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Breast cancer is the most frequently diagnosed cancer among females. Gene expression
profiling methods have shown the deregulation of several genes in breast cancer samples
and have confirmed the heterogeneous nature of breast cancer at the genomic level.
microRNAs (miRNAs) are among the recently appreciated contributors in breast
carcinogenic processes. These small-sized transcripts have been shown to partake in
breast carcinogenesis through modulation of apoptosis, autophagy, and epithelial–
mesenchymal transition. Moreover, they can confer resistance to chemotherapy. Based
on the contribution of miRNAs in almost all fundamental aspects of breast carcinogenesis,
therapeutic intervention with their expression might affect the course of this disorder.
Moreover, the presence of miRNAs in the peripheral blood of patients potentiates these
transcripts as tools for non-invasive diagnosis of breast cancer.
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INTRODUCTION

Breast cancer is the most frequently diagnosed cancer among females. With approximately 2.3
million new cases, breast cancer accounts for 11.7% of all diagnosed cancers. In terms of cancer-
related mortalities, female breast cancer is responsible for 6.9% of mortalities and ranks fifth.
Notably, the mortality rate from female breast cancer is significantly higher in developing countries
compared with that in developed countries (1). This cancer has been found to be associated with a
number of lifestyle and reproductive risk factors, namely, early menarche age, late menopause age,
first birth high age, lower period of breastfeeding, hormone replacement therapy after menopause,
taking oral contraceptive pills, alcohol intake, and obesity (2). Approximately 5–10% of breast
neoplasms are associated with inherited mutations in a number of genes, particularly the BRCA1
and BRCA2 genes (3). In addition, gene expression profiling methods have shown the deregulation
of several genes in breast cancer samples and have confirmed the heterogeneous nature of breast
cancer at the genomic level (4). More recently, several investigations have reported the
dysregulation of microRNAs (miRNAs) in breast cancer samples or plasma samples from these
patients in correlation with the functional aspects of tumorigenesis (5–7). miRNAs are produced
through a multistep process mediated by two RNase III proteins, namely, Drosha and Dicer (8, 9).
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These small-sized non-coding transcripts have been found to
regulate the expression of a significant proportion of human
genes and play fundamental roles in the development of human
disorders (10). miRNAs mainly regulate gene expression at post-
transcriptional level. Meanwhile, miRNA metabolism and
functions are regulated through sophisticated mechanisms
(10). Moreover, the expression of miRNA genes is regulated at
the transcriptional level through mechanisms similar to the
regulatory mechanisms of protein-coding genes. This type of
regulation defines the tissue- or developmental stage-specific
expression of miRNAs. Most notably, miRNAs can suppress
the expression of mRNAs that code factors participating in
miRNA biogenesis; thus, they contribute in autoregulatory
feedback paths (10). The expression of miRNAs has been
reported to be altered in breast cancer samples. As an
illustration, recent studies have detected the aberrant
expression of miR-221 and miR-222 in breast malignancy (11,
12). In the current review, we describe the impact of miRNAs in
breast carcinogenesis and explain their participation in the
regulation of apoptosis, autophagy, epithelial–mesenchymal
transition (EMT), and resistance to chemotherapy. These
processes have important roles in the pathogenesis of cancer.
EMT is regarded as a key participant in the invasion and
metastasis of cancers. Thus, identifying the main regulators of
this process has important implications in cancer treatment.
Autophagy has dual roles in cancer progression. Its activation
can provide energy and nutrient supplies during the metastatic
process, which promotes cell survival in stressful situations (13).
In contrast, autophagy can act as a cancer suppressor in the early
phase of cancer progression and hinder metastasis through
decreasing the expression of important transcription factors for
EMT (13). Resistance to apoptotic signals is a key feature in
cancer development (14). Moreover, defects in the apoptotic
mechanisms enhance malignant transformation and induce
the resistance of transformed cells to chemotherapy (14).
Finally, resistance to chemotherapy is an important feature
gained by tumor cells during tumor evolution, precluding
cancer management.
REGULATION OF APOPTOSIS BY MIRNAS
IN BREAST CANCER

Apoptosis is a coordinated process that happens in physiological
and pathological contexts. Cancer is one of the contexts where
lack of appropriate cell apoptosis results in the survival of
malignant cells. Several pathways are involved in the regulation
of apoptosis. Defects can happen at any portion of these
pathways, resulting in the malignant transformation of cells,
facilitation of tumor metastasis, and induction of resistance to
anticancer agents (15). miR-7-5p is an example of miRNAs that
regulate the apoptosis of breast cancer cells. This miRNA has
been shown to target proteasome activator subunit 3 (REGg), an
important modulator of breast cancer and activator of protein
proteolysis. The upregulation of miR-7-5p has led to the
suppression of proliferation and induction of cell apoptosis in
Frontiers in Oncology | www.frontiersin.org 2
breast cancer through influencing the expression of REGg (16).
This member of the REG family has an oncogenic function which
depends on the proteolysis of p21 and p53 (17, 18). miR-15a and
miR-16 are two other miRNAs that regulate the apoptosis of
breast cancer cells. Luciferase reporter assay has confirmed the
interaction between these miRNAs and 3′ UTR of BMI1
transcript. Both miRNAs could suppress the expression of
BMI1 at the transcript and protein levels, resulting in the
downregulation of anti-apoptotic protein BCL2 and the
upregulation of pro-apoptotic proteins. The forced over-
expression of these miRNAs has enhanced the levels of
mitochondrial reactive oxygen species (ROS), leading to
impairment of mitochondrial membrane potential, release of
cytochrome c into the cytosol, and activation of Caspase-3 and
Caspase-6/9. These events altogether induce the intrinsic pathway
of apoptosis (19). miR-17-5p is another miRNA that has been
found to induce apoptosis in breast cancer cells. Notably, the
upregulation of miR-17-5p has enhanced the sensitivity of breast
cancer cells to paclitaxel-associated cell apoptosis through the
modulation of STAT3. Consistent with this finding, the
upregulation of STAT3 has reduced the paclitaxel-associated
apoptosis of MCF-7 cells. miR-17-5p has been found to
enhance apoptosis through upregulating the p53 expression,
which was suppressed by STAT3. Therefore, miR-17-5p
suppresses STAT3 and upregulates p53 to increase breast
cancer cell apoptosis (20).

Another study has demonstrated the impact of miR-23a on
the suppression of apoptosis in breast cancer cells. Notably, this
impact has been exerted in an independent manner from its
inhibitory role on the X-linked inhibitor of apoptosis protein, the
most potent anti-apoptotic member of the inhibitor-of-apoptosis
proteins (21). Notably, the role of miR-23a on the enhancement
of invasiveness of breast cancer cells has been verified in
xenograft models (22). Several other upregulated miRNAs in
breast cancer, such as miR-27a, miR-32, miR-205-3p, miR-221/
222, and miR-1271, as well as downregulated miRNAs in breast
cancer, such as miR-17-5p, miR-134, miR-139-5p, miR-200b,
miR-214, miR-218, miR-543, miR-1301-3p, and miR-4458, have
been found to regulate apoptosis in breast cancer cells. Table 1
shows the regulation of apoptosis by miRNAs in breast cancer.
Figure 1 demonstrates that the aberrant expression of various
miRNAs could contribute in adversely modulating the
mitochondrial pathway of apoptosis which is involved in
triggering human breast cancer.
REGULATION OF AUTOPHAGY BY
MIRNAS IN BREAST CANCER

An autophagy mechanism is initiated by the establishment of
autophagosomes that seizure degraded apparatuses and then fuse
with lysosomes to induce recycling processes. Autophagy has
dual impacts in tumor inhibition and promotion in several types
of malignancies. Moreover, autophagy influences cancer stem
cell properties through participating in the maintenance of
stemness, regulation of tumor recurrence, and induction of
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TABLE 1 | Regulation of apoptosis by miRNAs in breast cancer.

microRNA Expression
pattern

Samples Cell lines Target/pathway Function Reference

miR-7-5p – Nude mice, BC
tissues

BT549, MDA-MB-
231, MDA-MB-468,
MCF-7, SK-BR-3,
T47D, HBL100,
MCF-10A

REGg, p21, p27,
Caspase-3

miR-7-5p, by targeting REGg, could suppress cell
proliferation and induces apoptosis of BC cells

(16)

miR-15a,
miR-16

– miRTarBase MCF-7, MDAMB-
231

BMI1, Bax, Bcl-2,
BID, PARP,
Caspase-3/9, Cyt-
c, p21, p53

miR-15a and miR-16, by suppressing oncogene BMI1,
could induce mitochondrial-dependent apoptosis in BC
cells

(19)

miR-17-5p Down – MCF-7, MDA-MB-
231,
MCF-7/tamoxifen,
MDA-MB-231/
paclitaxel

STAT1/3/5, p21/
27/57/51/53, Bax,
PARP, Caspase-3

miR-17-5p, by targeting STAT3 through inhibiting the
STAT3/p53 pathway, could induce apoptosis in BC cell

(20)

miR-23a – Nude mice MCF-7, T47D,
SKBR3, BT549,
MDA-MB-231,
MDA-MB-435S,
MCF-10A

XIAP, LC3-II/I, p62 miR-23a could promote survival and migration through
modulating XIAP-mediated autophagy in BC cells. It can
suppress apoptosis in breast cancer cells

(22)

miR-27a Up 40 pairs of BC and
ANTs

MCF-10A, T-47D,
MDA-MB-231, BT-
20, MCF-7

Bak, XIAP,
Caspase-3/9,
SMAC/DIABLO

miR-27a, via BAK-SMAC/DIABLO-XIAP axis, could
regulate the sensitivity of BC cells to cisplatin treatment.
This miRNA suppresses the apoptosis of breast cancer
cells through regulation of the BAK-SMAC/DIABLO-XIAP
axis

(23)

miR-32 Up 27 pairs of BC and
ANTs

MCF-10A, MCF-7,
MDA-MB-231

FBXW7 miR-32, by targeting FBXW7, could promote cell
proliferation and suppress apoptosis in BC cells

(24)

miR-34a – Nude mice/human;
222 BC tissues and
ANTs

MCF-10A,184A1,
SKBR3, T47D,
BT474,
MCF-7, BT-483, BT-
20, BT549, MDA-
MB-468,
MDA-MB-231

circGFRA1, GFRA1 circGFRA1, through sponging miR-34a, could
regulate GFRA1 expression to exert regulatory functions
in triple-negative BC. miR-34a increases the apoptosis of
BC cells

(25)

miR-100 – Nude mice MCF-7, T47D,
HCC1954, SK-BR-3,
MDA-MB-453,

MTMR3, p27, Bcl-
2, Bax, Cyclin-B,
CDK1, Caspase-3/
7

miR-100 is involved in regulating the apoptosis of BC cell (26)

miR-106a – 40 pairs of BC and
ANTs

MDA-MB-231, MCF-
7

P53, Bax, RUNX3,
Bcl-2, ABCG2

miR-106a, by upregulating Bcl-2, ABCG2, and p53 and
downregulating Bax and RUNX3, could promote BC cell
proliferation and invasion and inhibit their apoptosis

(27)

miR-125b – – MCF-7, MCF-7/DR,
MCF-10A, T-47D,
MDA-MB-435

Mcl-1, Caspase-3,
PARP, smac/
DIABLO, Cyt C

miR-125b and its synergistic effect on doxorubicin-
inducing cell death, through the downregulation of Mcl-1
expression, resulting in mitochondria damage, and
caspase-3 activation, could promote cell apoptosis in
BC

(28)

miR-134 Down 77 pairs of BC and
ANTs

Hs578T, Hs578Ts(i)8 STAT5B, Hsp90,
Bcl-2

In extracellular vesicles, miR-134 could increase drug
sensitivity in triple-negative BC and enhance their
apoptosis

(29)

miR-139-
5p

Down GEO database CBP60419,
CBP60397,
CBP60380,
CBP60402,
CBP60374

COL11A1,
Caspase-3, Bax,
Bcl-2

Overexpression of miR-139-5p, by inhibiting the
COL11A1, could inhibit the proliferation and promote the
apoptosis of BC cells

(30)

miR-139-
5p

– – MCF-7, MCF-7/Doc Notch1, Caspase-
3/7/8/9, MMP2/7/
9, Survivin, Akt,
p53

miR-139-5p, by targeting Notch1, could inhibit the
biological function of BC cells and mediate
chemosensitivity to docetaxel

(31)

miR-143-
3p

– 145 BC samples MCF-10A, MDA-MB-
435,

MYBL2, Bax, Bcl-
2, Cyclin-B1, p21

miR-143-3p, by targeting MYBL2, could inhibit the
proliferation and induce the apoptosis of BC cells

(32)

miR-148a,
miR-152

– 36 pairs of ER+ BC
with or without

MCF-7 ALCAM, PARP,
Caspase-7/9

miR-148a and miR-152, by downregulating ALCAM,
could reduce tamoxifen resistance in ER+ BC

(33)

(Continued)
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TABLE 1 | Continued

microRNA Expression
pattern

Samples Cell lines Target/pathway Function Reference

tamoxifen treatment,
GEO datasets

miR-152 – 41 pairs of BC and
ANTs

MCF-7, MDA-MB-
231, MCF-10A

KIF4A, ZEB1 Circular RNA KIF4A, via miR-152/ZEB1 axis, could
promote cell migration and invasion and inhibit apoptosis
in BC

(34)

miR-193b – – MCF-7, MCF-7/Dox MCL-1 miR-193b, by downregulating MCL-1, could modulate
the resistance of BC cells to doxorubicin and increase
their apoptosis

(35)

miR-199a-
3p

– – MDA-MB-231,
MDA-MB-231/DDP

TFAM miR-199a-3p, by downregulating TFAM, could enhance
BC cell sensitivity to cisplatin

(36)

miR-200b Down 278 pairs of BC and
ANTs

MDA-MB-231,
SK-BR-3, MCF-7,
MDA-MB-468,
HBL-100

Sp1 miR-200b, by targeting Sp1, could induce apoptosis and
inhibit cell proliferation in BC

(37)

miR-205-
3p

Up 58 pairs of BC and
ANTs

MCF‐7 Ezrin, LaminA/C,
Caspase-3, Bcl-2,
Bax

Overexpression of miR‐205‐3p could promote
proliferation and invasion and reduce the apoptosis of
BC cells and reduce the survival time of patients

(38)

miR-214 Down 31 pairs of BC and
ANTs

MCF-7, MDA-MB-
157, MDA-MB-468,
MCF-7/Dox, MDA-
MB-157/Dox

RFWD2, p53,
PUMA, p21, PARP

miR-214, by targeting the RFWD2-p53 axis, could
promote apoptosis and sensitize BC cells to doxorubicin

(39)

miR-214,
miR-218

Down 49 pairs of BC and
ANTs

MCF-7 – Overexpression of miR-214 or miR-218 could suppress
cell proliferation and migration, disturb the cell cycle, and
induce cell apoptosis in BC

(40)

miR-218 – Nude mice MCF-7, Cal51,
MCF-7/A02,
CALDOX

Survivin, Bax, Bcl-2 miR-218, via targeting surviving, could regulate
resistance to chemotherapeutics in BC

(41)

miR-221 Up 35 pairs of BC and
ANTs

MDA-MB-231, BT-
20, MDAMB-435, T-
47D, MCF-10A

BIM-Bax/Bak Anti-miR- 221, by targeting the Bim-Bax/Bak axis, could
promote the cisplatin-inducing apoptosis in BC

(42)

miR-221/
222

Up Nude mice/human; 48
pairs of BC and ANTs

MCF-7, MDA-MB-
231, MDA-MB-453,
SKBR3, MCF-10A

GAS5 miR-221/222, via lncRNA GAS5 in BC, could promote
tumor growth and suppress apoptosis

(43)

miR-429 – – MDA-MB-231, MDA-
MB-468

XIAP miR-429, by targeting XIAP, could mediate d-tocotrienol-
induced apoptosis in triple-negative BC cells

(44)

miR-433 Down Mice 4T1, MCF-7, 293T MAPK/ERK,
Rap1a, MMP-9,
Caspase-3, Bax,
Bcl-2, PARP1, p38

miR-433 via the MAPK signaling pathway, by targeting
Rap1a, could inhibit BC cell growth

(45)

miR-451 Down TCGA database MCF-7, SKBR3,
MCF-7/PR, SKBR3/
PR

YWHAZ, b-catenin,
c-Myc, Cyclin-D1

miR-451, by regulating YWHAZ in SKBR3/PR, drug
resistant, could induce tumor suppression in BC

(46)

miR-497 Down Nude mice and
human; 45 pairs of BC
and ANTs

T-74D, MCF-7,
MDA-MB-453, MDA-
MB-468, MDA-MB-
435,
MCF-10A

Bcl-2, Bax, a-
SMA,
E-cadherin,
Vimentin,
N-cadherin, Slug

miR-497, by targeting slug, could inhibit EMT transition in
BC

(47)

miR-519d – Nude mice with or
without Cisplatin

T-47D, MCF-7,
SKBR3,
MCF-10A

MCL-1, Caspase-
3/7/9,
Apaf-1, Smac/
DIABLO, Cyt C,
Xiap

miR-519d, by downregulating MCL-1, could impede
cisplatin resistance in BC stem cells

(48)

miR-543 Down – MDA-MB-231, MCF-
7

MAPK/ERK,
Cyclin-D1,
Bcl-2, Bax, RSK2,
MSK1, ERK2

miR-543, by targeting ERK/MAPK, could suppress BC
cell proliferation, block cell cycle, and induce cell
apoptosis

(49)

miR-590-
3p

– – MCF-7, MDA-
MB231

Sirtuin-1, p53, p21,
Bax

miR-590-3p, by targeting sirtuin‐1 and deacetylation of
p53, could suppress cell survival and trigger BC cell
apoptosis

(50)

miR-1271 Up 36 pairs of BC and
ANTs

MCF-7, MDAMB-
231, MDA-MB-468,

circ-ABCB10 circ-ABCB10 could promote BC proliferation and
progression via sponging miR-1271

(51)

(Continued)
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resistance to anticancer drugs (56). Autophagy is another subject
of regulation by miRNAs in breast cancer cells. miR-20a is
among the upregulated miRNAs in breast cancer, particularly
in triple-negative breast cancer cells. The expression of miR-20a
has been negatively correlated with the activity of the autophagy/
lysosome pathway. miR-20a suppresses the basal and nutrient
starvation-associated autophagic flux and activity of lysosomal-
associated proteolysis. Moreover, this miRNA enhances the
intracellular ROS levels and DNA damage response through
modulating numerous important regulators of autophagy;
among them are BECN1, ATG16L1, and SQSTM1. The
expression of miR-20a has been negatively correlated with the
expressions of these target genes in breast cancer tissues.
Notably, triple-negative cancers have exhibited a particular
downregulation of BECN1, ATG16L1, and SQSTM1 genes.
The upregulation of miR-20a has also been associated with a
higher occurrence of copy number variations and genetic
mutations in breast cancer samples. The effects of miR-20a on
the enhancement of tumor evolution and growth have also been
confirmed in a xenograft model of breast cancer (57). Another
study has shown the regulatory effects of miR-20a and miR-20b
on the expression of RB1CC1/FIP200. Both miRNAs could
decrease the expression of RB1CC1/FIP200 transcripts and
proteins. The upregulation of these miRNAs has reduced basal
and rapamycin-associated autophagy. Therefore, miR-20a and
miR-20b can regulate autophagy through influencing the
expression of RB1CC1/FIP200 (58). A high-throughput
miRNA sequencing experiment has reported miR-25 as the
most important target of isoliquiritigenin (ISL) in inducing
autophagy flux. Moreover, mechanistical studies have shown
that miR-25 silencing results in cell autophagy through
enhancing the expression of ULK1, an early regulator of
autophagy initiation. miR-25 upregulation blocks ISL-
associated autophagy. ISL has been found to sensitize cancer
cells to chemotherapeutic agents as demonstrated by the
enhancement in LC3-II levels, decrease in ABCG2 levels,
downregulation of miR-25, and activation of ULK1 (59).
Frontiers in Oncology | www.frontiersin.org 5
The inhibitory roles of miR-26b, miR-129-5p, and miR-200c
on autophagy are exerted through the modulation of DRAM1
(60), HMGB1 (61), and UBQLN1 (62) expressions, respectively.
Notably, miR-129-5p and miR-200c could attenuate irradiation-
induced autophagy and decrease the radioresistance of breast
cancer cells through this route (61) (62). Table 2 shows the
regulation of autophagy by miRNAs in breast cancer. Figure 2
presents the role of several miRNAs in breast cancer cells via
regulating the autophagy pathway.
REGULATION OF EMT BY MIRNAS IN
BREAST CANCER

EMT is a complicated developmental program that permits
carcinoma cells to change the epithelial characteristics to
mesenchymal features. This alteration permits them to obtain
mobility and migration ability. EMT is involved in numerous
stages of the metastatic program, from dedifferentiation to
aggressiveness (74). TGF-b1-induced EMT has been shown to
participate in the metastasis of breast cancer cells. This process is
regulated by a number of miRNAs—for instance, miR-23a as an
upregulated miRNA in breast cancer cells, particularly in
metastatic samples, has been shown to be induced by TGF-b1.
The TGF-b1-associated regulation of miR-23a is mediated by
direct binding of Smads with the RNA Smad-binding element in
miR-23a. The suppression of miR-23a expression has inhibited
TGF-b1-associated EMT and attenuated the migration,
invasiveness, and metastatic ability of breast cancer cells. miR-
23a can directly inhibit the expression of CDH1, a key modulator
of EMT. The miR-23a-mediated suppression of CDH1 has been
found to activate Wnt/b-catenin signaling. Taken together, miR-
23a enhances TGF-b1-associated breast cancer metastasis
through influencing the expression of CDH1 and inducing
Wnt/b-catenin cascade (75). miR−27a is another upregulated
miRNA in breast cancer samples and cell lines. The upregulation
of miR−27a has increased the migratory potential of breast
TABLE 1 | Continued

microRNA Expression
pattern

Samples Cell lines Target/pathway Function Reference

MDA-MB-453, MCF-
10A

miR-1301-
3p

Down 60 pairs of BC and
ANTs

MCF-7, T47D, MDA-
MB-231, MDA-MB-
468, MCF-10A

ICT1, CDK4, p21,
Cyclin-D1, Bcl-2,
Bax, Bad

miR-1301-3p, by targeting ICT1, could inhibit BC cell
proliferation by regulating cell cycle progression and
apoptosis

(52)

miR-3942-
3p

– GEO database,
15 pairs of tissues
with or without TCDD
(2, 3, 7, 8-
tetrachlorodibenzo-p-
dioxin) treatment

MCF-7, MCF-7/
TCDD

Hsa_circ_0001098
(BARD1), g-H2AX,
p53

Overexpression of circular RNA BARD1 with TCDD
treatment could promote cell apoptosis via miR-3942 in
BC cells

(53)

miR-4301 – NCBI database, 30
pairs of BC and ANTs

MDA-MB-231, MCF-
7, SKBR3, MCF-10A

DRD2 miR-4301, by negatively regulating DRD2 expression,
could induce cell apoptosis in human BC cells

(54)

miR-4458 Down 60 pairs of fresh
TNBC and ANTs

MCF-10A, BT549,
MDA-MB-436

SOCS1 miR‐4458, by targeting SOCS1, could suppress cell
proliferation and promote cell apoptosis in triple‐negative
BC

(55)
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cancer cells through induction of EMT. FBXW7 has been
identified as a downstream target of miR−27a. The over-
expression of FBXW7 in breast cancer cells could inhibit EMT
and the migratory aptitude of these cells. Therefore, miR−27a
can regulate the metastatic potential of breast cancer through the
suppression of FBXW7 (76). miR-29a has also been found to be
upregulated in breast cancer samples in correlation with distant
Frontiers in Oncology | www.frontiersin.org 6
metastasis and poor clinical outcome of patients. miR-29a
silencing has suppressed the proliferation and migration of
breast cancer cells. Ten eleven translocation 1 (TET1) has been
identified as a target of miR-29a. The upregulation of TET1 has
attenuated the proliferation and migration of breast cancer cells.
The miR-29a-mediated downregulation of TET1 enhances EMT
(77). Several upregulated miRNAs in breast cancer, such as
FIGURE 1 | A schematic diagram of the role of miRNAs in triggering the mitochondrial cascade of apoptosis in human breast cancer. Apoptosis pathway could be
activated via both extrinsic and intrinsic cascades. The intrinsic pathway is generally occurring through the release of cytochrome c from the mitochondria and
modulates mitochondrial outer membrane permeabilization via Bcl-2 family proteins. The activation of extrinsic cascade could be triggered via ligand binding to death
receptor, including DR3, DR4, DR5, Fas, and TNFaR. Following that, caspase proteins have a significant part in cleaving target proteins as well as nuclear lamins to
elevate DNA degradation, leading to apoptotic cells undergoing phagocytosis. Furthermore, P53, via triggering the upregulation of various proteins containing Bid,
Bax, CD95, Puma, and TRAIL-R2, could get effectively involved in activating intrinsic and extrinsic apoptosis cascades. Therefore, any alterations or abnormalities
occurring during apoptotic pathways could considerably contribute to the progression of human diseases, including cancer. Previous studies have authenticated that
several miRNAs could have a crucial role in regulating the apoptosis pathway in breast cancer. All the information regarding the role of these miRNAs involved in the
modulation of breast tumors can be seen in Table 1.
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TABLE 2 | Regulation of autophagy by miRNAs in breast cancer.

microRNA Expression
pattern

Samples Cell lines Target/pathway Function Reference

miR-20a Up TCGA database,
nude mice and
human; 83 pairs of
BC and ANTs

MDA-MB-231
and MCF7

LC-3 I/II, BECN1, SQSTM1, ATG16L1,
OPTN, gH2AX

miR-20a-mediated loss of autophagy could be
involved in breast tumorigenesis

(57)

miR-20a,
miR-20b

Down 19 pairs of breast
cancer tissue and
ANTs

MCF7, MDA-
MB-231

FIP200, LC-3 I/II, p62 miR-20a and 20b, downregulated by
suppressing RB1CC1/FIP200, could modulate
autophagy in breast cancer

(58)

miR-25 – Nude mice MCF-7, MCF-
7/ADR

ABCG2, ULK1, LC-3 I/II, BECN1,
Atg5, Bcl-2, Caspase-6/7/9, PARP,
Bax, mTOR

miR-25 could regulate chemoresistance-
associated autophagy in BC cells

(59)

miR-26b Down 3 pairs of BC and
ANTs

MCF7 DRAM1, LC-3 I/II miR−26b, by targeting DRAM1, could
suppress autophagy in breast cancer cells

(60)

miR-129-
5p

– – MCF-7, MDA-
MB-231,
BT474,
BT549, MCF-
10

HMGB1, LC-3 I/II, p62, Caspase-3,
PARP

miR-129-5p, by targeting HMGB1, could
attenuate irradiation-induced autophagy and
decrease the radioresistance of BC cells

(61)

miR-200c – 35 pairs of BC and
ANTs

MDA-MB-231,
BT549, MCF-
10A, BT474,
MCF-7

UBQLN1, LC-3 I/II, p62, Caspase-3,
PARP

miR-200c cells, by targeting UBQLN1, could
inhibit autophagy and enhance radiosensitivity
in breast cancer

(62)

miR-375 – – MCF-7 HR, PR, Her2, EGFR, C-Abl, Crkl,
ATG7, p62, LC31/2

miR-375-autophagy axis could suppress the
growth of fulvestrant-resistant breast cancer
cells by the combined inhibition of EGFR and
c-ABL

(63)

miR-224-
5p

Up 30 pairs of BC and
ANTs

MDA-MB-231,
MCF-7

Smad4, SQSTM1,
LC-3 I/II

miR-224-5p, via targeting Smad4, could
inhibit autophagy in breast cancer cells

(64)

miR-451a – – MCF-7, LCC2 14-3-3z, ERa, mTOR, AKT, LC-3 I/II Over-expression of miR-451a, by regulating
14-3-3z, estrogen receptor a, and autophagy,
could enhance the sensitivity of breast cancer
cells to tamoxifen

(65)

miR-142-
3p

– Nude mice MCF-7, MCF-
7/DOX

HMGB1, ATG5, LC-3 I/II miR-142-3p by targeting HMGB1 could
enhance chemosensitivity of breast cancer
cells and inhibits autophagy.

(66)

miR-1910-
3p

Up Nude mice and
human; 55 pairs of
BC and ANTs

MCF-7, MDA-
MB-231,
MCF-10A

MTMR3, NF-kB, PCNA, Bcl2, p65,
IkBa, LC3B, ATG7, BECN1, PARP,
Caspase-3, E-cadherin, N-cadeherin,
Vimentin, Slug, Twist

Exosomal miR-1910-3p, by targeting MTMR3
and activating the NF-kB signaling pathway,
could promote the proliferation, metastasis,
and
autophagy of breast cancer cells

(67)

miR-489 – GEO database,
nude mice and
human BC tissue

MDA-MB-231,
HCC1954,
T47D

LC3B-I, LC3B-II, p62, ATG5/3,
Beclin1, ULK1, LAMTM4B, Caspase-3

miR-489 could regulate autophagy, cell
viability, and chemoresistance in breast cancer

(68)

miR-129-
5p

– Oncomine
databases

MCF-7 HMGB1, p62, LC3B-I, LC3B-II Upregulation of miR-129-5p, through inhibiting
HMGB1-mediated cell autophagy, could
increase the sensitivity to Taxol in breast
cancer MCF-7 cells

(69)

miR-18a – – MDA-MB-231,
MDA-MB-231/
PTX, MCF-
10A

p70S6, mTOR, LC3 I, LC3 II miR-18a upregulation, via inhibiting mTOR
signaling pathway, could enhance autophagy
in triple-negative cancer cells

(70)

miRNA‐
107 family

– Nude mice and
human; 62 pairs of
BC and ANTs

MDA‐MB‐231,
MDA‐MB‐453,
MCF‐10A,
MCF‐7

HMGB1, p62, Beclin1 miR‐107 family, by targeting HMGB1, could
inhibit the autophagy, proliferation, and
migration of breast cancer cells

(71)

miR−92b – 30 pairs of BC and
ANTs

MCF-7, MDA-
MB-453

EZH2, LC3 I, LC3 II, SQSTM1 miR−92b, by targeting EZH2, could promote
autophagy and suppress viability and invasion
in breast cancer

(72)

miR-199a-
5p

– – MCF7, MDA-
MB-231

LC3 I, LC3 II, DRAM1, Beclin1 miR-199a-5p could be involved in radiation-
induced autophagy

(73)
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miR-93, miR-125b, miR-199a-3p, and miR-221, as well as
downregulated miRNAs, such as miR-34a, miR-92b, miR-124,
miR-138-5p, miR-153, miR-516a-3p, and miR-524-5p, affect the
EMT process. Table 3 shows the regulation of EMT by miRNAs
in breast cancer. Figure 3 depicts the role of various miRNAs in
the modulation of EMT via targeting receptors that convey
signals from EMT inducers or multiple EMT components.
Frontiers in Oncology | www.frontiersin.org 8
REGULATION OF CHEMORESISTANCE
BREAST CANCER CELLS BY MIRNAS

Chemoresistance is a phenotype which is associated with several
signaling pathways as well as cellular processes such as apoptosis,
autophagy, and EMT. miRNAs have also been found to affect the
resistance of breast cancer cells to important chemotherapeutic
FIGURE 2 | A schematic representation of the role of several miRNAs in regulating the autophagy cascade in human breast cancer. The autophagy pathway is
comprised of multiple sequential steps containing sequestration, transport to lysosomes, and degradation. The expression of Atgs could be triggered via AKT,
MAKP-ERK, P53, and AMPK pathways. Autophagy is a fundamental substantial biological cascade by removing damaged organelles, but dysregulation of
autophagy could contribute to several diseases, including cancers. Accumulating evidence has illustrated that various miRNAs could have a remarkable part in
modulating the apoptosis cascade in breast tumors. All the information regarding the role of these miRNAs contributing to the regulation of breast cancer can be
seen in Table 2.
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TABLE 3 | Regulation of epithelial–mesenchymal transition (EMT) by miRNAs in breast cancer.

microRNA Expression
pattern

Samples Cell lines Target/pathway Function Reference

miR-23a Up 30 pairs of BC and
ANTs, nude mice

MCF-7, MDA-MB-
468, T47D, BT-
549,
MDA-MB-231

CDH1, Wnt/b-
catenin,
E-cadherin

miR-23a, by targeting CDH1 and activating Wnt/b-
catenin signaling, could promote TGF-b1-induced tumor
metastasis in breast cancer

(75)

miR−27a Up 20 pairs of BC and
ANTs

MDA-MB-231,
SKBR3, MCF-12A

FBXW7, ZEB1, Snail,
Vimentin, E-Cadherin,
N-Cadherin

miR−27a, by inducing EMT in a FBXW7−dependent
manner, could promote human breast cancer cell
migration

(76)

miR-29a – Nude mice and
human; 60 pairs of
BC and ANTs

MDA-231, MDA-
453, MCF-7,
MCF-10

TET1, CyclinD1, p21,
E-Cadherin, N-
Cadherin,
Fibronectin, Vimentin,
ZEB1, ZEB2

miR-29a, by targeting ten eleven translocation 1, could
promote cell proliferation and EMT in breast cancer

(77)

miR-30d – – BT474, MDA-MB-
231, HCC197,
MDA-MB-468

KLF11, STAT3, Bcl-
2, Bax, Vimentin,
N-cadherin, E-
cadherin

miR-30d, by targeting KLF11 and activating the STAT3
pathway, could mediate breast cancer invasion,
migration, and EMT

(78)

miR-34a Down 48 pairs of BC and
ANTs

MCF-7, T-47D,
BT-549, MDA-
MB-231, MDA-
MB-435

SLUG, ZEB1/2,
NOTCH1, TWIST1

miR-34a could inhibit BC cell migration and invasion via
targeting EMT-inducing transcription factors

(79)

miR-92b Down 51 pairs of BC and
ANTs

MCF-10A, BT549,
MDAMB-231

Gabra3, Vimentin,
N-cadherin, E-
cadherin

miR-92b, by targeting Gabra3, could inhibit EMT (80)

miR-93 Up 16 pairs of BC and
ANTs

MCF-7, MCF-7/
ADR

Twist, Snail,
fibronectin, Vimentin,
N-cadherin,
E-cadherin

miR-93 could induce EMT and drug resistance of BC
cells by targeting PTEN

(81)

miR-93-5p – – MCF-7, MDA-MB-
231, T47D

MKL-1, STAT3,
Vimentin, N-cadherin,
E-cadherin

miR-93-5p, by targeting MKL-1 and STAT3, could
inhibit the EMT of breast cancer cells

(82)

miR-124 Down 30 pairs of BC and
ANTs

MDA-MB-453,
MDA-MB-231,
BT-549

Vimentin, N-cadherin,
E-cadherin, ZEB2

miR-124, by regulating EMT based on ZEB2 target,
could inhibit invasion and metastasis in triple-negative
breast cancer

(83)

miR-125b Up 20 pairs of BC and
ANTs

MDA-MB-231,
MCF-10A, MCF-7,
MDAMB-468

Vimentin, E-cadherin,
snail, APC, b-catenin,
cyclin D

miR-125b, via the Wnt/b-catenin pathway and EMT,
could regulate the proliferation and metastasis of triple-
negative breast cancer cells

(84)

miR-138-
5p

Down TCGA dataset, 20
pairs of BC and ANTs

MDA-MB-231,
MDA-MB-468,
T47D,
ZR-75-30

N-cadherin, E-
cadherin, Vimentin,
RHBDD1

miR−138−5p, by targeting RHBDD1, could inhibit cell
migration, invasion, and EMT in breast cancer

(85)

miR-153 Down 60 pairs of TNBC and
ANTs

SKBR3, BT-549,
MDA-MB-231,
MCF-10A

ZEB2, E-cadherin,
N-cadherin, Vimentin

miR-153, through targeting ZEB2-associated EMT, could
inhibit the progression of triple-negative breast cancer

(86)

miR-199a-
3p

Up – HCC1806,
HCC1937,
MDA-MB-231,
HMEC-184

GPER, p21, CDK2,
Cyclin E1, Vimentin,
N-cadherin, E-
cadherin, VEGFA,
Ang II, CD151

Through CD151/miR-199a-3p bio-axis, the activation of
GPER could inhibit cell proliferation, invasion, and EMT of
triple-negative breast cancer

(87)

miR-221 Up TCGA database BT549, HCC1806,
MDA-MB-231,
T47D,
MDA-MB-468,
MCF7, MDA-MB-
361, SKBR3

ZEB1, MAPK, uPAR,
Vimentin, HER2, ER,
PR

A combined treatment (MEK1 inhibitor + irradiation) could
decrease the migratory potential of BC cells by reducing
miR-221. This miRNA induces EMT in these cells

(88)

miR-365-
3p

– 93 pairs breast
cancer tissue and
ANTs

MCF-7, MDA-MB-
231, MCF-10A

FOXK1, Vimentin,
N-cadherin, E-
cadherin, Slug, Snail

miR-365-3p, by regulating FOXK1, could promote cell
growth and EMT indicates unfavorable prognosis in
breast cancer

(89)

miR‐516a‐
3p

Down Nude mice and
human; 60 pairs
breast cancer tissue
and ANTs

MDA‐ MB‐231,
MCF‐7, HEK293T

Pygo2, Wnt, E-
cadherin, Vimentin, c‐
Myc, cyclinD1, b‐
catenin

miR‐516a‐3p, by blocking the Pygo2/Wnt signaling
pathway, could inhibit breast cancer cell growth and EMT

(90)

(Continued)
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drugs—for instance, miR-7 has been shown to be downregulated
in MCF-7 and adriamycin-resistant cells (MCF-7/ADR cells),
particularly in MCF-7/ADR cells. The upregulation of miR-7 has
enhanced sensitivity of MCF-7/ADR cells to ADR. The
downregulation has led to the upregulation of EGFR and PI3K,
while the upregulation of miR-7 has been associated with
opposite effects. Moreover, the suppression of miR-7 has been
associated with the enhancement of proliferation and inhibition
of apoptosis. Therefore, miR-7 has been found to affect the
resistance of breast cancer cells to ADR, and its upregulation can
enhance the effects of ADR through the suppression of EGFR/
PI3K signaling (97). miR-30c is another miRNA that is involved
in intrinsic adriamycin resistance in p53-mutated breast
cancer (98).

Moreover, another study in breast cancer has shown a
correlation between high miR-7 levels and better pathological
complete response to paclitaxel/carboplatin. Functionally, miR-7
has been shown to sensitize MCF-7 andMDA-MB-231 cells to the
cytotoxic effects of paclitaxel and carboplatin through targeting
MRP1 and BCL2. Taken together, miR-7 has been suggested as a
predictive marker for the assessment of chemotherapy efficacy and
therapeutic target for the enhancement of response of breast
cancer patients to chemotherapy (99). The expression assays in
an Src inhibitor saracatinib-resistant breast cancer cell line
(SK-BR-3/SI) has shown the downregulation of miR-19b-3p in
saracatinib-resistant cells compared with saracatinib-sensitive
ones. The under-expression of miR-19b-3p not only has been
associated with higher IC50 value of saracatinib but also has
increased the migratory potential of breast cancer cells.
Functionally, miR-19b-3p targets PIK3CA. Thus, the resistance
to Src inhibitors might be due to the enhancement of the activity
of PI3K/Akt pathway following miR-19b-3p downregulation
(100). In addition, miR-34a could affect the sensitivity of breast
cancer cells to sunitinib by regulating the Wnt/b-catenin signaling
pathway (101).

miR-24-3p is another miRNA which can regulate the
sensitivity of breast cancer cells to tamoxifen. The upregulation
of miR-24-3p has been shown to increase tamoxifen-induced
cytotoxicity in breast cancer cells, while its silencing has
Frontiers in Oncology | www.frontiersin.org 10
decreased these effects. Bim has been identified as a target of
miR-24-3p in breast cancer. Further experiments have shown the
upregulation of miR-24-3p and the downregulation of BIM
expression in tamoxifen-resistant MCF7 cells compared with
original cells. Moreover, the suppression of miR-24-3p has
enhanced the sensitivity of MCF7/TAM cells to tamoxifen
through the enhancement of cell apoptosis (102). Besides this,
miR-148a and miR-152, by downregulating ALCAM, could
reduce tamoxifen resistance in ER+ breast cancer cells (33).
miR-375 is another miRNA that could inhibit cancer stem cell
phenotype and tamoxifen resistance in human ER+ breast cancer
cells through degrading HOXB3 (103). Meanwhile, tamoxifen
has been shown to regulate the expressions of miR-29b-1 and
miR-29a (104). Table 4 shows the role of miRNAs in the
regulation of response of breast cancer to therapeutic agents.
DISCUSSION

Non-coding RNAs can influence the expression of several groups
of mRNAs through different mechanisms, such as modulation of
chromatin structure as well as regulation of transcription and
translation. miRNAs are mostly exerting their regulatory roles at
the post-transcriptional level through binding to different
regions of mRNAs to suppress their translation via mRNA
degradation or translation inhibition. miRNAs have been
found to regulate important aspects of breast carcinogenesis
through the regulation of apoptosis, autophagy, and EMT.
miRNAs affect the apoptosis of breast cancer cells through
several mechanisms; among them are modulation of p53-
related pathways, expression of caspases, and regulation of
response to ROS. Through modulating the expression of EMT-
related genes as well as those influencing cell motility and
invasiveness, miRNAs regulate breast cancer metastasis.
Notably, miRNAs can also influence the response of breast
cancer cells to a wide array of therapeutic agents ranging from
conventional chemotherapeutic drugs to tyrosine kinase
inhibitors and hormone therapy agents. Based on in vitro
TABLE 3 | Continued

microRNA Expression
pattern

Samples Cell lines Target/pathway Function Reference

miR-520c-
3p

– – MCF-7 and T47D,
293T

IL-8, E-cadherin,
Vimentin, fibronectin

miR-520c-3p, by targeting IL-8, could negatively regulate
EMT to suppress the invasion and migration of breast
cancer

(91)

miR-524-
5p

Down 20 pairs breast
cancer tissue and
ANTs

SK-BR-3,
MDA-MB-453

FSTL1, MMP2,
MMP9, E-cadherin,
N-cadherin

miR-524-5p, through targeting FSTL1, could suppress
migration, invasion, and EMT

(92)

miR-622 – GEO and TCGA
dataset

MDA-MB-231,
MCF7

RNF8, E-cadherin,
ZO-1, Snail

The miR-622 induces EMT through modulation of the
expression of RNF8

(93)

miR‐6838‐
5p

– – CC1937, HCC70,
MDA‐MB‐231,
MDA‐MB‐436,
MDA‐MB‐468

WNT3A, MMP2/9,
E-cadherin, N-
cadherin, Vimentin, b‐
catenin, c‐myc,
Cyclin-D1

miR‐6838‐5p, by targeting WNT3A to inhibit the Wnt
pathway, could suppress cell metastasis and the EMT
process in triple‐negative breast cancer

(94)
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experiments, miRNAs can regulate the cytotoxic effects of
adriamycin, cisplatin, doxorubicin, docetaxel, paclitaxel,
gemcitabine, trastuzumab, saracatinib, sunitinib, tamoxifen,
and a number of other anti-cancer drugs. In addition to
miRNAs whose direct effects on the modulation of response to
therapeutic agents have been verified, other miRNAs that
regulate cell apoptosis or autophagy can potentially influence
Frontiers in Oncology | www.frontiersin.org 11
therapeutic responses. The modulation of cellular DNA damage
response and the activity of cancer stem cells are other routes of
participation of miRNAs in the regulation of response of breast
cancer cells to chemotherapy. A possible role of miRNAs in the
determination of breast cancer stem cells has been suggested
through the demonstration of differential expression of miRNAs
in CD44+/CD24-/low breast cancer stem cells versus non-
FIGURE 3 | A schematic illustration of the epithelial–mesenchymal transition (EMT)‐associated miRNAs and their roles in human breast cancer. EMT is a process that
can be induced via a variety of growth factors and cytokines in cancer cells. These elements may be secreted through the cancer cells themselves or via the stromal
cells in the tumor microenvironment. These soluble ligands can interact with their cognate receptors, such as TGF-b receptors and RTKs, resulting in the activation of
several oncogenic pathways (TGF-b, Wnt/b-catenin, integrins, Notch, etc.) which have a significant role in inducing the EMT cascade. Thereby, the activation of EMT
can be triggered through the overexpression of selected zinc finger, including ZEB1/2, snail, slug, or basic helix–loop–helix containing TWIST1 transcription factors (95,
96). Recent studies have detected he regulatory role of multiple miRNAs in EMT and breast cancer cells. All the information regarding the influence of these miRNAs in
EMT and the control that they exert in major signaling cascades in breast cancer can be seen in Table 3.
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TABLE 4 | Role of miRNAs in the regulation of response of breast cancer to therapeutic agents.

microRNA Expression
pattern

Samples Cell lines Target/pathway Function Reference

miR-7 – – MiR-7, MCF-7/
ADR, MCF-10A

EGFR/PI3K miR-7 over-expression could inhibit the EGFR/PI3K signaling
pathway to raise their sensitivity to the chemotherapy drug
adriamycin

(97)

miR-7 – 60 pairs of BC
tissue with or
without paclitaxel
plus carboplatin

MCF-7, MCF-
7-PR, MDA-
MB-231,
HEK293

MRP1, BCL2 miR-7, by suppressing MRP1 and BCL2, could reverse
breast cancer chemoresistance

(99)

miR-19b-
3p

– – MDA-MB-231,
SK-BR-3, BT-
474,
MCF-7

MDR-1,Src, PI3K/Akt miR-19b-3p, by regulating the PI3K/Akt pathway, could
inhibit breast cancer cell proliferation and reverse saracatinib
resistance

(100)

miR‐24‐3p Up 20 pairs of ER+ BC
and ANTs

MCF7, MCF7/
TAM, T47D

Bim, ER, PR, pS2,
Caspase3, PARP

miR‐24‐3p overexpression, via direct repression of Bim
expression, could promote the development of tamoxifen
resistance in breast cancer cells

(102)

miR-26a,
miR-30b

– – BT474 wt,
BT474r,
HCC1954,
MDA-MB-231

APAF1, CCNE2,
CASP3

The mentioned microRNAs could be involved in trastuzumab
resistance

(105)

miR-30c Up TCGA database,
nude mice and
human BC tissue
and ANTs

MCF-7, ZR-75-
1,
T-47D, MCF-
10A,
MDAMB-231

REV1, FANCF,
FANCD2, RAD51,
ATM, BRCA1,
ERCC1, p53, p21

miR-30c could be involved in intrinsic adriamycin resistance
in p53-mutated breast cancer

(98)

miR-34a – – MCF-7 Wnt/b-catenin miR-34a, by regulating the Wnt/b-catenin signaling pathway,
could increase the sensitivity to sunitinib in breast cancer

(101)

miR-34a – – MCF-7, MCF-
10A,
MDA-MB-231,
BT-20, T47-D,
PC3, DU-145,
LNCaP,
OVCAR, SK-
OV-3, HeLa

HDAC1/7, HSP70,
LC3-II/I

miR-34a, by targeting HDAC1 and HDAC7, could reduce
therapy resistance in breast cancer

(106)

miR‐122‐
5p

– – MCF‐7,
MCF-7‐ADR

Bcl-2, CDK2/4/6,
Caspase-8/9

Resveratrol could increase the sensitivity of BC via targeting
the miR-122-5p/Bcl-2 axis. miR-122-5p enhances the
chemosensitivity of BC cells

(107)

miR−124 Up Nude mice and
human BC tissue
and ANTs

BT474, MCF7,
SKBR3, MDA-
MB-231

MCT1, LDHA Restoration of MCT1 in miR-124-overexpressing cells could
promote resistance to paclitaxel

(108)

miR-125b – – MCF-7, MCF-7/
PR, SKBR3,
SKBR3/PR

Sema4C, Snail, Slug,
Vimentin, E-cadherin

miR-125b, by targeting Sema4C, could regulate EMT in
paclitaxel-resistant breast cancer cells

(109)

miR-129-
3p

– Nude mice MDA-MB-231,
MDA-MB-231/
Doc, MCF-7

CP110 miR-129-3p, by CP110 inhibition, could promote docetaxel
resistance of breast cancer cells

(109)

miR-137 – Nude mice MCF-7, MCF-7/
ADR
(adriamycin-
resistant),
HCC1937,
MDA‐MB‐468

DUSP4, E-cadherin,
Vimentin

miR-137, by targeting DUSP4 through inhibition of EMT,
could alleviate doxorubicin resistance in breast cancer

(110)

miR-140-
5p

– Nude mice and
human; 30 pairs of
BC with or without
paclitaxel

MCF-10A,
MCF-7, MCF-7/
PTX, MDA-MB-
231, MDA-MB-
231/PTX

E2F3 miR-140-5p, by upregulating E2F3, could improve the
paclitaxel resistance of BC

(111)

miR-148a,
miR-152

– 36 pairs of ER+ BC
with or without
tamoxifen, GEO
datasets

MCF-7 ALCAM, PARP,
Caspase-7/9

miR-148a and miR-152, by downregulating ALCAM, could
reduce tamoxifen resistance in ER+ BC

(33)

(Continued)
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TABLE 4 | Continued

microRNA Expression
pattern

Samples Cell lines Target/pathway Function Reference

miR-155-
3p

Down TCGA database,
nude mice and
human;10 pairs of
BC tissue and
ANTs

MCF-10A,
MCF-7, MCF-7/
PR, SKBR-3,
MDA-MB-231

MYD88, Bcl-2, Bak-1,
Bax, Caspase-3

miR-155-3p, by the negative regulation of MYD88, could act
as a tumor suppressor and reverse paclitaxel resistance in
human breast cancer

(83)

miR-200 – – MCF7/TAM,
MCF-7, T47D

Vimentin, ZEB1/2,
c-MYB

miR-200, by regulation of MYB, affects tamoxifen resistance
in breast cancer cells

(112)

miR-200c – GEO database,
nude mice

SKBr-3 Vimentin, E-cadherin,
smad3, ZEB1

miR-200c, by targeting ZNF217 and ZEB1, could suppress
TGF-b signaling and counteract trastuzumab resistance and
metastasis in breast cancer

(113)

miR-222 Up 25 pairs of BC with
or without
doxorubicin

MCF-7, MCF-
7-R

Bim, Caspase-9/3 miR-222, by regulation of miR-222/bim pathway, could
promote drug resistance to
doxorubicin in breast cancer

(114)

miR-326 – 35 pairs of BC and
ANTs

MCF-7, MCF-7/
VP (VP-16-
resistant MCF-
7)

MDR-1, MRP-1,
BCRP,

miR-326 overexpression, by transfection of miR-326 mimic,
could downregulate the expression of MRP-1 and also
sensitize MCF-7/VP MDR cells to cytotoxic drugs in breast
cancer

(115)

miR-375 – – MCF-7 HOXB3, TWIST,
Cd133, Cd44, MTdH

miR-375, by degrading HOXB3, could inhibit cancer stem
cell phenotype and tamoxifen resistance in human ER-
positive breast cancer

(103)

miR-381 Down 46 pairs of BC
tissue and ANTs

MCF-7, MCF-7/
DDP MDA-MB-
231,
MDA-MB-231/
DDP

MDR1 miR-381, by targeting MDR1, could overcome cisplatin
resistance in breast cancer

(116)

miR-381 – Nude mice and
human;48 pairs of
BC tissue and
ANTs, TCGA
database

MCF-7,
MCF-7/CDDP,
MDA-MB-231,
MDA-MB-231/
CDDP, MCF-
10A

EZH2 EZH2 knockdown, through epigenetically silencing miR-381,
could improve the cisplatin sensitivity of breast cancer cells

(117)

miR-423 Up Nude mice and
human; 40 pairs of
BC tissues and
ANTs

MCR-7,
MCF-7/ADR

ZFP36, b-catenin miR-423, via the Wnt/b-catenin signaling pathway, could
inhibit the expression of ZFP36 in breast cancer cells. This
miRNA induces chemoresistance

(118)

miR-489 – Nude mice, BC
tissue

MCR-7, MCF-
7/ADM

Smad3 miR-489 downregulation or gain of Smad3 is a
potential modulator of both chemoresistance and EMT-like
properties in breast cancers. The expression of miR-489 was
decreased in chemoresistance MCF-7/ADM cells compared
with chemosensitive cells. Upregulation of miR-489
enhanced the chemosensitivity

(119)

miR-520h – – MCF-7,
MCF-7/Taxol

OTUD3-PTEN, p-AKT miR-520h, by targeting the OTUD3-PTEN axis, could
stimulate resistance to paclitaxel

(120)

miR-567 Down GEO database,
nude mice and
human;60 pairs of
BC tissue and
ANTs

SKBR-3,
BT474, SKBR-
3-TR,
BT474-TR

p62, LC3-I, LC3-II,
ATG5, TSG101,
HSP70

Exosome-transmitted miR-567 reverses trastuzumab
resistance by inhibiting ATG5 in breast cancer

(121)

miR−873 – – MDA-MB-231,
MDA-MB-
231GEMr,
BT549

ZEB1, E-cadherin,
AXL, CTGF, CYR61

Loss of miR−873, via targeting ZEB1, could contribute to
gemcitabine resistance in triple−negative breast cancer

(122)

miR-1246 Up 75 pairs of BC and
ANTs

MCF-7,
MDA-MB-231,
MCF-10A,
HMLE

CCNG2, tsg101,
calnexin

miR-1246, by targeting CCNG2 in breast cancer, could
promote cell proliferation, invasion, and drug resistance

(123)

miR-15a,
miR-16

– – MCF-7,
MDAMB-231

BMI1, RING1A,
RING1B, EZH2,
g-H2AX, Ub-H2A,
CHK2, ATM, RNF8,
RNF168, MEL18,

These miRNAs enhance the sensitivity of breast cancer cells
to DNA damage conferred by doxorubicin

(124)
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TABLE 4 | Continued

microRNA Expression
pattern

Samples Cell lines Target/pathway Function Reference

p53BP, BRCA1, p21,
p53, CDK1, Cyclin-B1

miR-27b – GEO Datasets MCF-7, MCF-7/
TamS

HMGB3, E-cadherin,
N-cadherin

miR-27b, by targeting HMGB3, could regulate tamoxifen
sensitivity

(125)

miR-29b-
1, miR-29a

– – MCF-7, LCC2,
LCC9, LY2

ERa, DICER Tamoxifen could regulate miR-29b-1 and miR-29a
expression

(104)

miR-33a – – SUM149,
SUM159, KPL4
IBC,
MDA-MB-231

ABCA1 miR-33a could decrease high-density lipoprotein-induced
radiation sensitivity

(125)

miR-107 – – MCF-7, Taxol/
miR-107

Bax, Bcl-2, Akt,
TRIAP1

miR-107, by targeting TRIAP1, could regulate chemodrug
sensitivity in mammary cancer cell

(126)

miR-107 Down 35 pairs of breast
cancer tissue and
ANTs

MCF-7, MCF-7/
PTX

TPD52, Wnt/b-catenin,
Cyclin D1

miR-107, by targeting TPD52 through Wnt/b-catenin
signaling pathway, could enhance paclitaxel sensitivity in
breast cancer cells

(127)

hsa-miR-
125a-3p

Down 37 pairs of BC
tissue and normal
adjacent tissue with
or without
doxorubicin
treatment

MECs, MCF-7,
MCF-7/LCC2,
MDA-MB-468,
MDA-MB-231,
MDA-MB-468/
R,
MCF-7/R,
MDA-MB-468/
S,
MCF-7/S

BRCA1 hsa-miR-125a-3p, by regulating BRCA1 signaling, could
function as a tumor suppressor in breast cancer

(128)

miR-124-
3p

Up 40 pairs of BC
tissue and ANTs

MCF-7, MCF-
7-ADR, MCF-
10A, 293T

ABCC4, P-gp Overexpression of miR-124-3p and downregulation of
ABCC4 could increase sensitivity to ADR in MCF-7-ADR
cells

(129)

miR-125a Up Nude mice MDA-MB-231,
MCF-7, SKBR-
3, Hs578T,
BT-549, 293T

HER2 miR-125a, by inducing HER2, could enhance the sensitivity
to trastuzumab in triple-negative breast cancer cells

(130)

miR-135b-
5p

– 28 pairs of BC
tissue and ANTs,
nude mice

MCF-7, MCF-7/
DOXR, MDA-
MB-231,

AGR2, Caspase-2,
Bak, Bim, Bcl-2, Bcl-
xL, Mcl-1

miR-135b-5p, by targeting anterior gradient 2, could
enhance the doxorubicin sensitivity of breast cancer cells

(129)

miR-144 – – MDA-MB-231,
SKBR3

Bax, Bcl-2, N-
Cadherin, Vimentin,
Snail, AKT, PTEN

miR-144, by targeting PTEN/Akt signaling pathway, could
decrease the expression of PTEN and increase the
expression of pAKT in MDA-MB-231 and SKBR3 in breast
cancer cells

(131)

miR-181a – Nude mice MCF-7, MCF-7/
MX

MRP, PGP, LRP,
BCRP

miR-181a, by targeting breast cancer resistance protein
(BCRP/ABCG2), could enhance drug sensitivity in
mitoxantone-resistant breast cancer cells

(132)

miR-181b-
2-3p

– Nude mice MDA-MB-231,
MDA-MB-231/
ADR,
293 T

Caspase-3, ABCC3 Curcumol, via regulating the miR-181b-2-3p/ABCC3 axis,
could enhance the sensitivity to doxorubicin in triple-negative
breast cancer

(133)

miR−187
−3p

Down 30 pairs of BC
tissue and ANTs

MDA-MB-231 FGF9 miR−187−3p, by targeting FGF9 expression, could increase
gemcitabine sensitivity in breast cancer cells

(134)

miR-190 – Nude mice
treatment with or
without tamoxifen

MCF7, T47D,
MDA-MB-453,
MDA-MB-468,
MDA-MB-231,
MDA-MB-435

SOX9, Oct-4, Nanog,
ERa, ZEB1,
Wnt/b-catenin, c-Myc,
Histone-3, TCF4,
Cyclin-D1

miR-190, by regulating SOX9 expression, could enhance the
sensitivity to endocrine therapy in breast cancer

(135)

miR-195 Down 17 pairs of BC and
ANTs

MCF-7, MCF-7/
ADR

Raf-1, Bcl-2,
P-glycoprotein

Upregulation of miR-195, through inhibition of Raf-1, could
increase the sensitivity of breast cancer cells to adriamycin
treatment

(136)

miR−205
−5p

Down 25 pairs of BC
tissue and ANTs

MDA-MB-231,
MDA-MB-231/
GEM, BT549,
MCF10A

ERp29, HSP27 miR−205−5p downregulation by ERp29 upregulation could
decrease the gemcitabine sensitivity of breast cancer cells

(137)

miR302a/
b/c/d

– Nude mice MCF-7, MCF-7/
MX

BCRP miR-302a/b/c/d, through the suppression of BCRP, could
increase drug sensitivity in breast cancer cells

(138)

(Continued)
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tumorigenic cancer cells (145). This kind of function of miRNAs
has a practical significance in the determination of the behavior
of breast cancer as well as its response to therapeutic modalities.
In addition, a number of anti-cancer agents exert their effects
through the modulation of the expression of miRNAs that affect
apoptosis or autophagy—for instance, curcumol, via regulating
the miR-181b-2-3p/ABCC3 axis, could enhance the sensitivity of
triple-negative breast cancer cells to doxorubicin (133). Some
miRNAs can affect several aspects of breast carcinogenesis—for
instance, miR-34a can affect apoptosis, EMT, and drug
resistance. miR-23a has an essential role in the regulation of
apoptosis and EMT. Moreover, miR-15a and miR-16a regulate
apoptosis and drug resistance. NF-kB, mTOR, and Wnt/b-
catenin pathways are among the shared pathways between
several miRNAs acting on these processes. Since miRNAs can
target multiple transcripts, they can often modulate numerous
pathways. Notably, miRNAs exert their inhibitory roles via a
complex process which is dependent on cellular constituents,
indicating tissue or cell type-specific features (146).

The small molecular size of miRNAs and their capacity in the
regulation of the expression of genes participating in the evolution
of cancer have endowed miRNAs the potential to influence the
treatment of breast cancer (147). As miRNAs can affect both the
development of breast cancer and the response of cancerous cells
to therapeutic options, intervention with their expression is
regarded as an appropriate treatment modality for almost every
stage of cancer development and progression. Forced over-
expression or suppression of miRNA expression is a possible
therapeutic modality for breast cancer. Examples of miRNA-
antagonism methods are 2′-O-methyl-modified oligonucleotides,
locked nucleic acid anti-miRNAs, and cholesterol-conjugated
antagomirs. These methods are being used as miRNA-inhibitory
Frontiers in Oncology | www.frontiersin.org 15
tools (148). In fact, the over-expression of miRNAs that induce
cell apoptosis, such as miR-7-5p (16), miR-15a, miR-16 (19), and
miR-17-5p (20), or inhibit cell cycle progression can suppress the
progression of breast cancer. On the other hand, the suppression
of expression of oncogenic miRNAs by oligo antisense
mechanisms is a treatment modality. In vitro studies have
provided a firm evidence for the specificity and efficacy of
miRNA-based modalities in the modulation of the expression of
target genes, yet future studies should focus on the improvement
of delivery systems, enhancement of stability of the prescribed
molecules, decreasing off-target effects, and assessment of long-
term safety of these molecules (149). Only after solving these
issues can miRNA-based therapeutics enter clinical practice.

The identification of the miRNA-associated network and
interplay between miRNAs and other types of regulatory
transcripts will open new opportunities for diagnostics and
therapeutic modalities in breast cancer. System biology methods
can be used to predict the role of miRNAs in the determination of
response to anti-cancer therapies and prognostic approaches in
clinical settings. Targeting miRNAs with essential roles in a drug-
resistant network has been suggested as a putative approach in
overcoming chemoresistance in breast cancer (146). Finally, the
combinations of conventional anticancer drugs with anti-
oncogenic miRNA reagents are expected to enhance treatment
responses. In fact, the recognition of miRNA profiles in different
stages of breast cancer development and development of miRNA-
based targeted therapies are two wings of miRNA studies which
can introduce novel promising results in clinical settings.

In brief, the contribution of miRNAs in the regulation of cell
death, cell motility and invasion, activity of cancer stem cells,
regulation of EMT, and modulation of response to therapeutics
potentiate miRNAs as proper targets for the treatment of breast
TABLE 4 | Continued

microRNA Expression
pattern

Samples Cell lines Target/pathway Function Reference

miR-302b – – MDA-MB-231,
BT549, T47D

Caspase-3, PARP,
E2F, vinculin, ATM

miR-302b, by regulating E2F1 and the cellular DNA damage
response, could enhance breast cancer cell sensitivity to
cisplatin

(139)

miR-378a-
3p

Down 56 pairs of BC
tissue and ANTs,
Omnibus database

MCF-7, 293T GOLT1A miR-378a-3p modulates tamoxifen sensitivity in breast
cancer MCF-7 cells through targeting GOLT1A

(140)

miR-381 – Nude mice MCF-7, MCF/
DOX, MDA-
MB-231, MDA-
MB-231/DOX

FYN, ERK, p38 miR-381, by inactivation of MAPK signaling via FYN, could
induce the sensitivity of breast cancer cells to doxorubicin.

(141)

miR-638 – 78 pairs of BC
tissue and ANTs

T47D, MCF-7,
MDA-MB-231,
MDA-MB-468

STARD10 miR-638, via regulating STARD10, could lead to potentiation
of docetaxel sensitivity in BC cells

(142)

miR-638 – – MDA-MB-231,
Hs578T, MCF-
7, T47D, MCF-
10A

BRCA1 miR-638, by regulating BRCA1 expression via DNA repair
pathways, could enhance radiation and chemotherapy
sensitivity in TNBC cells

(143)

miR−1207
−5p

Up 30 pairs of TNBC
and ANTs with or
without paclitaxel
treatment

MDA-MB-231,
MDA-MB-436,
MDA-MB-453,
MCF-10A,
MDA-MB-293

LZTS1, Bax, Bcl-2, Akt miR−1207−5p, by suppression of LZTS1 expression, could
regulate the sensitivity of triple−negative breast cancer cells
to paclitaxel treatment

(144)
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cancer. However, the clinical application of miRNA-based therapies
depends on the effective documentation of miRNA profiles in
different subtypes of breast cancer and the construction of the
interaction network between miRNAs and genes that regulate
breast carcinogenesis and chemoresistance phenotype.
Frontiers in Oncology | www.frontiersin.org 16
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