

The *Lactococcus lactis* Pan-Plasmidome

Philip Kelleher^{1,2}, Jennifer Mahony^{1,2}, Francesca Bottacini², Gabriele A. Lugli³, Marco Ventura³ and Douwe van Sinderen^{1,2*}

¹ School of Microbiology, University College Cork, Cork, Ireland, ² APC Microbiome Ireland, University College Cork, Cork, Ireland, ³ Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy

Plasmids are autonomous, self-replicating, extrachromosomal genetic elements that are typically not essential for growth of their host. They may encode metabolic capabilities, which promote the maintenance of these genetic elements, and may allow adaption to specific ecological niches and consequently enhance survival. Genome sequencing of 16 *Lactococcus lactis* strains revealed the presence of 83 plasmids, including two megaplasmids. The limitations of Pacific Biosciences SMRT sequencing in detecting the total plasmid complement of lactococcal strains is examined, while a combined Illumina/SMRT sequencing approach is proposed to combat these issues. Comparative genome analysis of these plasmid sequences combined with other publicly available plasmid sequence data allowed the definition of the lactococcal plasmid-encoded traits such as conjugation, bacteriocin production, exopolysaccharide (EPS) production, and (bacterio) phage resistance.

OPEN ACCESS

Edited by:

Kimberly Kline, Nanyang Technological University, Singapore

Reviewed by:

Milan Kojic, University of Belgrade, Serbia María de Toro, Centro de Investigación Biomédica de La Rioja, Spain

*Correspondence:

Douwe van Sinderen d.vansinderen@ucc.ie

Specialty section:

This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

Received: 17 January 2019 Accepted: 20 March 2019 Published: 04 April 2019

Citation:

Kelleher P, Mahony J, Bottacini F, Lugli GA, Ventura M and van Sinderen D (2019) The Lactococcus lactis Pan-Plasmidome. Front. Microbiol. 10:707. doi: 10.3389/fmicb.2019.00707 Keywords: lactococcal, plasmid, SMRT sequencing, dairy fermentation, conjugation, lactic acid bacteria

INTRODUCTION

Lactococcus lactis is globally applied as a starter culture for dairy-based food fermentations, such as those involved in the production of Cheddar, Colby, Gouda and blue cheeses, and from an economic and (food) biotechnological perspective represents one of the most important bacteria (Ainsworth et al., 2014a). It is widely accepted that *L. lactis* originated from a plant-associated niche (Price et al., 2012; Wels et al., 2019) and, whilst the majority of sequenced lactococcal representatives are isolated from the dairy environment, this is not representative of the presumed diversity of the taxon. It is evident from genome analyses of *L. lactis* strains isolated from the dairy niche that genome decay (due to functional redundancy) (Makarova et al., 2006; Goh et al., 2011; Ainsworth et al., 2013; Kelleher et al., 2015, 2017), in parallel with the acquisition of novel plasmid-encoded traits played a significant role in their adaptation to the nutrient-rich environment of milk. Analysis of the plasmid complement has revealed a relatively low abundance of plasmids among lactococcal strains isolated from non-dairy niches (Makarova et al., 2006; Kelly et al., 2010;

Abbreviations: BLAST, basic local alignment search tool; CDS, coding sequence; HCL, hierarchical clustering; MCL, Markov clustering algorithm; NGS, next generation sequencing; ORF, open reading frame; PFGE, pulse field gel electrophoresis; qPCR, quantitative polymerase chain reaction; R-M, restriction modification; SMRT, single molecule real time sequencing.

Ainsworth et al., 2013, 2014c). Since various dairy-associated phenotypes are encoded by plasmids, horizontal acquisition to adapt to the dairy environment is likely to be one of the major drivers of plasmid transfer in L. lactis (Ainsworth et al., 2014c) with dairy strains containing up to twelve plasmids (Van Mastrigt et al., 2018a). Plasmid transfer in L. lactis is believed to be predominantly governed by conjugation and transduction (Ainsworth et al., 2014c), but may also occur as a result of transformation (David et al., 2017; Mulder et al., 2017) Transduction is a process in which DNA transfer is carried out by a (bacterio)phage (i.e., a virus that infects a bacterium) due to unintentional packaging of host DNA, and has previously been observed in L. lactis (Ammann et al., 2008; Wegmann et al., 2012). Conjugation involves the transfer of plasmid material via a conjugative apparatus (Grohmann et al., 2003) and is of particular importance as it represents a natural phenomenon that is suitable for the transfer of genetic traits such as phage resistance systems in food grade processes, bacteriocin production (including nisin), proteinases, and citrate utilization (Neve et al., 1987; Kojic et al., 2005; Mills et al., 2006; Van Mastrigt et al., 2018b). Extensive research into the technological traits of L. lactis has been carried out in the past with a significant focus on lactose utilization (Van Rooijen and De Vos, 1990; Van Rooijen et al., 1992), casein metabolism (Siezen et al., 2005), citrate metabolism (Drider et al., 2004; Van Mastrigt et al., 2018a), flavor formation (McSweeney and Sousa, 2000; McSweeney, 2004), and phage resistance mechanisms (Labrie et al., 2010), all of which represent properties that are commonly plasmid-encoded. Lactose utilization in L. lactis is governed by the lac operon, which provides dairy strains with the ability to rapidly ferment lactose and grow in milk. The L. lactis lac operon, which consists of the genes *lacABCDEFGX*, is generally plasmid-borne and is regulated by a repressor, encoded by the adjacent *lacR* gene (Van Rooijen and De Vos, 1990; Van Rooijen et al., 1992). Citrate metabolism is conducted by citrate-positive (Cit⁺) lactococci and is important as it leads to the production of a number of volatile flavor compounds (McSweeney and Sousa, 2000). Citrate uptake and subsequent diacetyl production is governed by the plasmid-encoded citQRP operon in lactococcal species (Drider et al., 2004). Proteolysis also significantly contributes to flavor production in fermented dairy products, although high levels of proteolysis may cause bitterness in cheese (Broadbent et al., 2002). The plasmid-encoded extracellular cell wall proteinase (lactocepin) has been shown to be directly associated with the bitter flavor defect in Cheddar cheese varieties, specifically involving starters which produce lactocepin of the so-called a, e, or h groups, and its characterization is of particular importance when selecting novel starter cultures (Broadbent et al., 2002).

Lactococcal phages are recognized as the main cause of fermentation problems within the dairy industry with concomitant economic problems. Lactococcal strains possess an arsenal of phage defense mechanisms, such as R-M systems and abortive infection (Abi) systems, many of which are plasmidencoded. In the current study, we assess the genetic content of lactococcal plasmids, define the current pan-plasmidome of *L. lactis*, and investigate plasmid-encoded (and technologically relevant) traits.

MATERIALS AND METHODS

Sequencing

In total, 83 plasmids (81 plasmids and 2 megaplasmids, the latter defined as plasmids that are >100 Kbp in length) were sequenced in the context of this study (**Table 1**). Sequencing of sixteen lactococcal strains was performed as previously described (Kelleher et al., 2017) utilizing the SMRT sequencing approach on a Pacific Biosciences RS II sequencing platform (executed by GATC Biotech Ltd., Germany). *De novo* assemblies were performed on the Pacific Biosciences SMRTPortal analysis platform (version 2.3.1), utilizing the RS_HGAP_Assembly.2 protocol. Assemblies were then repeated with a reduced minimum coverage threshold adjusted to 15X to ensure all plasmid-associated contigs had been detected.

In parallel with SMRT sequencing, an Illumina-based approach was applied to the sixteen lactococcal strains to identify strains where plasmids were potentially absent from the completed assemblies. Re-sequencing of genomes was performed on an Illumina MiSeq platform (executed by GenProbio S.R.L., Parma, Italy), to an average coverage of $\sim 100-125 \times$. Sequences obtained were first quality checked using IlluQC.pl from the NGS QC Toolkit (v2.3) (Patel and Jain, 2012) and assembled with AbySS (v1.9.0) (Simpson et al., 2009). Based on whole genome alignments contigs absent from the SMRT assemblies were identified. Remaining low quality regions and sequence conflicts were then resolved by primer walking and Sanger sequencing of PCR products (performed by Eurofins MWG Operon, Germany).

General Feature Predictions

Annotation of plasmid sequences was performed on both newly sequenced and publically available plasmid sequences using the following protocol. ORF prediction, defined as a continuous stretch of codons without a stop codon was performed with Prodigal v2.5 prediction software¹ with a general minimum cutoff of >50 bp and confirmed using BLASTX v2.2.26 alignments (Altschul et al., 1990). ORFs were automatically annotated using BLASTP v2.2.26 (Altschul et al., 1990) analysis against the nonredundant protein databases curated by the National Centre for Biotechnology Information (NCBI)². Artemis v16 genome browser and annotation tool was used to manually curate identified ORFs3 and for the combination and inspection of ORF results. The final ORF annotations were refined where necessary using additional software tools and database searches, such as Pfam (Bateman et al., 2004), Uniprot/EMBL⁴ and Bagel3 (Van Heel et al., 2013).

Pan-Plasmidome Analysis

Pan-plasmidome analysis was performed utilizing the PGAP v1.0 pipeline (Zhao et al., 2012) according to Heaps law pan-genome model (Tettelin et al., 2005). The ORF content of each plasmid was organized into functional gene clusters via the Gene Family

¹http://compbio.ornl.gov/prodigal/

²https://www.ncbi.nlm.nih.gov/

³http://www.sanger.ac.uk/science/tools/artemis

⁴http://www.uniprot.org/

Name	Accession	Size (Kbp)	GC (%)	Genes	Niche	Replication mode
KLDS 4.0325 p1	CP006767	4.094	30.02	4	Fermented food	RCR
KLDS 4.0325 p2	CP007042	0.870	32.64	2	Fermented food	Undetermined
KLDS 4.0325 p3	CP007043	1.278	32.63	4	Fermented food	Undetermined
KLDS 4.0325 p4	CP029291	9.000	31.02	11	Fermented food	Theta
KLDS 4.0325 p5	CP029292	47.268	34.43	41	Fermented food	Theta
KLDS 4.0325 p6	CP029293	109.112	35.38	90	Fermented food	Theta
p14B4	CP028161	59.700	33.69	58	Plant	Theta
p158A*	CP016685	75.119	33.04	93	Dairy	Theta
p158B*	CP016686	57.981	33.56	22	Dairy	Theta
p158C*	CP016687	51.651	34.57	55	Dairy	Theta
p158D*	CP016688	33.287	37.39	32	Dairy	Theta
p158E*	CP016689	11.679	34.05	13	Dairy	Theta
p158F*	CP016690	6.164	35.84	4	Dairy	Theta
p158G ^{\$}	CP034596	2.064	33.38	3	Dairy	RCR
p184A*	CP016691	9.735	34.84	13	Dairy	Theta
p184B*	CP016692	5.929	34.51	6	Dairy	Theta
p184C*	CP016693	10.488	33.35	14	Dairy	Theta
p184D ^{\$}	CP034584	2.052	30.64	3	Dairy	RCR
p184E ^{\$}	CP034585	5.900	33.85	4	Dairy	Theta
p184F ^{\$}	CP034586	8.312	34.74	8	Dairy	Theta
p229A*	CP016694	56.368	34.81	59	Dairy	Theta
p229B*	CP016695	33.280	37.39	29	Dairy	Theta
p229C*	CP016696	30.272	35.15	29	Dairy	Theta
p229D*	CP016697	6.153	35.88	8	Dairy	Theta
p229E*	CP016698	39.612	32.40	51	Dairy	Theta
p275A*	CP016699	92.710	35.35	104	Dairy	Theta
p275B*	CP016700	56.332	33.36	65	Dairy	Theta
p275C*	CP016701	54.922	34.28	62	Dairy	Theta
p275D*	CP016702	54.046	31.77	60	Dairy	Theta
p3107A	CP031539	50.160	35.64	46	Dairy	Theta
p3107B	CP031540	60.216	33.38	56	Dairy	Theta
p3107C	CP031541	26.709	37.63	17	Dairy	Theta
p3107D	CP031542	2.232	33.56	2	Dairy	Theta
p3107E	CP031543	18.170	33.77	13	Dairy	Theta
p3107F	CP031544	4.199	31.60	1	Dairy	Theta
pA12-1	LT599050	5.736	33.68	6	Sourdough	Theta
pA12-2	LT599051	9.105	34.81	9	Sourdough	Theta
pA12-3	LT599052	5.929	34.51	6	Sourdough	Theta
pA12-4	LT599053	69.485	33.35	14	Sourdough	Theta
pAF04	JQ821353	3.801	32.02	4	Dairy	Theta
pAF07	JQ821354.1	7.435	36.44	6	Dairy	Theta
pAF12	JQ821355.1	12.067	33.30	11	Dairy	Theta
pAF14	JQ821356.1	14.419	34.07	11	Dairy	Theta
pAF22	JQ821357.1	22.388	34.95	23	Dairy	Theta
pAG6	AB198069	8.663	33.70	8	Unknown	Theta
рАН33	AF207855	6.159	35.85	7	Dairy	Theta
pAH82	AF243383	20.331	34.44	17	Dairy	Theta
pAR141	DQ288662	1.594	36.14	2	Dairy	RCR
pAW153	HQ646604.1	7.122	31.35	8	Unknown	Theta
pAW601	AJ132009.2	4.752	31.42	1	Unknown	Theta
pBL1	AF242367	10.899	32.62	8	Dairv	Theta
pBM02	AY026767	3.854	35.73	6	Dairv	RCR
pC10A*	CP016703	2.120	34.10	4	Dairv	RCR
					- /	-

(Continued)

TABLE 1 | Continued

Name	Accession	Size (Kbp)	GC (%)	Genes	Niche	Replication mode
pC10B ^{\$}	CP034582	47.093	34.75	48	Dairy	Theta
pC10C ^{\$}	CP034583	7.652	34.88	5	Dairy	Theta
pCD4	AF306799	6.094	33.43	5	Dairy	Theta
pCl305	AF179848	8.694	32.41	8	Dairy	Theta
pCIS1	CP003165	4.263	31.97	2	Dairy	Theta
pCIS2	CP003164	5.461	30.07	4	Dairy	Theta
pCIS3	CP003163	6.159	35.85	5	Dairy	Theta
pCIS4	CP003162	7.045	38.42	10	Dairy	Theta
pCIS5	CP003161	11.676	34.06	10	Dairy	Theta
pCIS6	CP003160	38.673	37.12	30	Dairy	Theta
pCIS7	CP003159	53.051	32.40	48	Dairy	Theta
pCIS8	CP003158	80.592	33.97	72	Dairy	Theta
pCL2.1	U26594	2.047	33.95	2	Unknown	RCR
pCRL1127	AF409136	8.278	34.82	7	Unknown	Theta
pCRL291.1	AF380336	4.640	33.51	3	Unknown	Theta
pCV56A	CP002366	44.098	32.08	41	Human	Theta
pCV56B	CP002367	35.934	34.54	31	Human	Theta
pCV56C	CP002368	31 442	32 49	27	Human	Theta
pCV56D	CP002369	5.543	32.24	_,	Human	Theta
pCV56E	CP002370	2 262	33.82	4	Human	Theta
	00089807	16 404	35.16	15	Linknown	Theta
	AB079381	7 /12	33.70	6	Dainy	Theta
	AB079380	7.412	33.74	6	Dairy	Theta
pEI/I30	DO011112 1	59.474	34.63	57	Dairy	Theta
pCdb442	AV9/0557	69.210	25.11	62	Daily	Theta
pGUI1442	AF049007	10 400	40.05	00	Fidit	Theta
рп Р 003	CM007254	13.433	40.05	0	Dairy	Theta
	CM007355	64 760	35.10	56	Dairy	Theta
	CM007355	49.406	30.10	40	Dairy	Theta
	CM007350	40.490	32.90	42	Dairy	Theta
	CM007357	11.097	31.70	15	Dairy	Theta
		6.000	39.0	15	Dairy	Theta
piL I	AE110000	0.382	32.28	7	Dairy	Theta
	AF110200	8.500	29.79	10	Dairy	Theta
piL2		0.277	34.62	10	Dairy	Theta
piL3	HIMU21328	19.244	35.11	20	Dairy	Theta
piL4	HIVIU21329	48.978	35.11	47	Dairy	Theta
piL5	HIMU21330	23.395	34.49	22	Dairy	Theta
piL6	HM021331	28.434	33.64	25	Dairy	Ineta
	HM197723	28.546	34.10	26	Dairy	Theta
pJM1A*	CP016747	51.777	35.02	53	Dairy	Ineta
pJM1B*	CP016748	48.280	33.94	63	Dairy	Ineta
pJM1C*	CP016749	30.146	35.40	29	Dairy	Theta
pJM1D*	CP016750	15.360	35.25	12	Dairy	Theta
pJM1E*	CP016751	11.008	31.95	11	Dairy	Theta
pJM1F*	CP016752	5.329	34.28	6	Dairy	Theta
pJM2A*	CP016742	11.314	37.77	11	Dairy	Theta
pJM2B*	CP016743	13.334	34.48	13	Dairy	Theta
pJM2C*	CP016744	62.261	35.12	56	Dairy	Theta
pJM3A*	CP016737	75.814	35.44	80	Dairy	Theta
pJM3B*	CP016738	47.185	34.84	46	Dairy	Theta
pJM3C*	CP016739	45.257	33.11	59	Dairy	Theta
pJM3D*	CP016740	13.546	33.63	15	Dairy	Theta
pJM3E*	CP016741	3.729	32.90	5	Dairy	Theta

(Continued)

TABLE 1 | Continued

DAMA* CP01729 60.219 83.39 74 Dury Truta DAMAE* CP016730 5.381 34.53 7 Dairy Theta DAMAE* CP016730 47.240 34.55 7 Dairy Theta DAMAE* CP017373 47.240 34.55 43 Dairy Theta DAMAE* CP017373 47.240 34.55 43 Dairy Theta DAMAE* CP019730 47.240 34.55 43 Dairy Theta PLD1 EL82687 16.068 32.58 4 Unicown Theta R/P1 CP017780 5.298 32.46 6 Dairy Theta R/D3 CP02607 6.277 34.82 2 Dairy Theta R/D3 CP02607 7.521 33.57 2 Dairy Theta R/D4 CP026011 3.63.27 3 Dairy Theta R/D7 CP026011 3.63.27	Name	Accession	Size (Kbp)	GC (%)	Genes	Niche	Replication mode
μλμμ ΦCP 2.239 33.50 5 Dany PCR μλμΩ ^C ΦP010732 4.230 35.50 3 Dany Treia μλμΩ ^C ΦP010732 4.230 35.50 3 Dany Treia μ214 X32246 22.871 32.45 23 Unitroxm Treia μ214 CP010732 6.068 32.45 3 Unitroxm Treia μ21 D001770 5.209 32.46 7 Dary Treia μ12 D001770 5.209 32.46 7 Dary Treia μ12 D001770 5.209 32.46 7 Dary Treia μ12 D01770 CP020871 42.42 38.62 2 Dary Treia μ12 CP020871 42.92 38.62 2 Dary Treia μ12 CP020871 50.70 30.22 4 Dary Treia μ12 Fi4444 30.47 <td>pJM4A*</td> <td>CP016729</td> <td>60.219</td> <td>33.38</td> <td>74</td> <td>Dairy</td> <td>Theta</td>	pJM4A*	CP016729	60.219	33.38	74	Dairy	Theta
p.MACPCPO167315.93194.537DailyTheiap.MACP'CPO1673347.24034.8543DailyTheiap.MACP'MO20183537.51022.8843DailyTheiap.KC1MO20183537.51022.8844UkincownTheiap.KC1ER2828776.00832.8844UkincownTheiap.L2D03177835.23932.486DailyTheiap.L3CPO208059.27734.828DailyTheiap.L3CPO2080515.21834.6815DailyTheiap.L3CPO2080615.21834.6815DailyTheiap.L3CPO208067.52133.572DailyTheiap.L3CPO208074.2235.772DailyTheiap.L4CPO208067.54733.252DailyTheiap.L5CPO208067.54732.264DailyTheiap.L71CPO2081136.25437.3124DailyTheiap.MPAM*CPO1674613.24233.273DailyTheiap.MPAM*CPO1674537.57132.234DailyTheiap.MPAM*CPO1674513.82033.3145DailyTheiap.MPAM*CPO1674633.24233.3124DailyTheiap.MPAM*CPO1674537.57132.333DailyTheia<	pJM4B*	CP016730	2.239	33.50	5	Dairy	RCR
μμμμ μμμμ μμμμ μμμμ μμμμμ μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ	pJM4C*	CP016731	5.931	34.53	7	Dairy	Theta
phMe ¹ CP016733 47.240 54.85 4.3 Daily Theta pK1147A CP0011895 37.510 32.38 32 Plant Theta pK101 EL289877 6.068 32.98 4 Unknown Theta pL2 D9017780 5.239 32.48 5 Dairy Theta pL2 D9007780 5.239 32.48 3 Dairy Theta pL2 CP000606 15.218 34.08 15 Dairy Theta pL3 CP000606 15.218 34.08 15 Dairy Theta pL3 CP000606 15.218 34.08 15 Dairy Theta pL3 CP000608 12.025 33.57 22 Dairy Theta pL4 CP000608 7.521 33.57 22 Dairy Theta pL7 F864071 30.224 35.17 23 Dairy Theta pL712 F8602017 <td< td=""><td>pJM4D*</td><td>CP016732</td><td>6.207</td><td>35.98</td><td>8</td><td>Dairy</td><td>Theta</td></td<>	pJM4D*	CP016732	6.207	35.98	8	Dairy	Theta
pi2141 Q2016 Q2451 Q245 Q2 Unknown Titela pkF47A CP001582 6.668 32.88 42 Unknown Titela pkP1 PR92278 16.181 32.44 7 Daily Titela pl1 CP002065 6.8.277 44.42 6 Daily Titela pLD2 CP020067 4.2.42 35.62 2 Daily Titela pLD3 CP020067 4.2.42 35.62 2 Daily Titela pLD4 CP020067 4.2.42 35.67 2 Daily Titela pLD5 CP020507 4.2.42 35.67 2 Daily Titela pLD4 CP020508 7.521 33.57 2 Daily Titela pLD7 CP020501 3.825 37.33 44 Daily Titela pMPAM4* CP016745 118.2.45 38.83 168 Daily Titela pMPAM4* CP016745<	pJM4E*	CP016733	47.240	34.85	43	Dairy	Theta
pkPiA7A CPC001835 37.510 32.38 32 Pluint Theta pkD pkD CR0011 EB289287 6.068 32.86 4 Unknown Theta pkD pkP1 FR872378 16.161 35.94 7 Daily Theta pLD CP220605 8.277 44.82 8 Daily Theta pLD CP220606 15.718 34.68 10 Daily Theta pLD CP220608 12.005 33.51 10 Daily Theta pLDS CP220608 7.521 33.57 6 Daily Theta pLDS CP220601 3.363 33.57 2 Daily Theta pLDT CP320607 5.670 32.65 34.41 Daily Theta pLPT12 CP360471 5.670 32.83 168 Daily Theta pMPM11 CP016745 13.820 34.21 Daily Theta pMPM14 CP01674	pK214	X92946	29.871	32.45	29	Unknown	Theta
pkl_D01 EU28927 6.068 32.68 4 Ukrown Theta pkP1 FB72378 16.181 36.94 7 Dairy Theta pLD1 0.0217780 5.599 32.42 5 Dairy Theta pLD2 0.020806 16.271 34.82 9 Dairy Theta pLD4 0.020807 4.422 36.82 2 Dairy Theta pLD4 0.020808 1.205 33.51 10 Dairy Theta pLD5 0.020808 1.205 33.51 27 Dairy Theta pLD7 0.020801 3.383 38.61 Dairy Theta pLD7 0.02287 5.670 30.28 4 Dairy Theta pMN60 Ar068272 60.692 33.83 186 Dairy Theta pMN61 Ar06085 3.7.571 32.33 2 Dairy Theta pMN624 U44449 3.802 3	pKF147A	CP001835	37.510	32.38	32	Plant	Theta
pkP1 PkP37278 16.181 35.94 7 Dairy Theta pL2 D617780 5.299 32.46 5 Dairy Theta pL01 CPX20605 15.713 34.62 8 Dairy Theta pLD3 CPX20606 15.713 34.62 2 Dairy Theta pLD4 CPX20507 4.422 35.57 5 Dairy Theta pLD5 CPX20508 7.521 33.57 5 Dairy Theta pLD5 CPX20501 3.6363 37.39 44 Dairy Theta pLP17 CPX20511 3.5636 37.39 44 Dairy Theta pMPM1* CP016746 113.820 34.42 Dairy Theta pMPM2* CP016746 113.820 33.37 3 Ukrown Theta pMPC24 U4444 3.662 33.37 3 Ukrown Theta pMPC24 U4444 3.672 <td< td=""><td>pKL001</td><td>EU289287</td><td>6.068</td><td>32.86</td><td>4</td><td>Unknown</td><td>Theta</td></td<>	pKL001	EU289287	6.068	32.86	4	Unknown	Theta
pl2 D0317780 5.280 32.46 5 Dary Theia pLD1 CP020006 8.277 34.82 38 Dany Theia pLD3 CP020007 4.242 36.62 2 Dany Theia pLD4 CP020007 4.242 36.62 2 Dany Theia pLD4 CP020000 7.221 33.57 5 Dany Theia pLD6 CP020010 3.848 33.57 2 Dany Theia pLD7 CP020011 3.0274 45.17 27 Dany Theia pLP712 FJ8494781 65.398 37.39 44 Dany Theia pLP714 CP016746 193.245 33.83 188 Dany Theia pMR001 AE001272 60.232 30.11 63 Dany Theia pMR001 AE001272 60.233 32 Dany Theia pMR001 AE001272 60.233 33.3	pKP1	FR872378	16.181	35.94	7	Dairy	Theta
pLD1 CPQ20805 4.2.77 34.82 8 Dairy Theta pLD3 CPQ20806 15.2.78 34.08 15 Dairy RCP pLD4 CPQ20806 12.0.05 33.51 10 Dairy Theta pLD5 CPQ20801 3.883 33.75 2 Dairy Theta pLD6 CPQ20811 30.274 45.17 27 Dairy Theta pLD7 CPQ20811 30.274 45.17 27 Dairy Theta pMN14* CP016746 19.8.245 33.85 166 Dairy Theta pMPLM4* CP016745 113.820 34.92 12.3 Dairy Theta pMC001 Ac00127 60.282 33.37 3 Dairy Theta pMC024 U444/3 3.602 33.37 3 Dairy Theta pM204 CP03136 3.978 37.83 3 Dairy Theta pM20400 AF364664	pL2	DQ917780	5.299	32.46	5	Dairy	Theta
pLD2 CP020806 15.218 34.08 15 Dary Theta pLD4 CP020807 4.242 35.62 2 Dary Fheta pLD4 CP020808 12.005 33.51 10 Dary Theta pLD5 CP020801 3.363 33.75 2 Dary Theta pLD7 CP020611 3.035 37.39 4.4 Dary Theta pLP712 FM44978.1 55.395 37.39 4.4 Dary Theta pMPM14* CP016746 198.245 33.83 166 Dary Theta pMPLM2* CP016746 198.242 33.83 166 Dary Theta pMPC01 A601272 60.232 30.11 63 Dary Theta pMPC04 D0534432 64.960 32.33 62 Dary Theta pM2400 D053433 3.978 37.83 3 Dary Undersmide pA565010 7.264	pLD1	CP020605	8.277	34.82	8	Dairy	Theta
DLB3 CP020807 4.242 35.62 2 Dary RCR pLD4 CP020808 12.005 33.51 10 Dainy Theta pLD5 CP020809 7.521 33.57 5 Dary Theta pLD7 CP020610 3.383 33.75 2 Dary Theta pLD7 CP020611 3.0274 35.17 77 Dary Theta pLP1712 FJ649478.1 65.395 37.39 44 Dary Theta pMPLM* CP016746 113.820 34.82 13.3 Dary Theta pMPLO1 Af069207 6.0232 30.11 63 Dary Theta pMPC02118 CP009055 37.571 32.33 32 Pfant Theta pM240 D054443 3.802 33.37 3 Unintermed Dary Theta pM2400 Af03443 3.8078 37.31 35 Dary Theta pAf263	pLD2	CP020606	15.218	34.08	15	Dairy	Theta
pLD4 CP020808 12.005 33.51 10 Dairy Theta pLD6 CP0208010 3.363 33.57 5 Dairy Theta pLD7 CP020811 3.283 33.75 2 Dairy Theta pL7 CP020811 3.283 33.75 2 Dairy Theta pL7 CP020811 3.2924 45.17 27 Dairy Theta pL712 FJ649478.1 155.396 33.28 186 Dairy Theta pMPLM2* CP016746 119.246 33.83 186 Dairy Theta pMPLM2* CP016745 113.800 34.92 12.0 Dairy Theta pMC01 AE001272 60.232 30.11 63 Dairy Theta pMC240 DA534452 C4.900 32.33 62 Dairy Theta pA2600 AE3846 42.810 33.31 46 Dairy Theta pA2649 CP03031	pLD3	CP020607	4,242	35.62	2	Dairy	BCB
pLDS CP0208009 7.521 33.57 5 Dary Theta pLD6 CP020811 30.274 33.75 2 Dary Theta pLP7 CP020811 30.274 35.77 27 Dary Theta pLP1712 FJ8494/78.1 65.305 37.39 44 Dary Theta pMPLM* CP016746 193.245 38.83 186 Dary Theta pMPC01 AE001272 60.232 30.11 63 Dary Theta pMC021 AE00445 3.602 33.37 3 Unknown Theta pMC024 U44945 3.602 33.31 45 Dary Theta pM2400 AF036485 42.810 33.31 45 Dary Theta pA5404 CP03035 17.661 37.48 3 Dary Theta pA57a A5505010 7.284 33.65 5 Dary Theta pA750 U16027	pLD4	CP020608	12.005	33.51	10	Dairy	Theta
pLBB CP020610 3.883 33.75 2 Dary Theta pLD7 CP020611 30.274 35.17 77 Dairy Theta pLM7 CP020611 30.274 35.17 77 Dairy Theta pMM AP056207 5.670 30.26 4 Dairy Theta pMPLM2* CP016746 113.820 34.83 186 Dairy Theta pMPC01 AE001272 60.232 30.11 63 Dairy Theta pMC02018 CP05065 37.571 23.33 32 Plunt Theta pMC02018 CP03055 37.571 23.33 42 Dairy Theta pM2400 DGS4432 64.980 32.33 62 Dairy Theta pA2400 AF05646 13.81 47.69 Dairy Theta pA2400 AF65646 3.978 37.83 3 Dairy Theta pA2459 CP03133 55.800<	pLD5	CP020609	7.521	33.57	5	Dairy	Theta
pLD7 CP020611 30.274 51.7 27 Dairy Theta pLP712 FJ849478.1 66.396 37.39 44 Dairy Theta pLP712 FJ849478.1 66.396 37.39 44 Dairy Theta pMPLM1* CP016746 193.245 33.83 186 Dairy Theta pMPLM2* CP016745 113.820 34.92 123 Dairy Theta pMRC01 AE003055 37.571 32.33 32 Plant Theta pND324 U44843 3.6002 33.37 3 Unknown Theta pN2400 AF039485 42.810 33.31 45 Dairy Theta pAZ400 AF039448 49.219 35.14 44 Dairy Theta pAS454 CP003133 38.630 34.86 54 Dairy Theta pAS454 CP003134 49.219 35.14 44 Dairy Theta pAS454	pl D6	CP020610	3,363	33.75	2	Dairy	Theta
plp1p1 plp1p2 plp1p2 plp1p2 plp1p2 plp1p2 plp1p2 plp1p2 plp1p2 plp2 plp	pLD 0	CP020611	30 274	35.17	27	Dairy	Theta
ph/N5 APG66207 5.670 30.26 1.1 Lar Index pMPM CP016746 133.245 33.83 186 Delry Theta pMPC01 AE001722 60.322 30.11 63 Dalry Theta pMC201 AE003025 37.571 32.33 32 Plant Theta pN23024 U44843 3.602 33.37 3 Unknown Theta pN240 D6354452 64.980 22.33 62 Dalry Theta pN2400 AF039445 42.810 33.31 45 Dalry Theta p0A504 CP003136 3.978 37.40 13 Dairy Theta p0A549 CP003134 49.219 35.14 44 Dalry Theta p57a AJ550500 7.264 33.65 Dalry Theta p57b AJ550500 7.264 33.65 Dalry Theta p5R0200 AF001314 10.836 <t< td=""><td>pLD7 pl P712</td><td>E.I649478 1</td><td>55,395</td><td>37.39</td><td>44</td><td>Dairy</td><td>Theta</td></t<>	pLD7 pl P712	E.I649478 1	55,395	37.39	44	Dairy	Theta
ph/Rb h body h body h ph/Rb/M* CP016746 193.245 33.83 186 Dairy Theta ph/Rb/01 AE001272 60.232 30.11 63 Dairy Theta ph/RD01 AE001272 60.232 30.11 63 Dairy Theta ph/D240 DA0565 37.571 92.33 32 Plent Theta ph/Z400 AC036485 64.960 32.33 62 Dairy Theta ph/Z400 AC034432 64.960 32.33 62 Dairy Theta pAX400 AC03136 3.978 37.83 3 Dairy Theta pAX49 CP003134 4.9219 35.14 44 Dairy Theta pAX549 CP003134 4.9219 35.14 44 Dairy Theta pS7b AJ565050 7.784 34.19 9 Dairy Theta pSRO200 H060716 4.265	pMN5	AE056207	5 670	30.26	4	Dairy	BCB
phr.1.M.1 Of 016745 13.820 3.023 103 Dairy Theta pMEMQ2 CP016745 113.820 34.92 123 Dairy Theta pNCD02118 CP009055 37.571 32.33 32 Plant Theta pNCD02118 CP009055 37.571 32.33 62 Dairy Theta pNZ40 DQ534432 64.980 32.33 62 Dairy Theta pNZ400 AF056485 42.810 33.31 45 Dairy Theta pQA504 CP03136 17.661 37.40 13 Dairy Theta pQA544 CP03134 49.219 35.14 44 Dairy Theta pQA5454 CP03133 53.830 34.86 54 Dairy Theta pS7a AJ550509 7.302 33.43 5 Dairy Theta pSRQ00 U16027 7.784 31.33 71 Dairy Theta pUC0684*	pMPIM1*	CP016746	103 245	33.83	186	Dairy	Theta
pMRC01 AEO(1272) 60.322 90.11 63 Daily Theta pNCD02118 CP009055 37.571 32.33 32 Plant Theta pND324 U44843 3.602 33.37 3 Unknown Theta pN2400 AF036485 42.810 33.31 45 Dairy Theta pAS504 CP003136 3.978 37.83 3 Dairy Undetermined pAS409 CP003135 17.661 37.40 13 Dairy Theta pAS49 CP003134 49.219 35.14 44 Dairy Theta pAS49 CP003133 56.830 34.86 54 Dairy Theta pS7a AJ505010 7.202 33.43 5 Dairy Theta pSR0700 U16027 7.784 34.19 9 Dairy Theta pSR0200 U35629 7.858 31.33 11 Dairy Theta pUC0684* <td< td=""><td></td><td>CP016745</td><td>112 820</td><td>34.02</td><td>100</td><td>Dairy</td><td>Theta</td></td<>		CP016745	112 820	34.02	100	Dairy	Theta
pMCD211 AE001212 00.232 00.11 0.3 Data Pileta pNDD2118 CP000065 37.571 32.33 32 Pilent Theta pND324 U44843 3.602 33.37 3 Unknown Theta pNP40 DQ534432 64.980 32.33 62 Dairy Theta pQA504 CP003136 3.978 37.83 3 Dairy Undetermined pQA518 CP003135 17.661 37.40 13 Dairy Theta pQA549 CP003133 56.803 34.86 54 Dairy Theta pS7a AJ550510 7.764 33.65 5 Dairy Theta pSRQ200 U6027 7.784 34.19 9 Dairy Theta pUC0638* CP016716 7.858 31.33 11 Dairy Theta pUC0638* CP016716 44.205 34.27 41 Dairy Theta pUC0638*		AE0010743	60.020	34.92	62	Dairy	Theta
phCD22116 OF005000 37.371 32.33 32 Hait Initial pND324 U4843 3.602 33.37 3 Unknown Theta pN240 Dd534432 64.980 32.33 62 Dairy Theta pD42000 AF036485 42.810 33.31 45 Dairy Undetermined pDA518 CP003136 3.978 37.83 3 Dairy Theta pDA54 CP003134 49.219 35.14 44 Dairy Theta pGA54 CP003133 53.630 34.86 54 Dairy Theta pS7a AJ550510 7.264 33.65 5 Dairy Theta pSR0200 J450510 7.264 33.65 5 Dairy Theta pSR0200 J450511 7.5962 35.31 79 Dairy Theta pUC0634* CP016715 75.962 35.31 79 Dairy Theta pUC0635*		AE001272	00.232	30.11	00	Dairy	Theta
phCl224 D44843 3.002 3.3.3 3 Diktiowin Initiat pNP40 DGS4432 64.980 32.33 62 Dairy Theta pDA504 CP003136 3.978 37.83 3 Dairy Undetermined pQA518 CP003134 49.219 55.14 44 Dairy Theta pQA554 CP003133 53.630 34.86 54 Dairy Theta pG7a AJ550509 7.302 33.43 5 Dairy Theta pSR0700 U16027 7.784 34.19 9 Dairy Theta pSR0800 U35629 7.858 31.33 7 Dairy Theta pUC0634* CP016715 75.962 35.31 79 Dairy Theta pUC0635* CP016718 8.697 32.39 10 Dairy Theta pUC0635* CP016718 8.697 32.39 10 Dairy Theta pUC063*		CP009055	37.571	32.33	32	Plant	Theta
pmP40 DL83432 04.900 32.33 0.2 Dary Ineta pQA500 AF08485 42.810 33.31 45 Dairy Undetermined pQA514 CP003136 3.978 37.83 3 Dairy Theta pQA518 CP003133 51.7.661 37.40 13 Dairy Theta pQA54 CP003133 53.830 34.86 64 Dairy Theta pS75 AJ550509 7.302 33.43 5 Dairy Theta pSR0200 U16027 7.784 34.19 9 Dairy Theta pSR0200 AF001314 10.836 31.13 11 Dairy Theta pUC0683* CP016715 75.962 35.31 79 Dairy Theta pUC0683* CP016716 44.205 34.27 41 Dairy Theta pUC0683* CP016718 8.697 32.39 10 Dairy Theta pUC0684*	pND324	044843	3.602	33.37	3	Unknown	Theta
ph/24000 AP06865 42.810 33.31 45 Dary Inteta pQA504 CP003136 3.978 37.83 3 Dairy Undetermined pQA518 CP003133 17.661 37.40 13 Dairy Theta pQA549 CP003133 53.630 34.86 54 Dairy Theta pS7a AJ550509 7.302 33.43 5 Dairy Theta pS7b AJ550510 7.264 33.65 Dairy Theta pSR0700 U16027 7.784 34.19 9 Dairy Theta pSR0800 J36629 7.858 31.33 7 Dairy Theta pUC0638* CP016715 75.962 35.31 79 Dairy Theta pUC0633* CP016718 8.697 32.39 10 Dairy Theta pUC068* CP016735 48.632 34.82 55 Dairy Theta pUC068* CP016736	DNP40	DQ534432	64.980	32.33	62	Dairy	Theta
pDAS04 CP003135 17.661 37.83 3 Dairy Undetermined pOA518 CP003135 17.661 37.40 13 Dairy Theta pOA548 CP003133 53.830 34.86 54 Dairy Theta pS7a AJ550509 7.302 33.43 5 Dairy Theta pS7b AJ550510 7.264 33.65 5 Dairy Theta pSRQ700 U16027 7.784 34.19 9 Dairy Theta pSRQ800 U35629 7.858 31.33 7 Dairy Theta pUC0638* CP016715 75.962 35.31 79 Dairy Theta pUC0630* CP016718 8.697 32.39 10 Dairy Theta pUC0630* CP016718 8.697 32.39 10 Dairy Theta pUC0630* CP016718 8.697 32.39 10 Dairy Theta pUC0650* <t< td=""><td>pNZ4000</td><td>AF036485</td><td>42.810</td><td>33.31</td><td>45</td><td>Dairy</td><td>Ineta</td></t<>	pNZ4000	AF036485	42.810	33.31	45	Dairy	Ineta
pLAS18 CPO03133 17.601 37.40 13 Dany Ineta pQA549 CP003134 49.219 35.14 44 Dairy Theta pQA544 CP003133 55.630 34.86 54 Dairy Theta pS7a AJ550509 7.302 33.43 5 Dairy Theta pS7b AJ550510 7.264 33.65 5 Dairy Theta pSRQ700 U16027 7.784 34.19 9 Dairy Theta pSRQ900 AF001314 10.836 31.13 11 Dairy Theta pUC0638* CP016715 75.962 35.31 79 Dairy Theta pUC0638* CP016716 44.205 34.27 41 Dairy Theta pUC0638* CP016717 11.68 32.55 15 Dairy Theta pUC063* CP016718 8.697 23.99 10 Dairy Theta pUC065* CP	pQA504	CP003136	3.978	37.83	3	Dairy	Undetermined
pDA849 CP03133 49,219 35,14 44 Dary Ineta pQA554 CP03133 53,630 34,86 54 Dairy Theta pS7a AJ55050 7.302 33,45 5 Dairy Theta pS7b AJ550510 7.264 33,65 5 Dairy Theta pSR0200 U16027 7.784 34,19 9 Dairy Theta pSR0200 AF001314 10.836 31,13 11 Dairy Theta pUC0638* CP016715 75,962 35,31 79 Dairy Theta pUC0638* CP016717 11.663 32,255 15 Dairy Theta pUC0638* CP016718 8.697 32,39 10 Dairy Theta pUC0638* CP016714 8.692 34,82 55 Dairy Theta pUC064* CP016734 8.692 34,82 55 Dairy Theta pUC065* CP0	pQA518	CP003135	17.661	37.40	13	Dairy	Theta
pDA554 CP003133 53.630 34.86 54 Dairy Ineta pS7a AJ55050 7.302 33.43 5 Dairy Theta pS7b AJ550510 7.264 33.65 5 Dairy Theta pSRQ700 U16027 7.784 34.19 9 Dairy Theta pSRQ800 AF001314 10.836 31.33 7 Dairy Theta pUC0634* CP016715 75.962 35.31 79 Dairy Theta pUC0635* CP016716 44.205 34.27 41 Dairy Theta pUC063C* CP016717 11.663 32.55 15 Dairy Theta pUC063C* CP016718 8.697 32.39 10 Dairy Theta pUC063C* CP016734 36.928 32.10 33 Dairy Theta pUC064* CP016735 48.632 34.82 55 Dairy Theta pUC065* <t< td=""><td>pQA549</td><td>CP003134</td><td>49.219</td><td>35.14</td><td>44</td><td>Dairy</td><td>Theta</td></t<>	pQA549	CP003134	49.219	35.14	44	Dairy	Theta
pS7a AD550509 7.302 33.43 5 Dary Ineta pS7b AJ550510 7.264 33.65 5 Dairy Theta pSR0700 U16027 7.784 34.19 9 Dairy Theta pSR0800 U36629 7.858 31.33 7 Dairy Theta pUC063A* CP016715 75.962 35.31 79 Dairy Theta pUC063B* CP016716 44.205 34.27 41 Dairy Theta pUC063C* CP016718 8.697 32.39 10 Dairy Theta pUC063C* CP016718 8.697 32.39 10 Dairy Theta pUC064* CP016734 36.928 32.10 43 Dairy Theta pUC065* CP016736 28.429 31.87 29 Dairy Theta pUC066* CP016736 28.429 31.87 29 Dairy Theta pUC066* CP	pQA554	CP003133	53.630	34.86	54	Dairy	Theta
pS7b AJ560510 7.264 33.65 5 Dairy Theta pSRQ700 U16027 7.784 34.19 9 Dairy Theta pSRQ800 U35629 7.858 31.33 7 Dairy Theta pSRQ900 AF001314 10.836 31.13 11 Dairy Theta pUC063A* CP016715 75.962 35.31 79 Dairy Theta pUC063B* CP016716 44.205 34.27 41 Dairy Theta pUC063C* CP016718 8.697 32.39 10 Dairy Theta pUC063C* CP016718 8.697 32.39 10 Dairy Theta pUC063* CP016734 36.928 32.10 43 Dairy Theta pUC064* CP016736 48.632 34.82 55 Dairy Theta pUC065* CP034579 11.362 31.47 10 Dairy Theta pUC065*	pS7a	AJ550509	7.302	33.43	5	Dairy	Theta
pSR0200 U16027 7.784 34.19 9 Dairy Theta pSR0800 U36629 7.858 31.33 7 Dairy Theta pSR0800 AF001314 10.836 31.13 11 Dairy Theta pUC063A* CP016715 75.962 35.31 79 Dairy Theta pUC063C* CP016716 44.205 34.27 41 Dairy Theta pUC063C* CP016718 8.697 32.39 10 Dairy Theta pUC063C* CP016718 8.697 32.39 10 Dairy Theta pUC063C* CP016718 8.697 32.39 10 Dairy Theta pUC066* CP016734 36.928 32.10 43 Dairy Theta pUC066* CP016735 48.632 34.82 55 Dairy Theta pUC060* CP016736 23.429 31.87 29 Dairy Theta pUC065*	pS7b	AJ550510	7.264	33.65	5	Dairy	Theta
psR0800 U35629 7.858 31.33 7 Dairy Theta psR0900 AF001314 10.836 31.13 11 Dairy Theta pUC063A* CP016715 75.962 35.31 79 Dairy Theta pUC063B* CP016716 44.205 34.27 41 Dairy Theta pUC063C* CP016717 11.663 32.55 15 Dairy Theta pUC063C* CP016718 8.697 32.39 10 Dairy Theta pUC063C* CP016719 8.551 31.53 11 Dairy Theta pUC064* CP016735 48.632 34.82 55 Dairy Theta pUC06C* CP016736 23.429 31.87 29 Dairy Theta pUC06C* CP016736 23.429 31.87 29 Dairy Theta pUC06C* CP016736 34.82 37 Dairy Theta pUC06C* CP034581 </td <td>pSRQ700</td> <td>U16027</td> <td>7.784</td> <td>34.19</td> <td>9</td> <td>Dairy</td> <td>Theta</td>	pSRQ700	U16027	7.784	34.19	9	Dairy	Theta
pSR0900 AF001314 10.836 31.13 11 Dairy Theta pUC063A* CP016715 75.962 35.31 79 Dairy Theta pUC063B* CP016716 44.205 34.27 41 Dairy Theta pUC063C* CP016717 11.663 32.55 15 Dairy Theta pUC063D* CP016718 8.697 32.39 10 Dairy Theta pUC063E* CP016718 8.697 32.39 10 Dairy Theta pUC064* CP016734 36.928 32.10 433 Dairy Theta pUC06C* CP016736 23.429 31.87 29 Dairy Theta pUC06C* CP016736 23.429 31.87 29 Dairy Theta pUC06C* CP016736 6.180 33.06 6 Dairy Theta pUC06F* CP034581 29.156 34.88 27 Dairy Theta pUC08F*<	pSRQ800	U35629	7.858	31.33	7	Dairy	Theta
pUC063A* CP016715 75.962 35.31 79 Dairy Theta pUC063B* CP016716 44.205 34.27 41 Dairy Theta pUC063C* CP016717 11.663 32.55 15 Dairy Theta pUC063D* CP016718 8.697 32.39 10 Dairy Theta pUC063E* CP016719 8.551 31.53 11 Dairy Theta pUC064* CP016734 36.928 32.10 43 Dairy Theta pUC065* CP016735 48.632 34.82 55 Dairy Theta pUC066* CP016736 23.429 31.87 29 Dairy Theta pUC060* CP034579 11.362 31.47 10 Dairy Theta pUC060* CP034581 29.156 34.88 27 Dairy Theta pUC080* CP016726 89.015 34.19 102 Meat Theta pUC080*	pSRQ900	AF001314	10.836	31.13	11	Dairy	Theta
pUC063B* CP016716 44.205 34.27 41 Dairy Theta pUC063C* CP016717 11.663 32.55 15 Dairy Theta pUC063D* CP016718 8.697 32.39 10 Dairy Theta pUC063E* CP016719 8.551 31.53 11 Dairy Theta pUC068* CP016734 36.928 32.10 43 Dairy Theta pUC068* CP016735 48.632 34.82 55 Dairy Theta pUC066* CP016736 23.429 31.87 29 Dairy Theta pUC066* CP034579 11.362 31.47 10 Dairy Theta pUC066* CP034580 6.180 33.06 6 Dairy Theta pUC066* CP034581 29.156 34.88 27 Dairy Theta pUC085* CP016727 49.037 34.22 62 Meat Theta pUC085* <td>pUC063A*</td> <td>CP016715</td> <td>75.962</td> <td>35.31</td> <td>79</td> <td>Dairy</td> <td>Theta</td>	pUC063A*	CP016715	75.962	35.31	79	Dairy	Theta
pUC063C* CP016717 11.663 32.55 15 Dairy Theta pUC063D* CP016718 8.697 32.39 10 Dairy Theta pUC063E* CP016719 8.551 31.53 11 Dairy Theta pUC06A* CP016734 36.928 32.10 43 Dairy Theta pUC06B* CP016735 48.632 34.82 55 Dairy Theta pUC06C* CP016736 23.429 31.87 29 Dairy Theta pUC06D ^{\$} CP034579 11.362 31.47 10 Dairy Theta pUC06E ^{\$} CP034580 6.180 33.06 6 Dairy Theta pUC06F ^{\$} CP034581 29.156 34.88 27 Dairy Theta pUC08F* CP016727 49.037 34.22 52 Meat Theta pUC08C* CP016728 15.396 30.83 21 Meat Theta pUC08D*	pUC063B*	CP016716	44.205	34.27	41	Dairy	Theta
pUC063D* CP016718 8.697 32.39 10 Dairy Theta pUC063E* CP016719 8.551 31.53 11 Dairy Theta pUC06A* CP016734 36.928 32.10 43 Dairy Theta pUC06B* CP016735 48.632 34.82 55 Dairy Theta pUC06C* CP016736 23.429 31.87 29 Dairy Theta pUC06D\$ CP034579 11.362 31.47 10 Dairy Theta pUC06F\$ CP034580 6.180 33.06 6 Dairy Theta pUC06F\$ CP034581 29.156 34.88 27 Dairy Theta pUC08F* CP016726 89.015 34.19 102 Meat Theta pUC08E* CP016727 49.037 34.22 52 Meat Theta pUC08C* CP016728 15.396 30.83 21 Meat RCR pUC08E*	pUC063C*	CP016717	11.663	32.55	15	Dairy	Theta
pUC063E* CP016719 8.551 31.53 11 Dairy Theta pUC06A* CP016734 36.928 32.10 43 Dairy Theta pUC06B* CP016735 48.632 34.82 55 Dairy Theta pUC06C* CP016736 23.429 31.87 29 Dairy Theta pUC06D [§] CP034579 11.362 31.47 10 Dairy Theta pUC06C [§] CP034580 6.180 33.06 6 Dairy Theta pUC06F [§] CP034581 29.156 34.88 27 Dairy Theta pUC08B* CP016726 89.015 34.19 102 Meat Theta pUC08B* CP016727 49.037 34.22 52 Meat Theta pUC08D* CP016728 15.396 30.83 21 Meat RCR pUC08D* CP034577 5.239 31.00 4 Meat Theta pUC08E*	pUC063D*	CP016718	8.697	32.39	10	Dairy	Theta
pUC06A* CP016734 36.928 32.10 43 Dairy Theta pUC06B* CP016735 48.632 34.82 55 Dairy Theta pUC06C* CP016736 23.429 31.87 29 Dairy Theta pUC06D\$ CP034579 11.362 31.47 10 Dairy Theta pUC06E\$ CP034580 6.180 33.06 6 Dairy Theta pUC06F\$ CP034581 29.156 34.88 27 Dairy Theta pUC08B* CP016726 89.015 34.19 102 Meat Theta pUC08C* CP016727 49.037 34.22 52 Meat Theta pUC08C* CP016728 15.396 30.83 21 Meat Theta pUC08D* CP034577 5.239 31.00 4 Meat RCR pUC08E* CP034578 7.809 32.81 7 Meat Theta pUC109A*	pUC063E*	CP016719	8.551	31.53	11	Dairy	Theta
pUC06B* CP016735 48.632 34.82 55 Dairy Theta pUC06C* CP016736 23.429 31.87 29 Dairy Theta pUC06D ^{\$} CP034579 11.362 31.47 10 Dairy Theta pUC06E ^{\$} CP034580 6.180 33.06 6 Dairy Theta pUC06F ^{\$} CP034581 29.156 34.88 27 Dairy Theta pUC08B* CP016726 89.015 34.19 102 Meat Theta pUC08B* CP016727 49.037 34.22 52 Meat Theta pUC08C* CP016728 15.396 30.83 21 Meat Theta pUC08D* CP034577 5.239 31.00 4 Meat RCR pUC08E* CP034578 7.809 32.81 7 Meat Theta pUC109A* CP016707 64.175 33.17 83 Dairy Theta pUC109B*	pUC06A*	CP016734	36.928	32.10	43	Dairy	Theta
pUC06C* CP016736 23.429 31.87 29 Dairy Theta pUC06D [§] CP034579 11.362 31.47 10 Dairy Theta pUC06E [§] CP034580 6.180 33.06 6 Dairy Theta pUC06E [§] CP034581 29.156 34.88 27 Dairy Theta pUC08E [§] CP016726 89.015 34.19 102 Meat Theta pUC08E [§] CP016727 49.037 34.22 52 Meat Theta pUC08C [*] CP016728 15.396 30.83 21 Meat Theta pUC08D [*] CP034577 5.239 31.00 4 Meat RCR pUC08E [*] CP034578 7.809 32.81 7 Meat Theta pUC109A [*] CP016707 64.175 33.17 83 Dairy Theta pUC109B [*] CP016708 48.261 34.63 51 Dairy Theta	pUC06B*	CP016735	48.632	34.82	55	Dairy	Theta
pUC06D ^{\$} CP034579 11.362 31.47 10 Dairy Theta pUC06E ^{\$} CP034580 6.180 33.06 6 Dairy Theta pUC06E ^{\$} CP034581 29.156 34.88 27 Dairy Theta pUC08A* CP016726 89.015 34.19 102 Meat Theta pUC08B* CP016727 49.037 34.22 52 Meat Theta pUC08C* CP016728 15.396 30.83 21 Meat Theta pUC08D* CP034577 5.239 31.00 4 Meat RCR pUC08E* CP034578 7.809 32.81 7 Meat Theta pUC109A* CP016707 64.175 33.17 83 Dairy Theta pUC109B* CP016708 48.261 34.63 51 Dairy Theta	pUC06C*	CP016736	23.429	31.87	29	Dairy	Theta
pUC06E [§] CP034580 6.180 33.06 6 Dairy Theta pUC06F [§] CP034581 29.156 34.88 27 Dairy Theta pUC08A* CP016726 89.015 34.19 102 Meat Theta pUC08B* CP016727 49.037 34.22 52 Meat Theta pUC08C* CP016728 15.396 30.83 21 Meat Theta pUC08D* CP034577 5.239 31.00 4 Meat RCR pUC08E* CP034578 7.809 32.81 7 Meat Theta pUC109A* CP016707 64.175 33.17 83 Dairy Theta pUC109B* CP016708 48.261 34.63 51 Dairy Theta	pUC06D ^{\$}	CP034579	11.362	31.47	10	Dairy	Theta
pUC06F ^{\$} CP034581 29.156 34.88 27 Dairy Theta pUC08A* CP016726 89.015 34.19 102 Meat Theta pUC08B* CP016727 49.037 34.22 52 Meat Theta pUC08C* CP016728 15.396 30.83 21 Meat Theta pUC08D* CP034577 5.239 31.00 4 Meat RCR pUC08E* CP034578 7.809 32.81 7 Meat Theta pUC109A* CP016707 64.175 33.17 83 Dairy Theta pUC109B* CP016708 48.261 34.63 51 Dairy Theta	pUC06E ^{\$}	CP034580	6.180	33.06	6	Dairy	Theta
pUC08A* CP016726 89.015 34.19 102 Meat Theta pUC08B* CP016727 49.037 34.22 52 Meat Theta pUC08C* CP016728 15.396 30.83 21 Meat Theta pUC08D* CP034577 5.239 31.00 4 Meat RCR pUC08E* CP034578 7.809 32.81 7 Meat Theta pUC109A* CP016707 64.175 33.17 83 Dairy Theta pUC109B* CP016708 48.261 34.63 51 Dairy Theta	pUC06F ^{\$}	CP034581	29.156	34.88	27	Dairy	Theta
pUC08B*CP01672749.03734.2252MeatThetapUC08C*CP01672815.39630.8321MeatThetapUC08D*CP0345775.23931.004MeatRCRpUC08E*CP0345787.80932.817MeatThetapUC109A*CP01670764.17533.1783DairyThetapUC109B*CP01670848.26134.6351DairyTheta	pUC08A*	CP016726	89.015	34.19	102	Meat	Theta
pUC08C*CP01672815.39630.8321MeatThetapUC08D*CP0345775.23931.004MeatRCRpUC08E*CP0345787.80932.817MeatThetapUC109A*CP01670764.17533.1783DairyThetapUC109B*CP01670848.26134.6351DairyTheta	pUC08B*	CP016727	49.037	34.22	52	Meat	Theta
pUC08D* CP034577 5.239 31.00 4 Meat RCR pUC08E* CP034578 7.809 32.81 7 Meat Theta pUC109A* CP016707 64.175 33.17 83 Dairy Theta pUC109B* CP016708 48.261 34.63 51 Dairy Theta	pUC08C*	CP016728	15.396	30.83	21	Meat	Theta
pUC08E* CP034578 7.809 32.81 7 Meat Theta pUC109A* CP016707 64.175 33.17 83 Dairy Theta pUC109B* CP016708 48.261 34.63 51 Dairy Theta	pUC08D*	CP034577	5.239	31.00	4	Meat	RCR
pUC109A*CP01670764.17533.1783DairyThetapUC109B*CP01670848.26134.6351DairyTheta	pUC08E*	CP034578	7.809	32.81	7	Meat	Theta
pUC109B* CP016708 48.261 34.63 51 Dairy Theta	pUC109A*	CP016707	64.175	33.17	83	Dairy	Theta
	pUC109B*	CP016708	48.261	34.63	51	Dairy	Theta

(Continued)

5

TABLE 1 | Continued

Name	Accession	Size (Kbp)	GC (%)	Genes	Niche	Replication mode
pUC109C*	CP016709	11.868	32.20	14	Dairy	Theta
pUC109D*	CP016710	11.333	31.64	13	Dairy	Theta
pUC109E*	CP016711	4.237	33.35	5	Dairy	Theta
pUC109F*	CP016712	2.413	33.11	3	Dairy	RCR
pUC109G ^{\$}	CP034576	25.328	34.40	21	Dairy	Theta
pUC11A*	CP016720	59.284	33.91	65	Meat	Theta
pUC11B*	CP016721	49.307	34.22	53	Meat	Theta
pUC11C*	CP016722	19.351	35.19	18	Meat	Theta
pUC11D*	CP016723	15.393	30.82	17	Meat	Theta
pUC11E ^{\$}	CP034572	7.809	33.12	8	Meat	Theta
pUC11F*	CP016725	5.238	30.99	4	Meat	RCR
pUC77A*	CP016713	6.083	35.75	7	Dairy	Theta
pUC77B*	CP016714	63.462	34.86	66	Dairy	Theta
pUC77C ^{\$}	CP034573	62.882	36.14	58	Dairy	Theta
pUC77D ^{\$}	CP034574	39.604	33.93	47	Dairy	Theta
pUC77E ^{\$}	CP034575	6.153	35.79	7	Dairy	Theta
pUL8A*	CP016704	7.652	33.95	6	Dairy	Theta
pUL8B*	CP016705	27.296	35.31	30	Dairy	Theta
pUL8C*	CP016706	2.119	34.07	3	Dairy	RCR
pVF18	JN172910	18.977	33.90	21	Dairy	Theta
pVF21	JN172911	21.728	33.59	14	Dairy	Theta
pVF22	JN172912	22.166	35.14	19	Dairy	Theta
pVF50	JN225497	53.876	34.50	41	Dairy	Theta
pWC1	L75827	2.846	29.48	1	Dairy	RCR
pWV01	X56954	2.178	33.43	4	Dairy	RCR
pWVO2	NC_002193.1	3.826	31.34	1	Unknown	Theta
SK11 p1	CP000426	14.041	34.37	13	Dairy	Theta
SK11 p2	CP000427	9.554	30.44	10	Dairy	Theta
SK11 p3	CP000428	74.750	35.41	69	Dairy	Theta
SK11 p4	CP000429	47.208	34.84	42	Dairy	Theta
SK11 p5	CP000430	14.206	33.55	10	Dairy	Theta

*Plasmids sequenced in the context of the current study (PacBio SMRT). \$Plasmids sequenced in the context of the current study (Illumina MiSeq).

method. ORFs which produced an alignment with a minimum of 50% sequence identity across 50% of the gene or protein length (both nucleotide and amino acid sequences are applied in parallel) were clustered and a pan-plasmidome profile was subsequently generated (Tettelin et al., 2005).

Comparative Genomics

Tandem Repeats Finder v4.02 (Benson, 1999) was applied to identify nucleotide tandem repeats at a potential plasmid origin of replication. Plasmids were assigned to be employing a Theta mode of replication where the gene encoding replication protein is preceded by 3.5 iterations of a 22 bp tandem repeat with an A/T rich 10 bp direct repeat located further upstream (Kiewiet et al., 1993). Alternatively, plasmids that replicate by rolling circle replication (RCR) can be identified because they rely on a replication protein and a double-stranded origin of replication (dso). Putative dso replication sites were identified based on nucleotide conservation to previously identified dso's, containing a *nic* site composed of one or more inverted repeats, and a Repbinding site consisting of 2–3 direct repeats or an inverted repeat (Del Solar et al., 1993; Mills et al., 2006).

All sequence comparisons at protein level were performed via all-against-all, bi-directional BLAST alignments (Altschul et al., 1990). An alignment cut-off value of >50% amino acid identity across 50% of the sequence length was used (with an associated E-value of <0.0001). For analysis and clustering of these results, the MCL was implemented in the mclblastline pipeline v12-0678 (Enright et al., 2002). TM4 MeV, MultiExperiment Viewer v4.9 was used to view MCL clustering data and conduct hierarchal clustering (HCL)⁵. The HCL analysis was exported from TM4 MeV in Newick tree format and visualized using ITOL (Interactive Tree of Life) (Letunic and Bork, 2016).

Pulsed Field Gel Electrophoresis (PFGE)

Lactococcus lactis subsp. *cremoris* strains JM1 and JM2 were cultured in M17 broth (Oxoid) supplemented with 0.5% (w/v) lactose at 30°C without agitation overnight. PFGE plugs were then prepared and restricted with SI nuclease (Thermo Fisher Scientific, Ireland) as previously described (Bottacini et al., 2015).

⁵http://www.tm4.org/mev.html

A 1% (wt/vol) PFGE agarose gel was prepared in 0.5X TBE [89 mM Tris-borate, 2 mM EDTA (pH 8.3)] buffer and the PFGE plugs were melted in and sealed with molten agarose in 0.5X TBE buffer. A CHEF-DR III pulsed-field system (Bio-Rad Laboratories, Hercules, CA, United States) was used to resolve the DNA fragments at 6 V/cm for 18 h in 0.5X TBE running buffer maintained at 14°C with linear increment (interpolation) of pulse time from 3 to 50 s. DNA ladder (Chef DNA lambda) was included in each gel (number 170-3635; Bio-Rad Laboratories). The gels were stained in ethidium bromide (10 mg/ml) (25 μ l/500 ml dH₂O) for 120 min under light-limited conditions and destained in distilled water for 60 min. Gels were visualized by UV transillumination.

Bacteriocin Assays

Lactococcal strains were cultured in M17 broth (Oxoid) supplemented with 0.5% (w/v) lactose or glucose (strain-dependent) at 30°C without agitation overnight. 3 μ l of overnight culture was spotted on M17 agar supplemented with 0.5% (w/v) glucose and left at 30°C overnight. Cells that had grown on the spotted areas were inactivated by exposure to UV light for 30 min. Plates were then overlaid with a semi-solid M17 agar (0.4% agarose) containing indicator strain *L. lactis* HP. Zones of inhibition were visualized and measured after 24 h.

Genbank Accession Numbers of Applied Strains

Lactococcus lactis subsp. lactis IL1403: AE005176; L. lactis subsp. lactis IO-1: AP012281; L. lactis subsp. lactis 184: CP015895; L. lactis subsp. lactis 229: CP015896; L. lactis subsp. lactis 275: CP015897; L. lactis subsp. lactis UC06: CP015902; L. lactis subsp. lactis UC08: CP015903; L. lactis subsp. lactis UC11: CP015904; L. lactis subsp. lactis UC063: CP015905; L. lactis subsp. lactis UC77: CP015906; L. lactis subsp. lactis UL8: CP015908; L. lactis subsp. lactis C10: CP015898; L. lactis subsp. cremoris SK11: CP000425; L. lactis subsp. cremoris MG1363: AM406671; L. lactis subsp. cremoris NZ9000: CP002094; L. lactis subsp. cremoris A76: CP003132; L. lactis subsp. cremoris UC509.9: CP003157; L. lactis subsp. cremoris KW2: CP004884; L. lactis subsp. cremoris 158: CP015894; L. lactis subsp. cremoris UC109: CP015907; L. lactis subsp. cremoris JM1: CP015899; L. lactis subsp. cremoris JM2: CP015900; L. lactis subsp. cremoris JM3: CP015901; L. lactis subsp. cremoris JM4: CP015909; L. lactis subsp. cremoris 3107: CP031538; L. lactis subsp. cremoris IBB477: CM007353; L. lactis subsp. lactis A12: LT599049; L. lactis subsp. lactis biovar. diacetylactis FM03: CP020604; L. lactis subsp. lactis 14B4: CP028160; and L. lactis subsp. cremoris HP: JAUH00000000.1.

RESULTS

Plasmid Sequencing

In this study the sequences of 83 plasmids were elucidated utilizing a combined PacBio SMRT sequencing and Illumina MiSeq approach, and represent the detected plasmid complement of 16 lactococcal genomes (Kelleher et al., 2017). Initially 69 plasmids were identified from the SMRT sequencing data by modifying the RS_HGAP_assembly protocol in SMRT portal to a reduced minimum coverage cut-off of 15-fold coverage. To ensure complete coverage of the full plasmid complement the complete genomes of all 16 strains were re-sequenced utilizing an Illumina MiSeq approach which resulted in the eludication of a further 14 plasmids (indicated in Table 1) that had not been detected based on the original SMRT assemblies. These 14 plasmids ranged in size from 6 to 62 Kbp, indicating that their absence from the SMRT dataset was in the majority of cases not associated with exclusion from the library based on their small size. Therefore, it was hypothesized that the absence of some plasmids from the SMRT dataset was either due to a lower plasmid copy number (SMRT library preperation does not incorporate an amplification step) or due to a bias in the DNA extraction protocol. Conversely, no plasmids present in the SMRT assemblies, were absent from the Illumina data, however, Illumina sequencing generated heavily fragmented assemblies (~100-250 contigs per strain), making eludication of complete plasmid sequences, particular for larger plasmids significantly more challenging if not impossible. The main advantage of SMRT technology is the long read length it achieves. Due to the high frequency of repetitive transposable elements, assembly of lactococcal genomes and plasmids is cumbersome. SMRT sequencing was shown to be very useful in obtaining reliable and accurate assemblies, being particularly beneficial for assembling larger lactococcal plasmids which frequently possess a mosaic type structure and contain multiple identical IS elements (Ainsworth et al., 2014c). Therefore, a combined sequencing approach is suggested as the most effective strategy for the complete sequencing of lactococcal strains.

General Plasmid Features

The sequenced plasmid dataset was combined with a further one hundred and seven plasmids retrieved from the NCBI database (National Centre for Biotechnology Information) (**Table 1**). In total, the features of one hundred and ninety plasmids derived from fifty three lactococcal strains in addition to seventeen lactococcal plasmids without an assigned strain were investigated. This extra-chromosomal DNA complement amounts to 4,987 Kbp of DNA and is predicted to represent 4,905 CDSs (i.e., ORFs that encode protein products), thus contributing very substantially to the overall genetic content of *L. lactis*.

The vast majority of currently sequenced plasmids originate from strains that were isolated from the dairy niche (149 out of 190 analyzed plasmids). These dairy lactococci carry between one and twelve plasmids (the latter in *L. lactis* biovar. diacetylactis FM03P), accounting for up to 355 Kbp of extra-chromosomal DNA in a given strain (as is the case for *L. lactis* JM1). The size of individual lactococcal plasmids varies widely from the smallest *L. lactis* KLDS4.0325 plasmid 2, with a size of 0.87 Kbp, to the two megaplasmids, each maintained by *L. lactis* JM1 and *L. lactis* JM2, with a size of 193 and 113 Kbp, respectively. The GC content of lactococcal plasmids ranges from ~30–38%, whilst the average GC content of previously sequenced chromosomes is more constrained (34–36%). Only three lactococcal plasmids deviate from this range; pWC1 29.48, pIL105 29.79, and pHP003 40.05%, where the latter is closer to *Streptococcus thermophilus* genomic GC-content, which ranges from 39 to 40% (Fernández et al., 2011).

Lactococcal plasmids are known to replicate via either of two alternative methods, RCR or theta-type replication (Mills et al., 2006; Ainsworth et al., 2014c). Based on predicted plasmid replication proteins/origins it appears that the majority of lactococcal plasmids (174 of the current data-set) replicate via the theta-type mechanism, while only a small proportion appears to utilize RCR (sixteen of the current data-set). The relatively small number of plasmids utilizing RCR may be attributed to a number of factors, such as the fact that RCR plasmids can only support a limited replicon size (<10 Kbp), incompatibility with other RCR type plasmids (Leenhouts et al., 1991), and/or intrinsic structural and segregational instability (Ainsworth et al., 2014c). In three instances, the analysis identified plasmids for which the replication mode could not be clearly determined as the origin of replication of these plasmids did not conform to the typical origin of replication associated with RCR or theta replication.

Pan-Plasmidome Calculation

The pan-plasmidome calculation provides an overview of the overall genetic diversity of the *L. lactis* plasmidome, the latter representing the total plasmid content harbored by (sequenced) members of the *L. lactis* taxon. To calculate the pan-plasmidome, a pan-genome analysis approach was applied using the PGAP v1.0 pipeline (Zhao et al., 2012). The resultant pan-plasmidome graph (**Figure 1**) displays an asymptotic curve rising steadily as each of the one hundred and ninety plasmids included in the analysis is added until a total pan-plasmidome size of 1, 315 CDSs was reached. The trend observed in the pan-genome indicates that the pan-plasmidome remains in a fluid or open state, and that, therefore, continued plasmid sequencing efforts will further expand the observed genetic diversity among lactococcal plasmids. The PGAP pipeline was also used to determine the core genome of the lactococcal plasmid sequence data set.

Interestingly, no single CDS is conserved across all plasmids resulting in an empty core genome.

The *L. lactis* pan-genome, based on chromosomal sequences only, has previously been calculated to constitute 5,906 CDSs (Kelleher et al., 2017). When compared with the calculated lactococcal plasmidome (1,315 CDSs), it is obvious that the lactococcal plasmidome contributes very substantially to overall lactococcal genetic diversity.

MCL Analysis of the Pan-Plasmidome

To explore the genetic content of the one hundred and ninety plasmids employed in this study, all-against-all reciprocal BLASTP analysis and MCL (Markov clustering) was conducted (Altschul et al., 1990; Enright et al., 2002). The plasmidome was determined to comprise 885 protein families, of which 413 represented single member protein families, evidence of the divergent nature of the plasmid sequences. Furthermore, 421 of these families constitute hypothetical protein families, being represented by a total of 1,341 individual proteins. These hypothetical proteins encompass 22.7% of the total CDSs in the lactococcal plasmidome.

The second largest constituent of the lactococcal plasmidome is that represented by transposable elements. Transposable elements encompass 825 CDS, or 15.7% of the plasmidome, with members of the IS6, IS30, IS982, and ISL3 insertion families being among the most dominant genetic elements. These mobile elements are responsible for the transfer and recombination of DNA (Nicolas et al., 2007; Machielsen et al., 2011; Alkema et al., 2016) and are likely to contribute to a fluid lactococcal plasmidome.

Following MCL analysis, HCL of the pan-plasmidome was used to cluster plasmids based on their genetic content (**Figure 2**). The high level of diversity within the pan-plasmidome is demonstrated by the observed disparity within the HCL matrix. HCL analysis resulted in thirteen clusters with three outliers; pMPJM1, pWVO2, and pQA504 (**Figure 2B**). Plasmid pWVO2

encodes a single replication gene, pQA504 contains three CDS (*rep* gene, *mob* gene, and hypothetical gene), while pMPJM1 encodes 188 CDS and shares little homology with other lactococcal plasmids. The remaining thirteen clusters did not display subspecies specificity, each cluster containing plasmids from both subsp. *lactis* and subsp. *cremoris* hosts.

Lactococcal Megaplasmids

Typically, L. lactis plasmids range in size from 1 to 50 Kbp, and, prior to this study, the largest plasmid identified in L. lactis was the self-conjugative mega-plasmid of 155,960 bp in L. lactis subsp. lactis bv. diacetylactis S50 (Kojic et al., 2005). L. lactis S50 p7 represents the first lactococcal megaplasmid and encodes genes for Proteinase PI and lactococcin A and is part of a larger plasmid complement of 7 plasmids totaling 336 Kbp (Kojic et al., 2005). Recently (May 2018) the plasmid complement of L. lactis subsp. lactis KLDS 4.0325 (Yang et al., 2013) has been updated in the public NCBI data base with three additional plasmid sequences, the largest plasmid measuring 109 Kbp (plasmid 6). In the current study, whole genome sequencing efforts resulted in the identification of two plasmids that were larger than 100 Kbp, namely pMPJM1 (193 Kbp) and pMPJM2 (113 Kbp) from L. lactis JM1 and L. lactis JM2, respectively, and owing to their size are defined as megaplasmids (Anton et al., 1995; Barton et al., 1995; Figures 3A,B). Pulsed field gel electrophoresis also identified bands which would be consistent with plasmids of that size, although unambiguous validation will require Southern hybridization analysis (Figure 3C).

The larger of the two megaplasmids, pMPJM1, encompasses 186 CDSs and is presumed to replicate (as expected for such a large replicon) via the theta-type replication mechanism [based on the identification of the origin of replication (ori), comprised of an AT-rich region plus three and a half iterons of 22 bp in length] (Seegers et al., 1994). pMPJM1 encompasses, among others, gene clusters predicted to be responsible for (exo)polysaccharide biosynthesis, conjugation and nisin resistance, while it also specifies an apparently novel type I RM shufflon system (as well as a high proportion of unique/hypothetical CDSs). The overall sequence of the plasmid shows little homology to previously sequenced plasmids in the NCBI databases, however, it shares 24% sequence coverage with 99% nucleotide identity to the other identified megaplasmid pMPJM2, which indicates that they share a common ancestor. pMPJM2 encodes 123 CDSs and BLASTN analysis identified sequence identity to a number of different lactococcal plasmids indicating a mosaic genetic structure commonly seen in large lactococcal plasmids (Ainsworth et al., 2014c). pMPJM2 also encodes a putative conjugation operon and a very close homolog of the type I RM shufflon system of pMPJM1. The third lactococcal megaplasmid KLDS 4.0325 plasmid 6 (109 Kbp) encodes 119 CDSs including the lac operon and associated opp oligopeptide uptake system.

Technological Properties

Strains of *L. lactis* are commonly used as starter cultures employed by the dairy industry (Beresford et al., 2001), and

their dairy adaptations such as citrate metabolism and lactose utilization are frequently plasmid-encoded. In *L. lactis*, citrate uptake and subsequent diacetyl production is governed by the plasmid-encoded *citQRP* operon (Drider et al., 2004; Van Mastrigt et al., 2018b). In the current data set, only four plasmids contain the *citQRP* operon, *L. lactis* CRL1127 plasmid pCRL1127, *L. lactis* IL594 plasmid pIL2 (Górecki et al., 2011), *L. lactis* FM03 plasmid pLD1 and *L. lactis* 184 plasmid p184F. However, the latter operon in p184F appears to lack *citQ* which encodes a leader peptide. Lactose metabolism is controlled by the *lac* operon consisting of the genes *lacABCDEFGX* and is regulated by a repressor, encoded by the adjacent *lacR* gene (Cords et al., 1974), both citrate and lactose utilization have previously been described in detail (Cords et al., 1974; Górecki et al., 2011).

The *lac* operon was found to be present on twenty four plasmids (in 24 different strains) (**Table 2**). The plasmids analyzed were derived from 53 lactococcal strains in addition to 17 lactococcal plasmids unassigned to a particular strain, and represented the total plasmid complement of 26 such strains. In all cases bar two, the strains were isolated from the dairy environment with the exception of *L. lactis* NCDO1867 isolated from peas and *L. lactis* KLDS 4.0325 isolated from fermented food (**Table 1**). Alternative lactose metabolism methods have previously been observed in *L. lactis*. For example, *L. lactis* MG1363 does not harbor the *lac* operon, yet is capable of growth on lactose-supplemented media due to the activity of a cellobiose-specific phosphotransferase system (PTS), which can act as an alternative lactose utilization pathway (Solopova et al., 2012).

TABLE 2	Overview of	presence of	plasmid-encoded	lac/opp operons.
		p10001100 01	plaornia onooaoa	au opp oporono

Stain	Subspecies	Origin	Plasmid
SK11	cremoris	Dairy	pSK114
158	cremoris	Dairy	p158C
229	lactis	Dairy	p229A
275	lactis	Dairy	p275C
3107	cremoris	Dairy	p3107A
A76	cremoris	Dairy	pQA549
CV56	lactis	Dairy	pCV56A
IBB477	cremoris	Dairy	pIBB477c
JM1	cremoris	Dairy	pJM1A
JM2	cremoris	Dairy	pJM2C
JM3	cremoris	Dairy	pJM3B
JM4	cremoris	Dairy	pJM4E
KLDS 4.0325	lactis	Fermented food	p6
UC063	lactis	Dairy	pUC063A
UC06	lactis	Dairy	pUC06B
UC109	cremoris	Dairy	pUC109B
UC77	lactis	Dairy	pUC77B
UC509.9	cremoris	Dairy	pCIS8
DPC3901	lactis bv. diacetylactis	Dairy	pVF50
IL594	lactis	Dairy	pIL4
NCDO712	cremoris	Dairy	pLP712
UC08	lactis	Dairy	pUC08A
UC11	lactis	Dairy	pUC11A
NCDO1867	lactis	Plant	pGdh442

Another example of an alternative lactose metabolic pathway is found in the slow lactose fermenter L. lactis NCDO2054, which metabolizes lactose via the Leloir pathway (Bissett and Anderson, 1974). Plasmid integration events have also resulted in the integration of the lac operon in the chromosome of L. lactis SO, where it is located 20 Kbp downstream of an integrated opp operon, sharing significant homology with (the lac operons of) plasmids pCV56B, pSK08, pKF147A, and pNCDO2118 (Kelleher et al., 2017). Due to the lack of sequencing projects that report fully sequenced genomes, defining the true frequency of lactose utilization is challenging. However, of those strains for which complete genome sequencing projects have been described [30 strains in Kelleher et al. (2017)], 22 were found to be capable of metabolizing lactose based on growth in lactose supplemented broth, 19 via plasmid-encoded lac operons, one via a chromosomally encoded lac operon and two by an alternative pathway. This analysis included 12 subsp. cremoris strains, of which all but one possessed genes for a lactose utilization mechanism, the exception being strain KW2, which lacks a plasmid complement.

Conjugation

Conjugation and transduction are believed to be the dominant mechanisms of plasmid transfer in *L. lactis* (Ainsworth et al., 2014c). Particular emphasis has been placed on conjugation as it is considered a naturally occurring DNA transfer process and for this reason may be used in food-grade applications to confer beneficial traits to industrial strains (Mills et al., 2006).

Generally, during conjugation the AT-rich, so-called "origin of transfer" or oriT of the conjugative plasmid is nicked by a nickase, and the resulting ssDNA strand is passed to a recipient cell (Grohmann et al., 2003). The tra (transfer) locus is believed to be responsible for the donor-to-recipient DNA transfer process of conjugation, though the precise mechanistic details of the conjugation process in L. lactis has not yet been fully elucidated. Plasmids which do not encode the tra operon, may also be co-transferred by conjugation in instances where a plasmid contains an oriT sequence and at least one mobilization gene (mobA, B, C, or D). Additional genes can also be involved in conjugation in L. lactis; an example of this is cluA, which encodes a cell surface-presented protein, and which is involved in cell aggregation and thought to be essential for high efficiency conjugal transfer (Stentz et al., 2006). Furthermore, a chromosomally associated, so-called sex factor in L. lactis has been shown to facilitate transfer of chromosomal genes during conjugation (Gasson et al., 1995).

The *tra* locus, which encodes the protein complex responsible for donor-to-recipient DNA transfer has as yet been fully eludicated. Previous studies have identified the role of *traF* as encoding a membrane-spanning protein involved in channel formation and membrane fusion. In addition, the *traE* and *traG* genes have been proposed to encode proteins involved in the formation of the conjugal pilus similar to type IV secretion systems (O'Driscoll et al., 2006; Górecki et al., 2011). Typically, the three *tra* genes (i.e., *traE*, *traF*, and *traG*) are part of a larger gene cluster (consisting of up to 15 genes; **Figure 4**), including *traA*, which encodes a DNA relaxase. In the current data set, 34 genes with homology to *traG* were identified on 27 plasmids (present in duplicate on seven plasmids) along with five occurrences of *traE/F* also being present (in the case of plasmids pIBB477A, pUC08B, pUC11B, pAF22, and pMRC01).

The precise functions for the remainder of the genes in the tra gene cluster have yet to be elucidated, though additional tra-encoded functions have been predicted in a small number of cases, the majority based on homology to the trs operon in Staphylococcus (Sharma et al., 1994). For example, traJ and traL were identified on plasmids pAF22, pIBB477a and pMRC01, and *traB*, *traC*, *traD*, *traF* (mating channel formation) and traK (P-loop NTPase) on plasmids pUC08B, pIBB477a, pUC11B, pAF22, and pMRC01. Plasmids pAF22, pMRC01, and pNP40 have all previously been demonstrated to be capable of conjugation (Harrington and Hill, 1991; Coakley et al., 1997; O'Driscoll et al., 2006; Fallico et al., 2012). However, the annotation(s) of the operons involved in conjugation is not well defined and they are currently poorly characterized. This is also amplified by both a lack of sequence conservation and limited synteny within the genes that make up these conjugationassociated genetic clusters (Figure 4).

While the *tra* operon is thought to be responsible for the formation of conjugal pili, previous studies have identified a number of genes believed to play a role in the mobilization of other (non-self-transmissible) plasmids in *L. lactis* (Mills et al., 2006; O'Driscoll et al., 2006; Millen et al., 2012); principal among these are the *mob* (mobilization) genes. Mobilization genes are responsible for nicking the plasmid's dsDNA at a particular

site and forming a relaxosome, which allows the transfer of a single stranded template to a recipient cell. Variants of four main *mob* genes are distributed throughout the lactococcal plasmidome; *mobA* and *mobD* encode nickases, and *mobB* and *mobC*, whose protein products are thought to form a relaxosome with an associated nickase (either *mobA* or *mobD*) are typically present in the genetic configuration *mobABC* or *mobDC*. Comparative analysis identified 422 occurrences of *mob* genes (any of the afore mentioned *mob* genes) distributed across the 190 plasmids assessed in this study, including 15 occurrences of a predicted retron-type reverse transcriptase or maturase (located between *mobD* and *mobC*) believed to play a role in DNA recombination. The results indicate that 59.5% of plasmids in the lactococcal plasmidome carry at least one or more genes encoding mobilization proteins.

The lactococcal megaplasmids pMPJM1 and pMPJM2 harbor two (16 Kbp) regions putatively involved in conjugation and/or mobilization. In the case of pMPJM2 the predicted region was found to contain homologs of *mobC* and *mobD*, encoding a nickase and an associated relaxase near a possible secondary replication origin. However, the presence of five transposase-encoding genes and the lack of predicted *tra* genes with conserved functions suggest that this plasmid is not capable of autonomous conjugation (though mobilization is possible).

Conversely, analysis of pMPJM1 identified a more divergent system to that typically found in lactococcal plasmids. Three hypothetical proteins were found to contain the PFAM domain usually conserved in conjugation proteins (pfam12846), in addition to a homolog of *virB11*, whose deduced product acts as a type IV secretory pathway ATPase (pfam00437). Cellular localization analysis of the operon using PsortB was also indicative of a transmembrane complex composed of cytoplasmic, membrane bound, signal and extracellular proteins (**Figure 5**). The divergence of both operons from typical lactococcal conjugative operons suggests that these two megaplasmids have lost their conjugative ability or may possess

a conjugation system with very few identifiable similarities to currently known systems.

Cell Surface Interactions (Adhesion & EPS)

Mucin-binding proteins, i.e., those allowing adhesion to the mucin layer of the gastrointestinal tract, are considered essential for stable and extended gut colonization by LAB (Von Ossowski et al., 2010). While lactococci are typically not associated with the human gut and do not have a growth temperature profile that would be inconsistent with GIT colonization., instances of such proteins encoded by lactococcal plasmids have been reported (Kojic et al., 2011; Lukić et al., 2012; Le et al., 2013). Mucoadhesive proteins are considered of paramount importance for the efficacy of probiotic bacteria (Von Ossowski et al., 2010) and the presence of such elements in L. lactis may have significant commercial impact for their role in functional foods. Analysis of the plasmids assessed in our study identified a number of strains with predicted novel muco-adhesive elements, similar to those found in pKP1 (Kojic et al., 2011). Plasmid pKP1 encodes two proteins, a mucin-binding domain-containing protein and an aggregation-promoting protein AggL, which promotes its binding to colonic mucosa (Lukić et al., 2012). While no direct homolog of AggL was detected, mucus-binding proteinencoding genes were identified on plasmids p14B4, p275A, p275B, pUC08B, and pUC11B perhaps reflecting a potential for gastrointestinal persistence conferred to the strains that carry these plasmids. A number of additional proteins predicted to be host cell surface-associated were detected during the analysis. For example, pUC11C encodes two class C sortases, which are

commonly involved in pilus biosynthesis (Von Ossowski et al., 2010; Lebeer et al., 2012), while p275A encodes an LPXTG anchor domain, cell surface-associated protein. Interestingly, each of these strains belongs to subspecies *lactis* and is capable of growth at 37° C, which would impede growth of their *cremoris* counterparts, which are generally less thermo-tolerant. *L. lactis* JM1 is the sole *cremoris* strain that is predicted to encode proteins directly involved in host cell surface alterations. This plasmid encodes five putative proteins containing a 26-residue repeat domain found in predicted surface proteins (often lipoproteins) and one collagen-binding domain protein.

The plasmid encoded lactococcal cell wall anchored proteinase, PrtP, involved in the breakdown of milk caseins in dairy lactococci, has previously been shown to cause a significant increase in cell adhesion to solid glass and tetrafluoroethylene surfaces (Habimana et al., 2007). More recently, L. lactis subsp. cremoris IBB477 was found to contain two plasmids, pIBB477a and pIBB477b, which encode cell wall-associated peptidases that have been shown to mediate adhesion to bare mucin and fibronectin coated polystyrene and HT29-MTX cells (Radziwill-Bienkowska et al., 2017). Analysis of the current data-set which contains a large number of dairy derived plasmids, identified a further 194 CDS homologous to the cell wall-associated peptidase S8 (PrtP) of IBB477. Whilst extracellular cell wall proteinases have been shown to be directly associated with the bitter flavor defect in Cheddar cheese varieties (Broadbent et al., 2002), a potential role for these peptidases in gut adhesion may present a more positive view of these elements.

Exopolysaccharide production by *L. lactis* is a characteristic trait of strains isolated from viscous Scandinavian fermented milk products and is widely reported as a plasmid-encoded trait

(Vedamuthu and Neville, 1986; Von Wright and Tynkkynen, 1987; Neve et al., 1988; Kranenburg et al., 1997). EPS production by L. lactis strains is of particular importance for functional foods, as the EPS produced by these strains is considered to be a food-grade additive that significantly contributes to properties such as mouth-feel and texture in fermented dairy products (Kleerebezem et al., 1999). The L. lactis EPS biosynthesis gene cluster (eps) contained on pNZ4000 has previously been characterized (Kranenburg et al., 1997) and consists of 14 genes, namely epsRXABCDEFGHIJK. Comparison of the eps gene cluster from pNZ4000 with all sequenced plasmids in the current dataset identified a further four plasmids harboring eps clusters, namely pUC77D, p229E, pJM3C, p275B, and pMPJM1 (Figure 6). In pNZ4000, EPS production is regulated by *epsRX*, EPS subunit polymerization and export is believed to be executed by the encoded products of *epsABIK*, while the proteins encoded by *epsDEFGH* are responsible for the biosynthesis of the EPS subunit (Kranenburg et al., 1997). Homology-based analysis with the five newly identified gene clusters shows that in all cases epsRXABCD are conserved (except in pMPJM1 where epsR is absent), while the remainder of the gene cluster in each case consists of variable genes. These eps gene clusters consist of a highly conserved region at the proximal end of the cluster and a variable distal region, which is not unlike other lactococcal polysaccharide biosynthesis clusters (Mahony et al., 2013; Ainsworth et al., 2014b; Mahony et al., 2015). The conserved epsRX genes are responsible for transcriptional regulation, the products of epsAB are required for EPS export, while the deduced proteins of epsCD are putative glycosyltransferases of which EpsD (priming glycosyltransferase) has previously been demonstrated to be essential for EPS subunit biosynthesis (Kranenburg et al., 1997). The variable region, epsEFGHIJKLP in pNZ4000, encodes predicted or proven functions, such as an acetyltransferase (epsE), glycosyltransferases (epsGHIJ) and a

flippase (*epsK*), together representing the presumed enzymatic machinery responsible for EPS biosynthesis through the addition and export of sugar moieties.

In the case of p229E, the variable eps region is composed of CDSs predicted to encode products with functions are similar to the chromosomally located cwps gene cluster in strain 229. Plasmid pJM3C contains genes predicted to encode a rhamnosyltransferase, UDP-glucose dehydrogenase, capsular biosynthesis protein and five glycosyltransferases. The p275B variable region is heavily rearranged due to the presence of nine transposase-encoding genes. The megaplasmid pMPJM1 encodes a 9 Kbp predicted EPS region with well conserved functional synteny to that of pNZ4000, although with relatively low homology (Figure 6). Plasmid pUC77D appears to contain the shortest eps gene cluster of 7 Kbp due to the absence of epsFGHIJ genes. Further analysis of these plasmid-borne eps gene clusters revealed that in all cases mob elements are present, indicating that they may be mobilisable via conjugation. To assess if these plasmids have a common lineage, nucleotide homology based analysis was conducted utilizing BLASTN (Altschul et al., 1990). This analysis, however, did not identify significant homology or common hits between the plasmids outside of the conserved region of the EPS gene cluster. Phenotypic analysis of strains L. lactis 275, 229, JM1, JM3, and UC77 indicated a mucoid EPS phenotype in strains 275, 229, and JM3. While strains JM1 and UC77 did not show any EPS production which is probably attributed to the lack of the regulator epsR in strain JM1 and the absence of epsFGHIJ genes in UC77.

Bacteriocins

Bacteriocins are a diverse group of ribosomally synthesized bacterial peptides, which when secreted inhibit growth of other bacteria by interfering with cell wall biosynthesis or disrupting membrane integrity (Dobson et al., 2012). The production of bacteriocins by lactococcal strains has been widely reported, including the strain L. lactis subsp. cremoris 9B4 which contains three separate bacteriocin operons, named lactococcins A, B, and M/N are located on one plasmid (Van Belkum et al., 1989, 1991). To investigate bacteriocin production in the lactococcal plasmidome, all the available strains were screened for bacteriocin production against an indicator strain L. lactis subsp. cremoris HP. In total six strains were found to produce clearly defined zones of inhibition, indicating bacteriocin production, namely L. lactis subsp. lactis IO-1, 184, UC06, UC08, UC11, and L. lactis subsp. cremoris 158. Analysis of the plasmid complement of each of these strains indicated that strains 158, UC06 and UC08 each possess a plasmid-borne bacteriocin gene cluster, while IO-1, 184, and UC11 contain a bacteriocin gene cluster of chromosomal origin. In each case, these were identified as lactococcin producers: p158A is predicted to be responsible for lactococcin A and B production, pUC08A for lactococcin A production, and pUC06C for lactococcin B biosynthesis. Lactococcin has a narrow spectrum of activity, targeting predominantly closely related lactococcal species (Geis et al., 1983) and, as such, is an important consideration when selecting strains for application in mixed starter cultures.

Sequence analysis of the remaining plasmids in the current study (for which strains were not available for phenotypic analysis) identified additional putative bacteriocin-encoding gene clusters (**Table 3**), which were found to be responsible for the production of lactococcin A or B, and in one case (pMRC01) for the lantibiotic lacticin 3147 (**Table 3**; Dougherty et al., 1998).

Phage-Resistance Systems

Lactococcal strains typically possess a variety of phage defense mechanisms including superinfection exclusion systems (Sie) (encoded by integrated prophages) (Kelleher et al., 2018), clustered regularly interspaced short palindromic repeats (CRISPR), restriction-modification (R-M), and abortive infection (Abi) systems. Sie systems are a prophage-encoded defense mechanism (Mcgrath et al., 2002; Mahony et al., 2008) and have been reviewed extensively in these strains as part of an investigation into lactococcal prophages (Kelleher et al., 2018). CRISPR and CRISPR-associated (*cas*) genes specify an acquired adaptive immunity system against invading DNA in

TABLE 3 | Predicted plasmid-encoded antimicrobial peptides.

Plasmid	Bacteriocin	Activity detected
pBL1	Lactococcin 972	N/A ^{\$}
pCIS7	Lactococcin A	Yes (Ainsworth et al., 2014a)
pMN5	LsbB bacteriocin	Yes (Kojic et al., 2006)
pMRC01	Lacticin 3147	Yes (Ryan et al., 1996)
SK11 plasmid 1	Lactococcin A	No
p158A	Lactococcin A and B	Yes
pUC08C	Lactococcin A	Yes
pUC06C	Lactococcin B	Yes
pA12-2	Lactococcin A	N/A

\$N/A, host strain unavailable to screen phenotypically.

bacteria (Horvath and Barrangou, 2010). To date, only one such system has been characterized in *Lactococcus* on a conjugationtransmissible plasmid, pKLM, which encodes a novel type III CRISPR-Cas system (though it is unable to incorporate new spacers) (Millen et al., 2012). Analysis of plasmid sequences in this study did not detect any further instances of CRISPR systems in lactococci, suggesting CRISPR are not a widespread phenomenon in domesticated lactococci.

Restriction-modification systems are extremely diverse and widespread and are encoded by approximately 90% of all currently available bacterial and archaeal genomes (Roberts et al., 2003). R-M systems are frequently observed in the lactococcal plasmidome and some examples have previously been characterized including the Type II system LlaDCHI from pSRQ700 (Moineau et al., 1995) and LlaJI from pNP40 (O'driscoll et al., 2004). The current dataset holds nine apparently complete Type II systems on plasmids pCV56A, p275D, pJM1D, pUC08B, pUC11B, pNP40, pSRQ700, KLDS 4.0325 plasmid 5, and pAF22; along with multiple orphan methylases and solitary restriction endonucleases. The most commonly encountered R-M systems in lactococcal plasmids are Type I systems. These systems are often incomplete and represented by solitary specificity subunits (77 such orphan specificity subunit-encoding hsdS genes were identified in the current analysis). The high frequency of these systems in lactococcal plasmids is indicative of host adaptation as they predominantly act as a host defense mechanism against phage infection.

Abortive infection systems represent an abundant phage defense mechanism in L. lactis (Chopin et al., 2005) and are frequently plasmid-encoded (Mills et al., 2006). To date, 23 Abi systems have been identified in L. lactis, of which 21 are plasmidencoded (Ainsworth et al., 2014c). Most are typically single gene systems, with the exception of three multigene systems, AbiE (Garvey et al., 1995), AbiR (Twomey et al., 2000), and AbiT (Bouchard et al., 2002). Analysis of the plasmids in this study identified eight Abi occurrences based on homology, namely AbiF, AbiC, AbiK, AbiQ, and two occurrences of the two component system AbiEi- AbiEii, alongside twelve predicted uncategorized Abi's (Table 4), based on amino acid homology to unclassified Abi's in the NCBI database. The relatively low observed abundance of Abi's in such a large plasmid dataset is surprising and may be the result of the diversity of Abi's with the possibility of as yet unidentified systems.

DISCUSSION

The advent of NGS technologies has made genome sequencing much more accessible and has led to a dramatic rise in the number of available genome sequences. In the current study one such technology, SMRT sequencing was applied for the elucidation of 69 novel lactococcal plasmids. However, during the course of the current study some cautionary notes also emerged. These were predominantly related to smaller plasmids and plasmids with lower average consensus coverage, which could potentially be filtered out under standard assembly parameters. It was found that by performing the assembly using a reduced

TABLE 4 Lactococcal Abi s	systems	detected.
-----------------------------	---------	-----------

Similar to Abi system	Plasmid	Locus tag
AbiF	p158B	LL158_pB41
AbiF	pCIS8	UC509_RS11675
AbiF	pIL105	plL105p7
AbiF	pNP40	pNP40_p16
AbiC	p275A	LL275_pA087
AbiEi-Eii	p275A	LL275_pA051-052
AbiEi-Eii	pNP40	pNP40_p19-20
AbiK	pSRQ800	pSRQ800_04
AbiQ	pCV56A	CVCAS_RS12180
AbiQ	pSRQ900	pSRQ900_04
Uncharacterized Abi*	p158E	LL158_pE13
Uncharacterized Abi*	pUC063B	LLUC063_pB07
Uncharacterized Abi*	pCIS8	UC509_RS11625
Uncharacterized Abi*	pUC08C	LLUC08_pC03
Uncharacterized Abi*	pUC08C	LLUC08_pC04
Uncharacterized Abi*	pUC08C	LLUC08_pC05
Uncharacterized Abi*	p158E	LL158_pE13
Uncharacterized Abi*	pUC063B	LLUC063_pB07
Uncharacterized Abi*	pCIS8	UC509_RS11625
Uncharacterized Abi*	pCIS5	UC509_RS12350
Uncharacterized Abi*	pUC11D	LLUC11_pD04
Uncharacterized Abi*	pCIS5	UC509_RS12350

*Uncharacterized Abi, based on amino acid homology to unclassified Abi's in the NCBI database.

minimum coverage cut-off to 15-fold coverage detection of some of these plasmids was possible. In fact, in order to ensure detection of a given strain's total plasmid complement we found it necessary to use a combined sequencing approach. This point is strongly supported by the elucidation of a further 14 plasmids from this dataset using an Illumina MiSeq approach which were completely absent from the SMRT assemblies.

The overview of plasmid replication systems presented shows that theta-type replication is the dominant way of replication used in L. lactis. These plasmids are usually viewed as being intrinsically more stable than RCR-type plasmids. However, a recent study of the dynamics of plasmid copy-number in L. lactis FM03-V1 demonstrated that the theta-type replicating plasmid (pLd10) was lost in a retentostat cultivation, while an RCR plasmid was maintained (Van Mastrigt et al., 2018c). During the course of that study, it was found that the reduced copy number of larger theta replicating plasmids increased the likelihood of the loss of these plasmids compared to smaller plasmids regardless of replication type (Van Mastrigt et al., 2018c), while the presence of the partition system (parA and parB) on these plasmids should also be considered as it has been shown to contribute to the stability and maintenance of large plasmids without selection (O'Driscoll et al., 2006). Interestingly, of the 16 plasmids not detected by SMRT sequencing in this study, five were theta replicating plasmids larger than 25 Kbp. This suggests that the lack of an amplification step during library preparation for SMRT sequencing may be a factor in detecting larger plasmids that may have a low copy number.

In the course of this study, the pan-plasmidome of L. lactis was calculated and found to be in a fluid state, making it likely that continued sequencing efforts would expand the diversity of this data set and lead to an increase in the identification of novel plasmid features. At present, the lactococcal plasmidome was found to consist of over \sim 5000 Kbp of extra-chromosomal DNA encoding an arsenal of diverse features. Significantly, the current open plasmidome contributes the equivalent of 22.26% of the CDSs contained in the pan-genome of the L. lactis chromosomes that is in a closed state (Kelleher et al., 2017). BLAST-based analysis of these features identified 885 protein families, of which 413 represented unique families, evidence of the divergent nature of the plasmid sequences. There is, however, a skew in the data set toward the dairy niche, which has arisen due to a number of factors. Primarily, the majority of strains sequenced to date have been sequenced due to their commercial value in the production of fermented dairy products. The impact of these strains on the overall data set is further amplified as these strains generally carry a larger plasmid complement than their nondairy counterparts (Kelleher et al., 2017), since many desirable dairy-associated traits are typically plasmid-encoded (e.g., lac operon). As such, these features account for a large proportion of the plasmidome. However, as efforts to isolate new starter cultures for the dairy industry continue (Cavanagh et al., 2015), screening of more diverse cultures, particularly from the plant niche, is expected to lead to increased novelty and diversity in the lactococcal plasmidome.

Megaplasmids have been found in LAB previously, in particular in members of the Lactobacillus genus (Muriana and Klaenhammer, 1987; Roussel et al., 1993; Claesson et al., 2006; Li et al., 2007; Fang et al., 2008). In the current study, sequencing efforts resulted in the identification of two examples of lactococcal megaplasmids (>100 Kbp), with pMPJM1 (193 Kbp) substantially surpassing the size of the previously largest sequenced plasmid in this taxon L. lactis S50 p7 (155 Kbp) (Kojic et al., 2005), and providing further diversity within the plasmidome. While megaplasmids are not expected to be essential for growth of their host, they can encode additional metabolic capabilities. The lactococcal megaplasmids were also examined for the presence of conjugation machinery. A novel gene cluster encoding a number of conjugation-related proteins located in pMPJM1 suggests that this plasmid is or has been involved in conjugal transfer. Further analysis of mob and tra genes across the plasmidome identified a number of genes predicted to encode proteins involved in conjugal transfer. The frequency (422 mob/tra genes across 190 plasmids) of these genes is indicative of the self-transmissible and/or mobilizable nature of lactococcal plasmids.

There has been limited research performed to date in the area of lactococcal gut adhesion as *L. lactis* is not commonly associated with the human gut. In this study, the lactococcal plasmidome was shown to contain potential gut adhesion factors, which may allow colonization and/or persistence in the gastrointestinal tract. This trait may offer opportunities for the application of *L. lactis* as a vector for vaccine and biomolecule delivery (Bermúdez-Humarán, 2009; Bermúdez-Humarán et al., 2013). Further technological properties of *L. lactis* were investigated

including EPS production. Analysis of a large dataset of newly sequenced plasmids facilitated the identification and comparison of a number of novel EPS gene clusters. The major outcome of this work was the definition of "conserved" and "variable" regions within these EPS clusters. The conserved region encodes the transcriptional regulation, export and biosynthesis initiation machinery, while the variable region contains various genes that are predicted to encode glycosyltransferases, which are believed to be responsible for the production of a diverse set of EPS subunits, and thus a polysaccharide with a distinct composition and perhaps different technological properties.

Finally, phage-resistance mechanisms were assessed with particular emphasis on Abi systems. Abi systems confer defense against phage infection and are commonly found in lactococcal strains where they are frequently plasmid-encoded (Mills et al., 2006). Analysis of the plasmid sequences identified 22 plasmid-encoded Abi systems, while further analysis also identified frequent occurrences of these systems within the lactococcal chromosomes (Chopin et al., 2005). The presence of these systems and a range of R-M systems is evidence for the adaptation of these strains toward phage-resistance.

Discovery of the first lactococcal megaplasmids along with a host of novel features is evidence that the diversity of the lactococcal plasmidome represents a significant amount of unexploited genetic diversity, and suggests that continued future sequencing efforts and subsequent functional analysis will increase the observed diversity carried by these elements, potentially leading to new avenues of research, and applications. The current plasmidome contributes the equivalent of 22.26% of the CDSs contained in the pan-genome of the L. lactis chromosomes demonstrating its significant value to this taxon.

REFERENCES

- Ainsworth, S., Mahony, J., and Van Sinderen, D. (2014a). The plasmid complement of *Lactococcus lactis* UC509. 9 encodes multiple bacteriophage resistance systems. *Appl. Environ. Microbiol.* 80, 4341–4349. doi: 10.1128/AEM. 01070-14
- Ainsworth, S., Sadovskaya, I., Vinogradov, E., Courtin, P., Guerardel, Y., Mahony, J., et al. (2014b). Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. *MBio* 5:e880-14. doi: 10.1128/mBio.00880-14
- Ainsworth, S., Stockdale, S., Bottacini, F., Mahony, J., and Van Sinderen, D. (2014c). The *Lactococcus lactis* plasmidome: much learnt, yet still lots to discover. *FEMS Microbiol. Rev.* 38, 1066–1088. doi: 10.1111/1574-6976.12074
- Ainsworth, S., Zomer, A., De Jager, V., Bottacini, F., Van Hijum, S. A., Mahony, J., et al. (2013). Complete genome of *Lactococcus lactis* subsp. *cremoris UC509*. 9, host for a model lactococcal P335 bacteriophage. *Genome Announc*. 1:e119-12. doi: 10.1128/genomeA.00119-12
- Alkema, W., Boekhorst, J., Wels, M., and Van Hijum, S. A. (2016). Microbial bioinformatics for food safety and production. *Brief. Bioinformatics* 17, 283–292. doi: 10.1093/bib/bbv034
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2
- Ammann, A., Neve, H., Geis, A., and Heller, K. J. (2008). Plasmid transfer via transduction from *Streptococcus thermophilus* to *Lactococcus lactis*. J. Bacteriol. 190, 3083–3087. doi: 10.1128/JB.01448-07
- Anton, J., Amilsz, R., Smith, C. L., and Lopez-Garcia, P. (1995). Comparative restriction maps of the archaeal megaplasmid Phm300 in different *Haloferax*

The importance of which has been built on a long history of use in food fermentations, particularly in the dairy industry. The fact that both the opp and lac operons which have led to this adaptation remain largely plasmid encoded only further demonstrates the fundamental importance of the lactococcal plasmidome in terms of the evolution, adaptation, and application of lactococci.

DATA AVAILABILITY

The datasets generated for this study can be found in NCBI Genbank, CP034577, CP034578, CP034579, CP034580, CP034581, CP034582, CP034583, CP034584, CP034585, and CP034586.

AUTHOR CONTRIBUTIONS

PK carried out the data analysis with FB. PK performed the experiments. DS and JM provided materials and strains. PK, JM, and DS wrote the manuscript. All authors read and approved the final manuscript.

FUNDING

This research was funded by Science Foundation Ireland (SFI)grant numbers 15/SIRG/3430 (JM), 12/RC/2273, and 13/IA/1953 (DS). PK was funded by the Department of Agriculture, Food and the Marine under the Food Institutional Research Measure (FIRM) (Ref: 10/RD/TMFRC/704–"CheeseBoard 2015" project).

mediterranei strains. *Syst. Appl. Microbiol.* 18, 439–447. doi: 10.1016/S0723-2020(11)80436-4

- Barton, B. M., Harding, G. P., and Zuccarelli, A. J. (1995). A general method for detecting and sizing large plasmids. *Anal. Biochem.* 226, 235–240. doi: 10.1006/ abio.1995.1220
- Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., et al. (2004). The Pfam protein families database. *Nucleic Acids Res.* 32, D138–D141. doi: 10.1093/nar/gkh121
- Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580. doi: 10.1093/nar/27.2.573
- Beresford, T. P., Fitzsimons, N. A., Brennan, N. L., and Cogan, T. M. (2001). Recent advances in cheese microbiology. *Int. Dairy J.* 11, 259–274. doi: 10.1016/S0958-6946(01)00056-5
- Bermúdez-Humarán, L. G. (2009). Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum. Vaccin. 5, 264–267. doi: 10.4161/hv.5.4. 7553
- Bermúdez-Humarán, L. G., Aubry, C., Motta, J.-P., Deraison, C., Steidler, L., Vergnolle, N., et al. (2013). Engineering lactococci and lactobacilli for human health. *Curr. Opin. Microbiol.* 16, 278–283. doi: 10.1016/j.mib.2013.06.002
- Bissett, D. L., and Anderson, R. L. (1974). Lactose and d-galactose metabolism in group N streptococci: presence of enzymes for both the d-Galactose 1phosphate and d-tagatose 6-phosphate pathways1. J. Bacteriol. 117:318.
- Bottacini, F., O'connell Motherway, M., Casey, E., Mcdonnell, B., Mahony, J., Ventura, M., et al. (2015). Discovery of a Conjugative megaplasmid in *Bifidobacterium breve. Appl. Environ. Microbiol.* 81, 166–176. doi: 10.1128/ AEM.02871-14
- Bouchard, J. D., Dion, E., Bissonnette, F., and Moineau, S. (2002). Characterization of the two-component abortive phage infection mechanism AbiT from

Lactococcus lactis. J. Bacteriol. 184, 6325–6332. doi: 10.1128/JB.184.22.6325-6332.2002

- Broadbent, J. R., Barnes, M., Brennand, C., Strickland, M., Houck, K., Johnson, M. E., et al. (2002). Contribution of *Lactococcus lactis* cell envelope proteinase specificity to peptide accumulation and bitterness in reduced-fat Cheddar cheese. *Appl. Environ. Microbiol.* 68, 1778–1785. doi: 10.1128/AEM.68.4.1778-1785.2002
- Cavanagh, D., Casey, A., Altermann, E., Cotter, P. D., Fitzgerald, G. F., and Mcauliffe, O. (2015). Evaluation of *Lactococcus lactis* isolates from nondairy sources with potential dairy applications reveals extensive phenotype-genotype disparity and implications for a revised species. *Appl. Environ. Microbiol.* 81, 3961–3972. doi: 10.1128/AEM.04092-14
- Chopin, M.-C., Chopin, A., and Bidnenko, E. (2005). Phage abortive infection in lactococci: variations on a theme. *Curr. Opin. Microbiol.* 8, 473–479. doi: 10.1016/j.mib.2005.06.006
- Claesson, M. J., Li, Y., Leahy, S., Canchaya, C., Van Pijkeren, J. P., Cerdeño-Tárraga, A. M., et al. (2006). Multireplicon genome architecture of *Lactobacillus* salivarius. Proc. Natl. Acad. Sci. U.S.A. 103, 6718–6723. doi: 10.1073/pnas. 0511060103
- Coakley, M., Fitzgerald, G., and Ros, R. (1997). Application and evaluation of the phage resistance-and bacteriocin-encoding plasmid pMRC01 for the improvement of dairy starter cultures. *Appl. Environ. Microbiol.* 63, 1434–1440.
- Cords, B. R., Mckay, L. L., and Guerry, P. (1974). Extrachromosomal elements in group N streptococci. *J. Bacteriol.* 117, 1149–1152.
- David, B., Radziejwoski, A., Toussaint, F., Fontaine, L., Henry De Frahan, M., Patout, C., et al. (2017). Natural DNA transformation is functional in *Lactococcus lactis* ssp. cremoris KW2. *Appl. Environ. Microbiol.* doi: 10.1128/ AEM.01074-17 [Epub ahead of print].
- Del Solar, G., Moscoso, M., and Espinosa, M. (1993). In vivo definition of the functional origin of replication (ori +) of the promiscuous plasmid pLS1. *Mol. Gen. Genet.* 237, 65–72. doi: 10.1007/BF00282785
- Dobson, A., Cotter, P. D., Ross, R. P., and Hill, C. (2012). Bacteriocin production: a probiotic trait? *Appl. Environ. Microbiol.* 78, 1–6. doi: 10.1128/AEM.05576-11
- Dougherty, B. A., Hill, C., Weidman, J. F., Richardson, D. R., Venter, J. C., and Ross, R. P. (1998). Sequence and analysis of the 60 kb conjugative, bacteriocinproducing plasmid pmrc01 from *Lactococcus lactis* DPC3147. *Mol. Microbiol.* 29, 1029–1038. doi: 10.1046/j.1365-2958.1998.00988.x
- Drider, D., Bekal, S., and Prévost, H. (2004). Genetic organization and expression of citrate permease in lactic acid bacteria. *Genet. Mol. Res.* 3, 271–281.
- Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002). An efficient algorithm for large-scale detection of protein families. *Nucleic Acids Res.* 30, 1575–1584. doi: 10.1093/nar/30.7.1575
- Fallico, V., Ross, R., Fitzgerald, G., and Mcauliffe, O. (2012). Novel conjugative plasmids from the natural isolate *Lactococcus lactis* subspecies *cremoris* DPC3758: a repository of genes for the potential improvement of dairy starters. *J. Dairy Sci.* 95, 3593–3608. doi: 10.3168/jds.2011-5255
- Fang, F., Flynn, S., Li, Y., Claesson, M. J., Van Pijkeren, J.-P., Collins, J. K., et al. (2008). Characterization of endogenous plasmids from *Lactobacillus salivarius* UCC118. Appl. Environ. Microbiol. 74, 3216–3228. doi: 10.1128/AEM.02631-07
- Fernández, E., Alegría, Á, Delgado, S., Martín, M. C., and Mayo, B. (2011). Comparative phenotypic and molecular genetic profiling of wild *Lactococcus lactis* subsp. lactis strains of the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes, isolated from starter-free cheeses made of raw milk. *Appl. Environ. Microbiol.* 77, 5324–5335. doi: 10.1128/AEM.02991-10
- Garvey, P., Fitzgerald, G. F., and Hill, C. (1995). Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid PNP40. *Appl. Environ. Microbiol.* 61, 4321–4328.
- Gasson, M., Godon, J., Pillidge, C., Eaton, T., Jury, K., and Shearman, C. (1995). Characterization and exploitation of conjugation in *Lactococcus lactis*. *Int. Dairy J*. 5, 757–762. doi: 10.1016/0958-6946(95)00030-5
- Geis, A., Singh, J., and Teuber, M. (1983). Potential of lactic streptococci to produce bacteriocin. Appl. Environ. Microbiol. 45, 205–211.
- Goh, Y. J., Goin, C., O'flaherty, S., Altermann, E., and Hutkins, R. (2011). Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of *Streptococcus thermophilus* LMD-9. *Microb. Cell Fact* 10(Suppl. 1):S22. doi: 10.1186/1475-2859-10-S1-S22
- Górecki, R. K., Koryszewska-Bagińska, A., Gołębiewski, M., Żylińska, J., Grynberg, M., and Bardowski, J. K. (2011). Adaptative potential of the

Lactococcus lactis IL594 strain encoded in its 7 plasmids. PLoS One 6:e22238. doi: 10.1371/journal.pone.0022238

- Grohmann, E., Muth, G., and Espinosa, M. (2003). Conjugative plasmid transfer in gram-positive bacteria. *Microbiol. Mol. Biol. Rev.* 67, 277–301. doi: 10.1128/ MMBR.67.2.277-301.2003
- Habimana, O., Le Goff, C., Juillard, V., Bellon-Fontaine, M. N., Buist, G., Kulakauskas, S., et al. (2007). Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. *BMC Microbiol.* 7:36. doi: 10.1186/1471-2180-7-36
- Harrington, A., and Hill, C. (1991). Construction of a bacteriophage-resistant derivative of *Lactococcus lactis* subsp. *lactis* 425A by using the conjugal plasmid PNP40. *Appl. Environ. Microbiol.* 57, 3405–3409.
- Horvath, P., and Barrangou, R. (2010). Crispr/Cas, the immune system of bacteria and archaea. *Science* 327, 167–170. doi: 10.1126/science.1179555
- Kelleher, P., Bottacini, F., Mahony, J., Kilcawley, K. N., and Van Sinderen, D. (2017). Comparative and functional genomics of the *Lactococcus lactis* taxon; insights into evolution and niche adaptation. *BMC Genomics* 18:267. doi: 10. 1186/s12864-017-3650-5
- Kelleher, P., Mahony, J., Schweinlin, K., Neve, H., Franz, C. M., and Van Sinderen, D. (2018). Assessing the functionality and genetic diversity of lactococcal prophages. *Int. J. Food Microbiol.* 272, 29–40. doi: 10.1016/j. ijfoodmicro.2018.02.024
- Kelleher, P., Murphy, J., Mahony, J., and Van Sinderen, D. (2015). Next-generation sequencing as an approach to dairy starter selection. *Dairy Sci. Technol.* 95, 545–568. doi: 10.1007/s13594-015-0227-4
- Kelly, W. J., Ward, L. J. H., and Leahy, S. C. (2010). Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures. Genome Biol. Evol. 2, 729–744. doi: 10.1093/gbe/evq056
- Kiewiet, R., Bron, S., De Jonge, K., Venema, G., and Seegers, J. F. (1993). Theta replication of the lactococcal plasmid pwvo2. *Mol. Microbiol.* 10, 319–327. doi: 10.1111/j.1365-2958.1993.tb01958.x
- Kleerebezem, M., Van Kranenburg, R., Tuinier, R., Boels, I. C., Zoon, P., Looijesteijn, E., et al. (1999). "Exopolysaccharides produced by *Lactococcus lactis*: from genetic engineering to improved rheological properties?," in *Lactic Acid Bacteria: Genetics, Metabolism and Applications*, eds W. Konings, O. P. Kuipers, and J. H. J. Huis in 't Veld (Berlin: Springer).
- Kojic, M., Jovcic, B., Strahinic, I., Begovic, J., Lozo, J., Veljovic, K., et al. (2011). Cloning and expression of a novel lactococcal aggregation factor from *Lactococcus lactis* subsp. lactis BGKP1. *BMC Microbiol.* 11:265. doi: 10.1186/ 1471-2180-11-265
- Kojic, M., Strahinic, I., Fira, D., Jovcic, B., and Topisirovic, L. (2006). Plasmid content and bacteriocin production by five strains of *Lactococcus lactis* isolated from semi-hard homemade cheese. *Can. J. Microbiol.* 52, 1110–1120. doi: 10. 1139/w06-072
- Kojic, M., Strahinic, I., and Topisirovic, L. (2005). Proteinase Pi and lactococcin A genes are located on the largest plasmid in *Lactococcus lactis* subsp. lactis bv. diacetylactis S50. *Can. J. Microbiol.* 51, 305–314. doi: 10.1139/w05-009
- Kranenburg, R. V., Marugg, J. D., Van Swam, I. I., Willem, N. J., and De Vos, W. M. (1997). Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in *Lactococcus lactis*. *Mol. Microbiol.* 24, 387–397. doi: 10.1046/j.1365-2958.1997.3521720.x
- Labrie, S. J., Samson, J. E., and Moineau, S. (2010). Bacteriophage resistance mechanisms. *Nat. Rev. Microbiol.* 8:317. doi: 10.1038/nrmicro2315
- Le, D. T., Tran, T. L., Duviau, M. P., Meyrand, M., Guerardel, Y., Castelain, M., et al. (2013). Unraveling the role of surface mucus-binding protein and pili in muco-adhesion of Lactococcus lactis. *PLoS One* 8:e79850. doi: 10.1371/journal. pone.0079850
- Lebeer, S., Claes, I., Tytgat, H. L. P., Verhoeven, T. L. A., Marien, E., Von Ossowski, I., et al. (2012). Functional analysis of *Lactobacillus rhamnosus* GG Pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. *Appl. Environ. Microbiol.* 78, 185–193. doi: 10.1128/AEM. 06192-11
- Leenhouts, K. J., Tolner, B., Bron, S., Kok, J., Venema, G., and Seegers, J. F. (1991). Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid PWVO1. *Plasmid* 26, 55–66. doi: 10.1016/0147-619X(91) 90036-V
- Letunic, I., and Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Res.* 44, W242–W245. doi: 10.1093/nar/gkw290

- Li, Y., Canchaya, C., Fang, F., Raftis, E., Ryan, K. A., Van Pijkeren, J.-P., et al. (2007). Distribution of megaplasmids in *Lactobacillus salivarius* and other lactobacilli. *J. Bacteriol.* 189, 6128–6139. doi: 10.1128/JB.00447-07
- Lukić, J., Strahinić, I., Jovčić, B., Filipić, B., Topisirović, L., Kojić, M., et al. (2012). Different roles for lactococcal aggregation factor and mucin binding protein in adhesion to gastrointestinal mucosa. *Appl. Environ. Microbiol.* 78, 7993–8000. doi: 10.1128/AEM.02141-12
- Machielsen, R., Siezen, R. J., Van Hijum, S. A., and Van Hylckama Vlieg, J. E. (2011). Molecular description and industrial potential of Tn6098 conjugative transfer conferring alpha-galactoside metabolism in *Lactococcus lactis. Appl. Environ. Microbiol.* 77, 555–563. doi: 10.1128/AEM.02283-10
- Mahony, J., Kot, W., Murphy, J., Ainsworth, S., Neve, H., Hansen, L. H., et al. (2013). Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny. *Appl. Environ. Microbiol.* 79, 4385–4392. doi: 10.1128/AEM.00653-13
- Mahony, J., Mcgrath, S., Fitzgerald, G. F., and Van Sinderen, D. (2008). Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. *Appl. Environ. Microbiol.* 74, 6206–6215. doi: 10.1128/ AEM.01053-08
- Mahony, J., Randazzo, W., Neve, H., Settanni, L., and Van Sinderen, D. (2015). Lactococcal 949 group phages recognize a carbohydrate receptor on the host cell surface. Appl. Environ. Microbiol. 81, 3299–3305. doi: 10.1128/AEM.00143-15
- Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., et al. (2006). Comparative genomics of the lactic acid bacteria. *Proc. Natl. Acad. Sci.* U.S.A. 103, 15611–15616. doi: 10.1073/pnas.0607117103
- Mcgrath, S., Fitzgerald, G. F., and Sinderen, D. V. (2002). Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. *Mol. Microbiol.* 43, 509–520. doi: 10.1046/j.1365-2958.2002. 02763.x
- McSweeney, P. L. H. (2004). Biochemistry of cheese ripening. *Int. J. Dairy Technol.* 57, 127–144. doi: 10.1111/j.1471-0307.2004.00147.x
- McSweeney, P. L. H., and Sousa, M. J. (2000). Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. *Lait* 80, 293–324. doi: 10.1051/lait:2000127
- Millen, A. M., Horvath, P., Boyaval, P., and Romero, D. A. (2012). Mobile crispr/cas-mediated bacteriophage resistance in *Lactococcus lactis*. *PLoS One* 7:e51663. doi: 10.1371/journal.pone.0051663
- Mills, S., Mcauliffe, O. E., Coffey, A., Fitzgerald, G. F., and Ross, R. P. (2006). Plasmids of lactococci – genetic accessories or genetic necessities? *FEMS Microbiol. Rev.* 30, 243–273.
- Moineau, S., Walker, S. A., Vedamuthu, E. R., and Vandenbergh, P. A. (1995). Cloning and sequencing of Lladchi restriction/modification genes from *Lactococcus lactis* and relatedness of this system to the *Streptococcus pneumoniae* Dpnii system. *Appl. Environ. Microbiol.* 61, 2193–2202.
- Mulder, J., Wels, M., Kuipers, O. P., Kleerebezem, M., and Bron, P. A. (2017). Unleashing natural competence in *Lactococcus lactis* by induction of the competence regulator ComX. *Appl. Environ. Microbiol.* doi: 10.1128/AEM. 01320-17 [Epub ahead of print].
- Muriana, P. M., and Klaenhammer, T. R. (1987). Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in *Lactobacillus acidophilus* 88. Appl. Environm. Microbiol. 53, 553–560.
- Neve, H., Geis, A., and Teuber, M. (1987). Conjugation, a common plasmid transfer mechanism in lactic acid streptococci of dairy starter cultures. *Syst. Appl. Microbiol.* 9, 151–157. doi: 10.1016/S0723-2020(87)80070-X
- Neve, H., Geis, A., and Teuber, M. (1988). Plasmid-encoded functions of ropy lactic acid streptococcal strains from Scandinavian fermented milk. *Biochimie* 70, 437–442. doi: 10.1016/0300-9084(88)90218-0
- Nicolas, P., Bessières, P., Ehrlich, S. D., Maguin, E., and Van De Guchte, M. (2007). Extensive horizontal transfer of core genome genes between two *Lactobacillus* species found in the gastrointestinal tract. *BMC Evol. Biol.* 7:1. doi: 10.1186/ 1471-2148-7-141
- O'driscoll, J., Glynn, F., Cahalane, O., O'connell-Motherway, M., Fitzgerald, G. F., and Van Sinderen, D. (2004). Lactococcal plasmid PNP40 encodes a novel, temperature-sensitive restriction-modification system. *Appl. Environ. Microbiol.* 70, 5546–5556. doi: 10.1128/AEM.70.9.5546-5556.2004
- O'Driscoll, J., Glynn, F., Fitzgerald, G. F., and Sinderen, D. V. (2006). Sequence analysis of the lactococcal plasmid PNP40: a mobile replicon for coping with environmental hazards. *J. Bacteriol.* 188, 6629–6639. doi: 10.1128/JB.00672-06

- Patel, R. K., and Jain, M. (2012). NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. *PLoS One* 7:e30619. doi: 10.1371/journal. pone.0030619
- Price, C. E., Zeyniyev, A., Kuipers, O. P., and Kok, J. (2012). From meadows to milk to mucosa – adaptation of *Streptococcus* and *Lactococcus* species to their nutritional environments. *FEMS Microbiol. Rev.* 36, 949–971. doi: 10.1111/j. 1574-6976.2011.00323.x
- Radziwill-Bienkowska, J. M., Robert, V., Drabot, K., Chain, F., Cherbuy, C., Langella, P., et al. (2017). Contribution of plasmid-encoded peptidase S8 (PrtP) to adhesion and transit in the gut of *Lactococcus lactis* Ibb477 strain. *Appl. Microbiol. Biotechnol.* 101, 5709–5721. doi: 10.1007/s00253-017-8334-1
- Roberts, R. J., Belfort, M., Bestor, T., Bhagwat, A. S., Bickle, T. A., Bitinaite, J., et al. (2003). A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. *Nucleic Acids Res.* 31, 1805–1812. doi: 10.1093/nar/gkg274
- Roussel, Y., Colmin, C., Simonet, J. M., and Decaris, B. (1993). Strain characterization, genome size and plasmid content in the *Lactobacillus acidophilus* group (Hansen and Mocquot). *J. Appl. Bacteriol.* 74, 549–556.
- Ryan, M. P., Rea, M. C., Hill, C., and Ross, R. P. (1996). An application in cheddar cheese manufacture for a strain of *Lactococcus lactis* producing a novel broad-spectrum bacteriocin, lacticin 3147. *Appl. Environ. Microbiol.* 62, 612–619.
- Seegers, J. F., Bron, S., Franke, C. M., Venema, G., and Kiewiet, R. (1994). The majority of lactococcal plasmids carry a highly related replicon. *Microbiology* 140(Pt 6), 1291–1300. doi: 10.1099/00221287-140-6-1291
- Sharma, V. K., Johnston, J. L., Morton, T. M., and Archer, G. L. (1994). Transcriptional regulation by TrsN of conjugative transfer genes on staphylococcal plasmid PGO1. *J. Bacteriol.* 176, 3445–3454. doi: 10.1128/jb.176. 12.3445-3454.1994
- Siezen, R. J., Renckens, B., Van Swam, I., Peters, S., Van Kranenburg, R., Kleerebezem, M., et al. (2005). Complete sequences of four plasmids of *Lactococcus lactis* subsp. *cremoris* SK11 reveal extensive adaptation to the dairy environment. *Appl. Environ. Microbiol.* 71, 8371–8382. doi: 10.1128/AEM.71. 12.8371-8382.2005
- Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J., and Birol, I. (2009). ABYSS: a parallel assembler for short read sequence data. *Genome Res.* 19, 1117–1123. doi: 10.1101/gr.089532.108
- Solopova, A., Bachmann, H., Teusink, B., Kok, J., Neves, A. R., and Kuipers, O. P. (2012). A specific mutation in the promoter region of the silent cel cluster accounts for the appearance of lactose-utilizing *Lactococcus lactis* MG1363. *Appl. Environ. Microbiol.* 78, 5612–5621. doi: 10.1128/AEM.00455-12
- Stentz, R., Gasson, M., and Shearman, C. (2006). The Tra domain of the lactococcal CluA surface protein is a unique domain that contributes to sex factor DNA transfer. *J. Bacteriol.* 188, 2106–2114. doi: 10.1128/JB.188.6.2106-2114. 2006
- Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., et al. (2005). Genome analysis of multiple pathogenic isolates of *Streptococcus* agalactiae: implications for the microbial "pan-genome". Proc. Natl. Acad. Sci. U.S.A. 102, 13950–13955. doi: 10.1073/pnas.0506758102
- Twomey, D. P., De Urraza, P. J., Mckay, L. L., and O'sullivan, D. J. (2000). Characterization of AbiR, a novel multicomponent abortive infection mechanism encoded by plasmid PKR223 of *Lactococcus lactis* subsp. *lactis KR2. Appl. Environ. Microbiol.* 66, 2647–2651. doi: 10.1128/AEM.66.6.2647-2651. 2000
- Van Belkum, M. J., Hayema, B. J., Geis, A., Kok, J., and Venema, G. (1989). Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. *Appl. Environ. Microbiol.* 55, 1187–1191.
- Van Belkum, M. J., Hayema, B. J., Geis, A., Kok, J., and Venema, G. (1991). Organization and nucleotide sequences of two lactococcal bacteriocin operons. *Appl. Environ. Microbiol.* 57, 492–498.
- Van Heel, A. J., De Jong, A., Montalban-Lopez, M., Kok, J., and Kuipers, O. P. (2013). BAGEL3: automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. *Nucleic Acids Res.* 41, W448–W453. doi: 10.1093/nar/gkt391
- Van Mastrigt, O., Di Stefano, E., Hartono, S., Abee, T., and Smid, E. J. (2018a). Large plasmidome of dairy *Lactococcus lactis* subsp. *lactis biovar diacetylactis FM*03P encodes technological functions and appears highly unstable. *BMC Genomics* 19:620. doi: 10.1186/s12864-018-5005-2

- Van Mastrigt, O., Lommers, M. M., De Vries, Y. C., Abee, T., and Smid, E. J. (2018b). Citrate, low pH and amino acid limitation induce citrate utilization in *Lactococcus lactis* biovar diacetylactis. Microbial. Biotechnol. 11, 369–380. doi: 10.1111/1751-7915.13031
- Van Mastrigt, O., Lommers, M. M., De Vries, Y. C., Abee, T., and Smid, E. J. (2018c). Dynamics in copy numbers of five plasmids of a dairy *Lactococcus lactis* in dairy-related conditions including near-zero growth rates. *Appl. Environ. Microbiol.* 84, AEM.00314–AEM.318. doi: 10.1128/AEM.00314-18
- Van Rooijen, R., Gasson, M., and De Vos, W. (1992). Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J. Bacteriol. 174, 2273–2280. doi: 10.1128/jb.174.7.2273-2280.1992
- Van Rooijen, R. J., and De Vos, W. (1990). Molecular cloning, transcriptional analysis, and nucleotide sequence of *lacR*, a gene encoding the repressor of the lactose phosphotransferase system of *Lactococcus lactis. J. Biol. Chem.* 265, 18499–18503.
- Vedamuthu, E. R., and Neville, J. M. (1986). Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by *Streptococcus cremoris* MS. *Appl. Environ. Microbiol.* 51, 677–682.
- Von Ossowski, I., Reunanen, J., Satokari, R., Vesterlund, S., Kankainen, M., Huhtinen, H., et al. (2010). Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG spacba and SpaFED pilin subunits. Appl. Environ. Microbiol. 76, 2049–2057. doi: 10.1128/AEM.01958-09
- Von Wright, A., and Tynkkynen, S. (1987). Construction of *Streptococcus lactis* subsp. lactis strains with a single plasmid associated with mucoid phenotype. *Appl. Environ. Microbiol.* 53, 1385–1386.

- Wegmann, U., Overweg, K., Jeanson, S., Gasson, M., and Shearman, C. (2012). Molecular characterization and structural instability of the industrially important composite metabolic plasmid plp712. *Microbiology* 158, 2936–2945. doi: 10.1099/mic.0.062554-0
- Wels, M., Siezen, R., Van Hijum, S., Kelly, W., and Bachmann, H. (2019). Comparative genome analysis of *Lactococcus lactis* indicates niche adaptation and resolves genotype/phenotype disparity. *Front. Microbiol.* 10:4. doi: 10.3389/ fmicb.2019.00004
- Yang, X., Wang, Y., and Huo, G. (2013). Complete Genome Sequence of Lactococcus lactis subsp. lactis KLDS4. 0325. Genome Announc. 1:e962-13. doi: 10.1128/genomeA.00962-13
- Zhao, Y., Wu, J., Yang, J., Sun, S., Xiao, J., and Yu, J. (2012). PGAP: pan-genomes analysis pipeline. *Bioinformatics* 28, 416–418. doi: 10.1093/bioinformatics/ btr655

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Kelleher, Mahony, Bottacini, Lugli, Ventura and van Sinderen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.