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Entropy alone can self-assemble hard nanoparticles into colloidal
crystals of remarkable complexity whose structures are the same
as atomic and molecular crystals, but with larger lattice spacings.
Molecular simulation is a powerful tool used extensively to study
the self-assembly of ordered phases from disordered fluid phases
of atoms, molecules, or nanoparticles. However, it is not yet
possible to predict colloidal crystal structures a priori from par-
ticle shape as we can for atomic crystals from electronic valency.
Here, we present such a first-principles theory. By calculating and
minimizing excluded volume within the framework of statistical
mechanics, we describe the directional entropic forces that collec-
tively emerge between hard shapes, in familiar terms used to de-
scribe chemical bonds. We validate our theory by demonstrating
that it predicts thermodynamically preferred structures for four
families of hard polyhedra that match, in every instance, previous
simulation results. The success of this first-principles approach to
entropic colloidal crystal structure prediction furthers fundamen-
tal understanding of both entropically driven crystallization and
conceptual pictures of bonding in matter.
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In his 1704 treatise, Opticks, Sir Isaac Newton wrote of an
“attractive” force that holds particles of matter together. By

observing that matter stays together in a host of different every-
day situations, he inferred the presence of what we now refer
to as chemical bonds, one of the most fundamental concepts in
science. Chemical bonds originate in electronic interactions. To-
gether with thermodynamics, chemical bonds allow us to predict
and understand materials structure and properties, including the
way in which atoms arrange to form crystals, from the ionically
bonded simple lattice of table salt, to the covalently bonded
structure of diamond, to multicomponent alloys with thousands
of atoms in a unit cell held together by delocalized metallic
bonding.

Like atoms, nanoparticles (NPs) can self-assemble into crys-
tal structures of extraordinary complexity and diversity (1–6).
What “force” would Newton infer from observing these col-
loidal crystals? From his writings, he would undoubtedly infer
an attraction—a bond—between particles as for atoms, but of
a different origin and at larger length, time, and energy scales.
DNA linkers, ligand–ligand pairs, and protein–antibody pairs are
all examples of bonding elements used to link NPs together into
colloidal crystals via self-assembly. Because the self-assembled
structures are often isostructural to known atomic crystals, NPs
are loosely considered the colloidal analogs of atoms.

But what would Newton make of colloidal crystals self-
assembled, without bonding elements, from so-called “hard”
particles whose only attribute, like billiard balls, is the inability
to overlap? Onsager (7), in 1949, was the first to recognize the
importance of shape for equilibrium phases of hard colloidal
particles (8, 9). Frenkel (10, 11) further elucidated the connection
between shape and entropy. Today, we know that many reported
hard-particle colloidal crystals are, remarkably, isostructural to
known atomic crystals with covalent, ionic, and metallic bonding
(12–19). For example, all 14 Bravais lattice types (12), Frank–
Kasper (12) and clathrate structures (16), open host–guest

crystals (19), quasicrystals (12, 13), and a Bergman-like crystal
with a 432-particle unit cell (16) self-assembled from disordered
fluid phases in computer simulations of hard, otherwise nonin-
teracting, polyhedra. Experiments likewise observed colloidal
crystallization in systems of hard particles, although the diversity
of structures reported, to date, is limited by challenges in making
shapes devoid of any energetic interactions (17, 20, 21).

Because hard-particle crystals have no potential energy, they
are stabilized solely by entropy maximization, which, counterin-
tuitively, is achieved when the ordered crystal has more available
microstates (possible particle configurations) than the disordered
fluid (7, 10, 11, 22–24). In the absence of explicit bonding ele-
ments, entropy maximization leads to the emergence of effective,
attractive entropic forces with directionality that arises from
particle shape and crowding. This directionality creates local va-
lence and, ultimately, long-range order (25, 26). Such directional
entropic forces (DEFs) are related to the way in which the system
distributes increasingly limited local free volume upon crowding.
Free volume refers to the unoccupied space into which a particle
may move within a fixed arrangement of particles. A large pocket
of free volume surrounding a pair of particles produces weak to
no DEFs between the pair, whereas small regions of free volume
produce strong DEFs. In this regard, DEFs are reminiscent of
chemical bonding, where low and high local electron density
correspond to weak and strong bonding, respectively. The ex-
tent to which the same complexity and diversity of structure is
possible from chemical bonding and from entropic “bonding” is
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unexpected and demonstrates that emergent phenomena such as
crystallization are agnostic to the origin of these bonds, provided
the system is subject to the laws of thermodynamics. We assert
that, if entropic bonds are to be considered a useful conceptual
picture like chemical bonds, then entropic colloidal crystal struc-
ture prediction using ab initio methods should be possible, in the
same way that atomic crystal structures are routinely predicted
by (numerically) solving Schrödinger’s equation (27, 28).

Here we report a theory of entropic bonding that predicts
thermodynamically preferred colloidal crystal structures directly
from particle shape and a mean-field description of DEFs. Using
statistical mechanics, we develop a framework for calculating
entropic bonds between particle shapes that does not involve
computer simulations. We test our theory on several challenging
examples to show that it correctly selects the thermodynamically
preferred crystal structures reported in simulations. For brevity,
we limit our discussion to single-component crystals composed
of hard polyhedral particles, although generalization to multi-
component crystals of arbitrarily shaped hard or patchy particles
(29, 30) is foreseeable. We briefly discuss how our theory can be
extended to include depletion interactions. Lastly, by compar-
ing mathematical similarities between our statistical mechanical
theory and quantum theory, we posit that theoretical ideas from
quantum mechanics might be useful, if only by analogy, for un-
derstanding colloidal systems and vice versa. The success of our
theory not only provides a way to predict colloidal self-assembly
but also presents a potentially unifying framework that bridges
our understanding of crystallization processes across scales.

Results and Discussion
Entropic crystallization builds upon two fundamental tenets
of statistical mechanics (10, 11). First, thermodynamic systems
evolve to the most probable state. Second, the probability of any
microstate depends on the energy of that microstate. Because
hard particles do not interact other than through excluded
volume, there is no potential energy, and thus all microstates
are equally probable. The most probable thermodynamic state
is then the one with the largest number (Ω) of microstates, or,
equivalently, the maximum entropy S via Boltzmann’s expression
S = k lnΩ.

The starting point of our microscopic theory of entropic bond-
ing is that hard particles optimize the sharing of free volume
with neighbors to maximize the entropy of the system. Depending
on a given particle configuration, the local free volume can
vary considerably in both size and shape. Optimization—for
example, via Monte Carlo or hard-particle molecular dynamics
simulation (31)—selects configurations where the size and shape
distribution of local free volume maximizes the entropy of the
system. Instead of free volume, we can consider the excluded
volume around a particle. Excluded volume refers to space that
is inaccessible to a particle, due to the presence of another

particle. As such, it is dependent on the relative orientation of
the particles. While irrelevant for spheres, relative orientation
is important in systems of hard shapes and, importantly, can
be larger or smaller depending on how two shapes align (10,
11). A decrease in local excluded volume (e.g., of two polyhe-
dra orienting to align their facets) creates free volume nearby.
Minimizing a system’s excluded volume and maximizing its free
volume are equivalent, and both maximize the entropy (10, 24).
A first-principles approach to developing a microscopic theory of
entropic bonding would naturally start with one or the other of
these volumetric quantities. We choose to consider local excluded
volume. In what follows, we present the key steps in the devel-
opment of entropic bond theory. First, we introduce the ansatz
of pseudoparticles (pPs) as a fictitious, mathematical construct
that will enable us to quantify local excluded volume. Using this
ansatz, we next derive an effective interaction between particles
and pPs using mean-field theory that will ultimately represent the
effective entropic attraction between NPs arising from crowding.
We then derive an eigenvalue equation whose solution, when
combined with the mean-field result, gives the free energy of
a hard-particle colloidal crystal structure (as the energy of the
optimized pP density) without need for computer simulation or
thermodynamic integration (32, 33). Mathematical details may
be found in SI Appendix.

Mean-Field Derivation of Effective Interaction. We consider a sys-
tem of N hard anisotropic NPs—or, simply, particles—occupying
a volume V (Fig. 1A). To quantify the local excluded volume for
a configuration of particles, we start by uniformly filling all empty
space with N pPs (Fig. 1B). By definition, the fictitious pPs are
significantly smaller than the NPs, interact with each other with
ideal gas interactions, cannot overlap NPs, and interact with NPs
via an interaction Um , which we now derive. We quantify pP
density using statistical mechanics in the [N ,N ,V ,T ] ensemble,
where the general partition function for the proxy system of N
NPs and N pPs is

Q (N ,N ,V ,T ) =

N∑
i=1

∫
{ri ,αi}

∫
N

exp [−βU (�rN , �αN ,�rN )]

× dn1dn2 . . . dnNdq1dq2 . . . dqN . [1]

Here β = 1/kT , k is the Boltzmann constant, and U is the total
interaction energy of the system;

∫
{ri ,αi}

represents a configura-
tional integral over all possible positions and orientations of the
ith particle, and

∫
N represents the configurational integral over

all N pPs. For ease of notation, we define d�ΓN ≡ dn1dn2 . . . dnN

and d�ΓN ≡ dq1dq2 . . . dqN , where n refers to particles and q
refers to pPs. We can express the probability of a single reference
particle having orientation α at position r by integrating over all
pPs and over N − 1 particles in Eq. 1. This integration gives

Fig. 1. Schematic of pP ansatz. (A) A cubic crystal of hard cubes. (B) Uniform filling of all unoccupied space with fictitious pPs (gray). (C) Energy minimization
of the proxy system of pPs and cubes in B creates regions of high and low pP density that stabilize NP positions and orientations. Inset shows top-down view.
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P (γ) =
N∑
i=2

∫
{ri ,αi}

∫
N

exp [−βU (�rN−1, �αN−1,�rN )]

× exp [−βU1 (γ)]Q
−1d�ΓN−1d�ΓN , [2]

where
∑N

i=2

∫
{ri ,αi}

∫
N represents the configurational integrals

over all pPs and N − 1 particles, and we define γ = (r1,α1).
The interaction U1 (γ) for the reference particle is separated
from the interactions for all remaining particles and pPs,
U (�rN−1, �αN−1,�rN ). U1 (γ) can be decomposed into

U1 (γ) = UR (γ) + UA (γ) + Um (γ) . [3]

Up to this point, the derivation is general insofar as two-body
interactions are concerned. UR (γ) and UA (γ) represent the
summation over all pairwise repulsive and attractive interactions,
respectively, between the reference particle and other particles.
For hard particles, UA (γ) = 0, and UR (γ) is ∞ when particles
overlap, and zero otherwise.

The quantity Um (γ) is the mean-field interaction potential of
the reference particle with the equilibrium distribution of all pPs.
By definition, Um (γ) is a function only of the reference particle’s
position and orientation, and can be moved outside the integrals
in Eq. 2. Plugging Eq. 3 into Eq. 2 gives

P (γ) =
exp [−βUm (γ)]

Q

×
N∑
i=2

∫ ′

{ri ,αi}

∫ ′

N
exp [−βU (�rN−1, �αN−1,�rN )]

× exp [−βUR (γ)] d�Γ
′
N−1d�Γ

′
N , [4]

where the primes in Eq. 4 indicate that the integrals are per-
formed over only configurations without overlapping particles.
We next recognize that the configurational integrals in Eq. 4
give the partition function of the system less one particle, Q ′ =
Q (N − 1,N ,V ,T ), and thus P (γ) = exp [−βUm (γ)] (Q ′/Q).
To further simplify P (γ), we imagine that the reference particle
is removed, and the system is compressed to remove the void
left by the missing particle. This assumption allows us to approx-
imate Q ′ as Q ′ = CQ

(
N − 1,N ,

∫
[V (w)− νp(w , γ)] d �w ,T

)
(34). Here, νp(γ,w) is the volume contributed by the wth dif-
ferential volume element of the removed particle, given config-
uration γ. Each wth element represents a radial layer moving
away from the center of a reference particle. C serves as a
normalization constant and will be absorbed into the normaliza-
tion factor for P (γ). Plugging into Eq. 4, it is straightforward
(SI Appendix, section I) to derive P (γ) for the reference particle
(dropping the implicit γ dependency for notation brevity),

P = exp
[
− β

(
Um +

∫
π (w) νp (w) d �w − μp

)]
, [5]

where μp is the chemical potential of a particle, and π (w) is
the pressure exerted on the wth volume element (SI Appendix,
section I). We give an alternative derivation of Eq. 5 by
explicitly maximizing the entropy using a lattice model, in
SI Appendix, section II.

A derivation similar to the derivation of Eq. 5 from Eq. 2 can
be also performed for a reference pP, giving

ρpP (w) = exp
[
− β

(
π (w) νpP (w)− μpP

)]
, [6]

where μpP is the chemical potential of a pP, and other terms have
the same meaning as in Eq. 5. To develop a functional form for
the pP–NP interaction potential Um , we take Eq. 6, rearrange for
π, plug π into Eq. 5, and solve for Um (SI Appendix, section III).

Fig. 2. Functional form of pP–NP potential. The pP–NP interaction Um (r)
becomes stronger for increasing μpP , indicating high pP localization.

For a given configuration γ, setting w to be the distance r between
a pP and an NP (in units of NP in-sphere diameter σ) yields,
finally, Eq. 7 for the pP–NP interaction Um ,

βUm (r) = [ln ρpP (r)− βμpP ] r
−2 +

N∑
i

βUcore (r) , [7]

where Ucore represents a hard-core repulsion preventing pPs
from overlapping NPs, which arises in the pP equation analog of
Eq. 4. The mean-field interaction Um (r) between NPs and pPs
describes, in effect, the cohesive energy holding an NP in place
within a given configuration of particles (Fig. 2).

From Mean Field to Eigenvalue Equation. Eq. 7 can be inverted to
give ρpP (r), the spatially dependent, mean-field density distribu-
tion of the pPs. This quantity serves as a proxy for the excluded
volume. To calculate the optimal pP distribution for a given con-
figuration of particles, we write the convection–diffusion equa-
tion for a system of N particles and N pPs. This equation is
also known as the Smoluchowski equation, a special case of the
Fokker–Planck equation in statistical mechanics describing dif-
fusion in the presence of a driving force. The functional form of
this equation, given a set of N particle orientations and positions
and the interaction potential Um in Eq. 7, is

∂ρpP
∂t

=∇2ρpP + β∇ (∇UmρpP ) . [8]

Solving Eq. 8 by separation of variables transforms the operator
in the Smoluchowski equation into a Hermitian, Schrödinger-like
Hamiltonian operator (35, 36). Taking the equilibrium, steady-
state limit immediately results in an eigenvalue equation for ρpP ,[

∇2 + β∇2Um − (β∇Um)2
]
ρpP = EρpP . [9]

The eigenvalues E obtained from solving Eq. 9 can be inter-
preted as inverse equilibration times for pPs to move through
the system—that is, relaxation frequencies associated with the
dynamical modes of the pP density distribution. The lowest
eigenvalue corresponds to the lowest-frequency mode, or longest
equilibration time (i.e., pPs are more localized), corresponding to
the equilibrium pP distribution.

Because the operator acting on ρpP in Eq. 9 represents the
Hamiltonian for the proxy system of N particles and N pPs, the
eigenvalues E may also be interpreted as energies corresponding
to the various dynamical modes of the pP density distribution for
a given configuration of particles. These energies in the proxy
system are equivalent to free energies in the original system
of hard particles. Comparison of the computed eigenvalues for
NPs arranged in different crystal structures should predict the
thermodynamically preferred crystal as the structure with the
lowest eigenvalue of all tested crystal structures. We test this
assertion in the next section.
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Solving the Eigenvalue Equation. Because Eq. 9 is an eigenvalue
equation, we can solve it using numerical methods found in
quantum mechanical (QM) codes (e.g., ref. 37) that solve the
Schrodinger equation (and its variants, such as the Kohn–Sham
equation) for energies of atomic crystal structures. We first write
the pP probability density as a series of “shape harmonics” in
a reference frame conducive to the particle shape, similar to
the spherical harmonics used in QM (SI Appendix, section IV).
The resulting shape harmonics are functions of two angular
components. We call these shape harmonics “shape orbitals” in
analogy with the correspondence between spherical harmonics
and atomic orbitals. The lowest shape orbitals for a cube, tetra-
hedron, dodecahedron, and hexagonal prism are shown in Fig. 3
A1–D1, respectively. We then take a linear combination of shape
orbitals [LCSO, analogous to a linear combination of atomic
orbitals, LCAO, used in QM codes (28)] as a trial solution to solve
for the optimal configuration of particles. The solution entails op-
timizing orbital overlap for a given arrangement of NPs, consid-
ering all possible relative orientations of NPs. Optimizing orbital
overlap minimizes the energy of the proxy system and gives the
equilibrium distribution of pP density. Because of the relation-
ship between pPs and excluded volume, this optimization equiv-
alently maximizes entropy in the original system of hard particles.
Details of the calculation are given in Materials and Methods.

Solutions of Eq. 9 are expected to produce pP distributions
with regions of high and low density that correspond, respec-
tively, to low and high local excluded volume around the NPs
(Fig. 1C). The pPs in high-density regions of the pP distribution
can be considered localized, and the pP chemical potential μpP

provides a physical interpretation of localization. A small μpP

implies easy placement of new pPs, expected in the dilute NP
limit where entropic forces are weak and isotropic. In this limit,
the local excluded volume of an NP is maximal and equal to
the NP circumsphere volume, as reflected in weak pP localiza-
tion. Conversely, μpP increases as NPs become crowded, and it
becomes harder to accommodate another pP. As a result, the
pP density distribution develops strong localization, reflected in
deepening energy wells for high μpP (Fig. 2).

Below, we solve the eigenvalue equation for a single pair
of particles within a crowded system of N particles to define
the entropic bond. Subsequently, we show how the eigenvalue
equation can be applied to crystal structure prediction.
Entropic bonding. For a pair of polyhedral NPs, solving Eq. 9
predicts the most stable configuration in a crowded system of
polyhedra as the configuration favoring face–face alignment, in
agreement with previous simulations (38). The predicted “bond-
ing orbitals” between face-aligned polyhedra are visualized in
Fig. 3 A2–D2. Additionally, we find energy minima as a function

A1

C1 D1 D3

D2C2

C3

A3 B1 B3

B2A2

Fig. 3. Shape orbitals and entropic bonds. Shape and bonding orbitals for (A) cube, (B) tetrahedron, (C) dodecahedron, and (D) hexagonal prism. (1)
Visualization of the shape orbitals defined by angular expansions of the local pP density distribution. (2) The theoretically predicted lowest-energy pairwise
configurations (both position and orientation). (3) The bonding energy as a function of center-to-center separation distance at the predicted most stable
orientation for a pair of polyhedra. All polyhedra prefer face–face alignment with bond lengths of 1.1σ, where σ is the in-sphere diameter of each respective
shape. Cubes, tetrahedra, and hexagonal prisms exhibit bond energies of 1.5 kT to 1.6 kT. For the pair of dodecahedra, secondary stabilization (from local
facets near the main face–face contact) lowers the bond energy to 2.3 kT. The LCSO approximation employs the lowest shape orbital for each shape.

4 of 8 PNAS
https://doi.org/10.1073/pnas.2116414119

Vo and Glotzer
A theory of entropic bonding

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116414119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116414119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116414119/-/DCSupplemental
https://doi.org/10.1073/pnas.2116414119


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

Fig. 4. Crystal predictions for cubes. (A) Energy per cube within each
respective lattice. Visualization of cubes with bonding orbital in (B) SC, (C)
FCC, and (D) BCC. The LCSO approximation employs the first shape orbital
for the cube. Error bar determination is described in Materials and Methods.

of center-to-center separation between the two polyhedra
(Fig. 3 A3–D3). These minima correspond to “bond strengths”
for face-aligned tetrahedra, cubes, and hexagonal prisms ranging
between 1.5 and 1.6 kT , with bond lengths of 1.1σ, where σ is the
polyhedron in-sphere diameter. Dodecahedra exhibit a stronger
bond of 2.3 kT due to additional orbital overlaps between small
facets. The calculations employed in Fig. 3 provide a quantitative
description of an entropic bond in terms of pP local density and
are extensible to particles of arbitrary shape.
Crystal structure prediction with entropic bond theory. To illus-
trate the application of entropic bond theory to colloidal crystal
prediction, we begin with a simple example and compute the
optimal arrangement of hard cubes at particle volume fraction
η = 0.55 in three lattices—body-centered (BCC), face-centered
(FCC), and simple cubic (SC). Fig. 4A shows the computed lattice
energy of formation, indicating that cubes are more stable when
arranged in an SC lattice relative to BCC and FCC, as expected
(14, 39, 40). Visualization of the bonding orbitals (Fig. 4 B–D)
helps explain why. Cubes in an FCC arrangement suffer a deficit
of two face–face bonding orbitals per cube that cannot be offset
by gains in edge–edge bonding with neighbors. Similarly, the
center cube in the BCC lattice gains 12 edge–edge bonding
contacts but loses all six of its face–face bonds. Since edge–edge
bonding is higher in energy than face–face bonding, both FCC
and BCC lose out to SC.*

Entropic bond theory can predict solid–solid transitions as
particle shape is modified. Consider the truncated tetrahedron
shape family (43). Simulation studies reported the self-assembly
of a series of crystal structures, shown in Fig. 5A, as the corners
of a regular tetrahedron are truncated (full truncation produces
a regular octahedron) (43). Fig. 5 B and C shows a direct compar-
ison between the lowest-energy crystal structure predicted using
our framework (colors in Fig. 5B match the corresponding unit
cells in Fig. 5A) with the transitions reported in Damasceno et al.
(43) shown in black lines, indicating excellent agreement between
theory and simulation.

Our theory can also predict solid–solid transitions for a given
shape as a function of particle volume fraction. We consider a
system of regular trigonal bipyramids (TBPs) for which a thermo-
dynamic transition from a dodecagonal quasicrystal approximant
(QCA) to a triclinic dimer lattice with increasing volume fraction
was reported in simulations (44). Representative snapshots of

*We additionally applied entropic bonding theory to calculate the free energy difference
between FCC and HCP for hard spheres, reproducing well-known results that FCC is
slightly lower in free energy by 0.004 kT (SI Appendix, section V) (41, 42).

TBPs within the QCA and dimer lattices are shown in Fig. 6
A and B, respectively. Entropic bond theory predicts the re-
ported transition (Fig. 6C, black horizontal line in vertical color
bar, far right) at a particle volume fraction of 0.78 ± 0.01 as
compared to the reported value of 0.79 ± 0.008 (44). Visual-
ization of bonding orbitals for a TBP within the approximant
and dimer phases indicates stark differences in pP distributions
(Fig. 6D). To understand which bonding orbital pattern leads
to the lower energy above and below the transition, we exam-
ine the bonding energy of a reference TBP and a neighboring
TBP, at varying particle volume fractions. The bonding energy
curves reveal a distinct change in shape at the transition volume
fraction that drives the shift from the dimer lattice to QCA
(Fig. 6C).

Complex atomic crystals have multiple Wyckoff positions,
meaning that different positions within the crystal possess
different local environments. The same is true for colloidal
crystals, and entropic bond theory predicts this. We consider a
system of hard pentagonal bipyramids (PBPs) that, in simulation,
self-assembled from a fluid to a complex, multilayered crystal
with a 244-particle unit cell (oF244) (16). Fig. 6E shows a
snapshot of the PBPs within the oF244 lattice, colored according
to their embedding layer L1, L2, or L3 within the crystal (Fig. 6F).
The energy in the system is partitioned equally among the layers
by adopting a different pP density distribution. Visualizations
of the bonding orbitals show strong pP localization on the PBP
faces in L1 (Fig. 6 G, Left), while pPs localize in a ring around
the center of each PBP in L2 (Fig. 6 G, Center) and are much
less localized in L3 (Fig. 6 G, Right). These results elucidate
how diversity in local bonding environments can promote crystal
complexity.

Fig. 5. Crystal predictions for shape-driven solid–solid transition of trun-
cated tetrahedra. (A) Snapshot of thermodynamically preferred structure
with relative orientations between truncated tetrahedra predicted from
theory. Colors correspond to the same lattice in C. (B) Lattice energy per
particle used for phase diagram. We additionally computed the SC and rota-
tor crystal to show that other structures are not stable within this regime for
the vertex-truncated tetrahedron shape family. (C) Phase diagram for vertex-
truncated tetrahedron shape family. Black lines indicate transitions between
respective regions found in simulations (43). With increasing truncation, the
stable phase transitions from QCA to diamond to β -Sn to BCC. The LCSO
approximation employs the first shape orbital for each polyhedron.
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Fig. 6. Crystal predictions for complex lattices. (A–D) Lattice prediction of solid–solid transition for TBPs. Snapshot of (A) 41-particle unit cell of QCA at
η = 0.79 and (B) seven two-particle unit cells of the trigonal dimer packing at η = 0.79. (C) Calculated bonding energy of a reference TBP and a neighboring
TBP a distance r away, at varying particle volume fractions η. At the previously reported (44) thermodynamic transition from the QCA to the dimer phase,
Ebond(r) undergoes a sharp transition from a single-well to a double-well function. The vertical color bar (far right) shows the lower-energy structure for TBPs
determined from lattice energy calculations as a function of η (colors correspond to A and B unit cells). The reported transition from QCA to dimer phase
obtained from Monte Carlo simulation is show as a black line (44). (D) Visualization of the entropic bonding orbitals around a reference TBP in QCA (Left)
and dimer (Right) phases just below and above the solid–solid transition. The LCSO approximation employs the first two shape orbitals for every TBP. (E and
F) Local bonding environment prediction for a complex and multilayered (oF244) lattice (16). (E) Representative snapshot of oF244 lattice. (F) Layer-specific
(L1, L2, L3) energy per PBP in the oF244 lattice. (G) While each PBP has similar energy within each layer, visualization of the entropic bonding orbital at the
same energy contour reveals that the local bonding environments differ significantly among L1 (Left), L2 (Center), and L3 (Right). Top and Bottom in G show
views from the top and side, respectively, of the PBP. The LCSO calculation employs the first shape orbital for PBP.

Conclusion
We have presented a theory of entropic bonding that can be
used to predict colloidal crystal structures of hard particles a
priori. We formulated the theory using a mathematical ansatz in
which fictitious pPs are used to approximate excluded volume in
a system of NPs. A mean-field derivation of a pP–NP interaction
was combined with a convection–diffusion equation, resulting
in an eigenvalue equation whose solution for a given colloidal
crystal structure gives the free energy of the structure as the en-
ergy of the pP distribution. By comparing solutions among many
structures, we can select for the one with maximum entropy.
We showed that our framework predicts an effective entropic
interaction between hard polyhedra that we quantify in terms
of regions of high pP density and describe as an entropic bond.
Our theory correctly predicts the thermodynamically preferred
colloidal crystal structures for four different families of hard
polyhedra as a function of shape or particle volume fraction.
It also shows how different crystal structures—and different
local environments within a crystal structure—facilitate entropy
maximization through visualization of bonding orbitals.

Entropic bond theory is different from, but complementary
to, two conventional approaches for determining the ther-
modynamically preferred colloidal crystal structure of hard
NPs—molecular simulations and Frenkel–Ladd free energy
calculations (14, 32, 33, 40). Molecular simulation finds maxi-
mum entropy solutions (provided kinetics allows) by sampling
millions of microstates in pursuit of the most probable state.
Frenkel–Ladd calculations are used to compute free energies
for given test crystals, but require simulation: Monte Carlo
simulations are employed to compute an average free energy
as a function of a given thermodynamic integration coupling
parameter. Our theory requires no simulation. Rather, it employs
an iterative, self-consistent solver akin to those used in electronic

structure calculations to solve an eigenvalue equation for the
entropy of a crystal structure.

Entropic bond theory shares some features with chemical
bonding theory, where significant theoretical developments over
many decades have enabled calculation of ground-state ener-
gies by optimizing the spatial distribution of electron density
throughout an atomic crystal (37, 45–47). In entropic bond the-
ory, calculation of entropy in a colloidal crystal is performed
by optimizing the spatially varying density of a distribution of
fictitious pPs that serve as a proxy for excluded volume. The
pP density optimization is realized by maximizing the overlap
of pP shape orbitals, which stabilizes the distance and orien-
tation between neighboring particles. By extension, solving for
the optimal spatial distribution of pPs to find the most probable
crystal structure of colloidal particles is akin to solving for the
optimal spatial distribution of electrons to find the ground-state
crystal lattice of atoms. In other words, pPs act, mathematically
speaking, as entropic analogs to electrons for entropically driven
self-assembly. Whereas quantum mechanics is the language of

Table 1. Chemical vs. entropic bonding

Chemical bonding Entropic bonding

Core Atomic nucleus Hard shape
Mediator Electrons pPs
Attraction Nuclear–electron Shape–pP
Repulsion Nuclear–nuclear Shape–shape

Electron–electron —
Orbitals Atomic (s, p, d, f) Shape
Bonding Orbital hybridization Orbital overlap
Governing equation Eigenvalue equation for Eigenvalue equation

electron density for pP density
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chemical bonding, statistical mechanics is the language of en-
tropic bonding. Table 1 provides an overview of these analogies.

The development of entropic bond theory presented here
relies on an unusual ansatz where excluded volume is approx-
imated by fictitious pPs. This mathematical device provides a
quantifiable proxy for excluded volume, which facilitates the
development of the theory. Explicit molecular dynamics sim-
ulations (48–50) of a system of NPs and pPs interacting via
the derived effective potential (Eq. 7)—while not necessary for
crystal structure prediction—provide additional validation of the
reasonableness of this ansatz (SI Appendix, section VI).

Our treatment of entropic forces in systems of hard particles is
different from a theoretical treatment of depletion interactions,
which are also entropic in origin. Although it may be tempting
to interpret pPs as depletants, this would be incorrect unless one
considers a purely repulsive Um (negligible μpP ; Fig. 2). For that
case only, pPs mimic “hard-sphere” depletants (24, 51), and our
theory provides a unique dynamical interpretation of the classi-
cal Asakura–Oosawa depletion interaction (51). Critical to our
theory of entropic bonding is the attractive nature of the NP–pP
interaction Um , which serves as a proxy for the effective entropic
interaction between NPs arising from crowding in the absence
of depletants. As considered here, pPs are not depletant-like as
they are attractive to NPs, and become increasingly attractive as
the particle packing fraction (and thus crowding) increases (high
μpP ; Fig. 2), driving crystallization. An extension of entropic
bonding theory to include depletion simply requires the addition
of depletant particles as a second species of pP, one that interacts
with NPs solely via an excluded volume interaction (Um = 0).
Such a treatment of depletion interactions can be considered an
“implicit depletion model,” as implemented in ref. 52.

While predictive, the theory presented here suffers from the
same limitations faced by electronic structure theory—namely,
the need to guess lattices for comparison. For ground-state
atomic crystals, where electronic structure theory is most useful,
unit cells are comparatively small and simple. Only at nonzero
temperatures do atomic crystal lattices typically become complex.
For colloidal crystals, the same is true when comparing putative
densest packings [“ground states” (53–55)] against the complex
crystal structures observed away from infinite pressure. It is the
latter we are most interested in, and guessing lattices may prove
unwieldy.

Regardless, that there exists a first-principles theory based
solely on entropy that, like electronic structure theory, is capable
of predicting preferred crystal structures is, in itself, important
and profound. For one, it confirms that generalization of the term

“bond” to describe the DEFs (25, 56) arising in crowded systems
of hard polyhedra is mathematically appropriate and physically
meaningful (26). Second, it helps explain why similar crystal
structures can be observed on length scales orders of magnitude
apart by demonstrating that crystallization and self-assembly are
agnostic to the origin of the forces between building blocks.

Materials and Methods
See SI Appendix for additional details.

Eigenvalue Solver. To solve Eq. 9, we set up a framework that determines
the lowest eigenvalue for a given set of particle configurations. We first
guess a trial solution for the pP density ρT via a similar LCAO approach
employed in quantum mechanics. Here, since we combine shape orbitals
(SI Appendix, section IV), we term the approach LCSO.

ρT =

N∑
i

Ciρi,s, [10]

where ρT is the guessed solution, ρi,s is the sth shape orbital for the ith
particle, and N is the total number of particles in the system. Eq. 10 is then
substituted for ρpP in Eq. 9 to give

H

{
N∑
i

Ciρi,s

}
= E

{
N∑
i

Ciρi,s

}
. [11]

Eq. 11 can be converted into a series of N linear, homogeneous equations
where each ith equation is defined by multiplying Eq. 11 by ρi,s. The resulting
set of equations is solved using linear algebra. We then iteratively vary the
set of Ci until the minimum eigenvalue is obtained for a given configu-
ration (center-to-center distance and relative orientation). The calculation
is then repeated across different center-to-center distances and relative
orientations until the lowest eigenvalue overall is obtained. We employ
SE propagation analysis to determine the numerical uncertainties in our
implementation of an iterative eigenvalue solver for Eq. 9.

Data Availability. All relevant data and codes are available from the
University of Michigan Deep Blue Repository (DOI:10.7302/1b70-7970). All
other study data are included in the article and/or SI Appendix.
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