
in intra-host diversification of the virus; A > G / T > C 
and C > T / G > A substitutions should outnumber all 
other types. This is quite evident from the mutational 
patterns observed, both in our and in other follow-up 
analyses (Farkas et  al. 2020; Simmonds 2020; van 
Dorp et al. 2020; Klimczak et al. 2020; Kosuge et al. 
2020; Azgari et al. 2021; Pathak et al. 2021; Ramaz-
zotti et al. 2021; Rice et al. 2021; Sadykov et al. 2021; 
Simmonds and Azim Ansari 2021; Song et al. 2021; 
Tasakis et al. 2021; Tonkin-Hill et al. 2021; Fried-
man et al. 2021; Voloch et al. 2021; Wang et al. 2021; 
Graudenzi et al. 2021; Gregori et al. 2021; Lythgoe 
et al. 2021; Matyášek et al. 2021; Pang et al. 2021; 
Picardi and Mansi 2022). Furthermore, even though 
the intra-host single-nucleotide polymorphism (SNV) 
pattern might be questionable due to sequencing errors, 
we observed a similar enrichment also in inter-host 
SNVs from SARS-CoV-2 genomic sequences, which 
has been confirmed by further studies, including those 
using more refined approaches (i.e., mutational signa-
tures (Popa et al. 2020; Graudenzi et al. 2021). Based 
on this parallelism, it is sensible to hypothesize that 

some RNA sites that are edited eventually become fixed 
in the viral genome.

	   Considering that similar results—using different 
pipelines and datasets—have been found in all intra- 
and inter-host analyses published so far, the authors’ 
claim that the “obtained a mutation spectrum similar to 
the random mismatch spectrum” is quite wrong. Espe-
cially wrong since the authors take our argument about 
“transitions and transversions” out of context and do 
not realize that we actually had a mutational pattern 
against which to compare our analysis: past mutational 
analyses of SARS-CoV (Fig. 4A-B Smith et al. 2013) 
show that both the viral replication machinery (both 
transcription and proofreading system) have a muta-
tional profile quite different from what we observed in 
the COVID-19 samples—notably with a bias towards 
transversions. The infected cells used in these analyses 
were Vero cells, a line where APOBECs are not active 
(ADARs and APOBECs induce transitions).

	   While we could not expect a defined amount of ade-
nine-to-inosine or cytosine-to-uracil editing before-
hand, we think that our expectations were somehow 
more realistic than those advanced by the authors 
themselves with their prediction that “a success-
ful RNA editing paper would find an extremely high 
A > G% (usually > 80%) after multiple steps of filters”. 
Such expectation relies entirely on the assumption that 
the effects of RNA editing on the viral transcriptome 
should strictly mirror those observed in the human one. 
Such expectation completely disregards the potential 
effects of other RNA editing enzymes such as the 
APOBECs or replication-dependent errors.

	   For example, the mutational pattern in HIV is biased 
towards G > A mutations as its genome is targeted 
mainly by APOBECs during the first cDNA synthe-
sis stage of reverse transcription (e.g., (Harris et al. 
2003)). Analogously, any mutational pattern observed 
will depend on the different mutational processes act-
ing on the virus.

(2)	 Filtering steps and cutoffs in their pipeline failed 
to increase the A > G percentage, neither did they 
change the mismatch profile.

	   As the authors state, in a metatranscriptomic context, 
the only viable strategy for discriminating sequenc-
ing errors from real SNVs is to apply post-filtering 
approaches. Indeed, the filter on the allelic fraction 
(> 0.005), not mentioned by the authors, significantly 
increases the signal-to-noise ratio, increasing the frac-
tion of A > G / T > C and C > T / G > A substitutions. 
We agree that this can be further optimized and, indeed, 
subsequent studies proposed more refined approaches 
to reduce the number of false positive calls (e.g., (Pic-
ardi and Mansi 2022)). It is indeed reassuring that dif-
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ferent pipelines converged to the same conclusions (Di 
Giorgio et al. 2020; Farkas et al. 2020; Popa et al. 2020; 
Wang et al. 2021; Graudenzi et al. 2021; Gregori et al. 
2021; Lythgoe et al. 2021; Pathak et al. 2021; Song 
et al. 2021; Tonkin-Hill et al. 2021; Voloch et al. 2021).

	   While we agree that the mutational spectrum is not 
significantly affected by the filters reanalyzed by Zong 
et al. (2022), these filters were nonetheless necessary 
to avoid introducing bias in the estimation of the allelic 
fraction of the observed changes.

	   Low coverage positions (< 20) with few support-
ing reads (< 4) would artificially inflate the allelic 
frequency of these low confidence substitutions (e.g., 
at a position with a coverage of 20 reads, even a sin-
gle mutated read would result in a 0.05 allelic frac-
tion, way higher than the threshold we set to consider 
a SNV). Considering the high heterogeneity in terms 
of coverage, within and among samples, we used this 
filter to get a better view on the distribution of allelic 
frequencies. This is important to direct the interpreta-
tion of the data, as different thresholds can be used to 
arbitrarily discriminate ‘RNA editing’ positions from 
‘germline’ variants based on allelic fraction. This 
allowed us to find the similarity between the proposed 
editing of the viral transcriptome and what happens 
in the cellular RNA editing: not high levels of editing 
on a few selected residues, which would quickly affect 
the evolution of the virus, but low-frequency editing, 
reminiscent of what happens mostly on Alu sequences 
(0.6% average frequency, what the authors call hype-
rediting) (Porath et al. 2014; Picardi and Pesole 2020). 
Sequencing errors at the read ends typically introduce 
false positive SNVs, as the authors state, and are the 
reason for applying the 15 bp padding filter to the read 
ends. While not substantially changing the mutational 
profile, the filter was needed to avoid introduction of 
SNVs from recurrent errors at the read ends. These 
false positives would have weighted our analysis on 
the consequences of editing at synonymous/nonsyn-
onymous sites. Of course, a proper analysis should be 
carried out not on intra-host changes—which are not 
selected—but on inter-host ones, as they are the result 
of selection. Even if the authors claim we did not, we 
have indeed analyzed it (our supplementary 2 table), 
but we did not weight much on it because the dataset 
was too small. Indeed, subsequent studies, very thor-
ough and expertly argumented have been carried out by 
others, and all of them concurred that RNA editing is 
likely to be a major factor in determining the evolution-
ary trajectory of the SARS-CoV-2 (e.g., (Simmonds 
2020; Rice et al. 2021; Simmonds and Azim Ansari 
2021)). It should also be taken into account that, beside 
the evolutionary significance of the outcomes of RNA 

editing, the biological significance of the editing of 
the viral transcriptome might lie more on the cellular 
response to the infection than on the recoding effects 
of the editing.

(3)	 Failure in interpreting the equally-abundant T > C 
substitutions.

(4)	 ADAR motifs and RNA structures contradicted with 
the antisense editing proposed by themselves.

	   In our paper, we hypothesize that both A > G and 
T > C polymorphisms derive from ADAR activity edit-
ing during viral replication, when positive and nega-
tive strands coexist—by necessity—as double-stranded 
RNA: as ADARs induce adenine-to-inosine changes, 
these will appear as A > G when the positive strand 
is targeted and as T > C when the negative strand is 
transcribed back to positive. We think it is a fairly rea-
sonable model, as the authors themselves admit after 
their explanation on how true T > C polymorphisms in 
the human transcriptome cannot originate from ADAR 
editing (which targets only adenines).

	   Indeed, we never propose that ADAR editing could 
target thymines in the viral transcriptome, which would 
be problematic, as there are no thymines in RNA. And 
we have been very careful in differentiating the biologi-
cal phenomenon (A-to-I, C-to-U) from the analytical 
details (A > G, T > C, C > T, and G > A) of the bioin-
formatic analysis.

	   It is true that we did not discuss a possible clash 
between the transcription complex and the ADARs 
ability to target dsRNA, but there was no reason for it: 
ADARs could target double-stranded RNA at any time 
after the transcription complex leaves the scene. On 
the other hand, we apologize for not specifying some-
thing we thought it was obvious: when analyzing the 
editing sequence contexts, we have used the reverse 
complement to analyze T > C changes together with 
A > G ones, as evident from sequence logos—where 
the central position is always an A.

(5)	 ADARs should be poorly expressed in cytosol com-
pared to APOBECs.

	   RNA editing of the human transcriptome typically 
takes place in the nucleus. This is something that has 
been experimentally established for all well-character-
ized RNA editing events, be they dependent on ADARs 
(e.g., (Patterson and Samuel 1995; Behm et al. 2017) 
or on APOBEC1 (e.g., (Lau et al. 1991; Sowden et al. 
1996). Yet, localization of both APOBECs and ADARs 
is not limited to the nucleus (e.g., (Patterson and Sam-
uel 1995; Yang et al. 2001; Bennett et al. 2006; Land 
et al. 2013) and even nuclear proteins are synthesized 
in the cytoplasm and shuttle through it. While the sig-
nificance of ADAR editing in the cytoplasm has never 
been experimentally characterized, its cytoplasmic 
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localization alters the fate of short interfering RNAs 
(Yang et al. 2005). Based on this, cytoplasmic editing 
is conceivable also for ADARs.

	   Eventually, it is probable that the amount of cyto-
plasmic editing and its effects are likely determined by 
the cellular milieu (presence/absence of cytoplasmic 
ADAR1 isoform, APOBEC expression, etc.) and we 
agree that wet-lab studies are needed to understand the 
relevance of RNA editing in viral infections, including 
those originating from SARS-CoV-2.

	   Nonetheless, we find that the statement “we only 
propose that those editing sites are unreliable (likely 
to be replication errors) but we do not claim that none 
of the sites they found are true editing sites” is quite 
a weak foreword for a manuscript that ends with the 
“findings and conclusions made by Di Giorgio et al. 
were erroneous and misleading and should be correctly 
in instant”…
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