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Abstract: This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator,
OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the
Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid
approach, OpenSHS combines advantages from both interactive and model-based approaches.
This approach reduces the time and efforts required to generate simulated smart home datasets.
We have designed a replication algorithm for extending and expanding a dataset. A small sample
dataset produced, by OpenSHS, can be extended without affecting the logical order of the events.
The replication provides a solution for generating large representative smart home datasets. We have
built an extensible library of smart devices that facilitates the simulation of current and future
smart home environments. Our tool divides the dataset generation process into three distinct
phases: first design: the researcher designs the initial virtual environment by building the home,
importing smart devices and creating contexts; second, simulation: the participant simulates his/her
context-specific events; and third, aggregation: the researcher applies the replication algorithm to
generate the final dataset. We conducted a study to assess the ease of use of our tool on the System
Usability Scale (SUS).
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1. Introduction

With the recent rise of the Internet of Things, analysing data captured from smart homes is gaining
more research interest. Moreover, developing intelligent machine learning techniques that are able to
provide services to the smart home inhabitants are becoming popular research areas.

Intelligent services, such as the classification and recognition of activities of daily living (ADL) and
anomaly detection in elderly daily behaviour, require the existence of good datasets that enable testing
and validation of the results [1–4]. The medical field also recognised the importance of analysing
ADLs and how these techniques are effective at detecting medical conditions for the patients [5].
These research projects require either real or synthetic datasets that are representative of the scenarios
captured from a smart home. However, the cost to build real smart homes and the collection of
datasets for such scenarios is expensive and sometimes infeasible for many projects [4,6–9]. Moreover,
several issues face the researchers before actually building the smart home, such as finding the optimal
placement of the sensors [10], lack of flexibility [9,11], finding appropriate participants [4,7] and privacy
and ethical issues [12].

Even though there exist real smart home datasets [13–15], sometimes, they do not meet the needs
of the conducted research project; such as the need to add more sensors or to control the type of the
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generated scenarios. Very few of such datasets record the readings of the sensors in real time and
provide a detailed time-stamped field, like the Activity Recognition with Ambient Sensing dataset
(ARAS) [14]. Moreover, preparing a real dataset could be a laborious task, and if not done with care,
it could lead to producing erroneous output.

When building real smart home test beds, several challenges are facing the preparation of real
datasets. One challenge is having a robust and continuous capturing mechanism for the sensors’ data.
Another challenge is following an appropriate annotation method for the inhabitants’ activities.

The existence of a dataset simulation tool overcomes the drawbacks/challenges of generating
real datasets. Such tools facilitate fast dataset generation and offer robust methods to capture the
sensors’ data. Additionally, they can offer solutions such as the ability to pause and fast-forward
the simulation to enable more accurate activity annotation. When developing machine learning
models, targeting specific functionalities, researchers rely on the existence of good representative
datasets. A common practice in machine learning is to divide the dataset into two parts, training and
testing. The model creation starts by initialising its parameters and training on a portion of the
dataset. Then, the model will be tested on another part of the same dataset, and its results will be
evaluated. The results of the evaluation could reveal the need to redesign the smart home by adding or
removing smart devices or changing the scenarios generated, etc. In the case of a real smart home, if the
results revealed the need to change something, this is usually a costly and infeasible choice to make.
Therefore, the researcher could only be able to tweak the model parameters as shown in Figure 1a.
On the other hand, with a simulated smart home, this can be easily done, and the researcher can go
back and modify the smart home design as shown in Figure 1b.

(a) (b)

Figure 1. The workflow of real and simulated smart homes test beds. (a) A real test bed;
(b) a simulated test bed.

The approaches for the smart home simulation tools can be divided into model-based and
interactive approaches. The model-based approaches use statistical models to generate datasets,
while the interactive approaches rely on real-time capturing of fine-grained activities using an avatar
controlled by a human/simulated participant. Each approach has its advantages and disadvantages.
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From what we mentioned earlier, it is apparent that the virtual simulation tool should offer far
greater flexibility and lower cost than conducting an actual and physical smart home simulation [6].
The new recent advances in computer graphics, such as virtual reality (VR) technologies, can provide
immersive and semi-realistic experiences that could come close to the real experience. The simulation
tool should also be open and readily available to both the researchers and the test subjects.

Although there are some research efforts available in the literature for smart home simulation
tools, they suffer from some limitations. The majority of these tools are not available in the public
domain as an open-source project or limited to a particular platform. Furthermore, most of the
publicly-available simulation tools lack the flexibility to add and customise new sensors or devices.

When generating datasets, the model-based approaches are capable of generating bigger
datasets, but the granularity of captured interactions is not as fine as the interactive approaches.
However, the interactive approaches usually take a longer time to produce the datasets, as they capture
the interactions in real time.

In this paper, we present the architecture and implementation of OpenSHS, a novel smart
home simulation tool. OpenSHS is a new hybrid, open-source, cross-platform 3D smart home
simulator for dataset generation. Its significant contribution is that OpenSHS offers an opportunity
for researchers in the field of the Internet of Things (IoT) and machine learning to produce and share
their smart home datasets, as well as testing, comparing and evaluating their models objectively.
Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based
approaches. This approach reduces the time and efforts required to generate simulated smart home
datasets. OpenSHS includes an extensible library of smart devices that facilitates the simulation of
current and future smart home environments. We have designed a replication algorithm for extending
and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without
affecting the logical order of the events. The replication provides a solution for generating large
representative smart home datasets. Moreover, OpenSHS offers a feature for shortening and extending
the duration of the generated activities.

The rest of this paper is structured as follows: The following section reviews existing real smart
home test beds and simulation tools; this section is concluded by analysing existing smart home
simulation tools and comparing them with our proposed tool, OpenSHS. Section 3 presents the
architecture of OpenSHS and its implementation. Section 4 presents two usability studies for using
OpenSHS by researchers and participants. Followed by Section 5, which lists the limitations of
OpenSHS and the planned future work for this project, the paper concludes.

2. Related Work

The literature is rich with efforts that focus on generating datasets for smart home applications.
These efforts can be classified into two main categories, datasets generated either from real smart
homes test beds or using smart home simulation tools.

2.1. Real Smart Home Test Beds

One of the recent projects for building real smart homes for research purposes was the work
carried out by the Centre for Advanced Studies in Adaptive Systems (CASAS) [16], where they created
a toolkit called ‘smart home in a box’, which is easily installed in a home to make it able to provide
smart services. The components of the toolkit are small and can fit in a single box. The toolkit has
been installed in 32 homes to capture the participants’ interactions. The datasets are publicly available
online [17].

The TigerPlace [18] project is an effort to tackle the growing ageing population. Using passive
sensor networks implemented in 17 apartments within an elder-care establishment. The sensors
include motion sensors, proximity sensors, pressure sensors and other types. The data collection took
more than two years for some of the test beds.
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SmartLab [19] is a smart laboratory devised to conduct experiments in smart living environments
to assess the development of independent living technologies. The laboratory has many types of
sensors, such as pressure, passive infrared (PIR) and contact sensors. The participants’ interactions
with SmartLab are captured in an XML-based schema called homeML [20].

The Ubiquitous Home [21] is a smart home that was built to study context-aware services by
providing cameras, microphones, pressure sensors, accelerometers and other sensor technologies.
The home consists of several rooms equipped with different sensors. To provide contextual services to
each resident, the Ubiquitous Home recognises the resident by providing radio-frequency identification
(RFID) tags and by utilising the installed cameras.

PlaceLab [22] is a 1000 sq. ft.smart apartment that has several rooms. The apartment has
many sensors distributed throughout each room, such as electrical current sensors, humidity sensors,
light sensors, water flow sensors, etc. Volunteering participant can live in PlaceLab to generate a dataset
of their interaction and behaviour. The project produced several datasets for different scenarios [23].

HomeLab [24] is a smart home equipped with 34 cameras distributed around several rooms.
The project has an observation room that allows the researcher to observe and monitor the conducted
experiments. HomeLab aims to provide datasets to study human behaviour in smart environments
and investigate technology acceptance and usability.

The GatorTech smart home [25] is a programmable and customisable smart home that focuses
on studying the ability of pervasive computing systems to evolve and adapt to future advances in
sensor technology.

2.2. Smart Home Simulation Tools

Smart home simulation tools can be categorised into two main approaches, according to
Synnott et al. [6]: model-based and interactive approaches.

2.2.1. Model-Based Approach

This approach uses pre-defined models of activities to generate synthetic data. These models
specify the order of events, the probability of their occurrence and the duration of each activity.
This approach facilitates the generation of large datasets in a short period. However, the downside of
this approach is that it cannot capture intricate interactions or unexpected accidents that are common
in real homes. An example of such an approach is the work done by Mendez-Vazquez et al. [7].

PerSim 3D [26] is a tool to simulate and model user activities in smart spaces. The aim of this tool
is to generate realistic datasets for complex scenarios of the inhabitant’s activities. The tool provides
a graphical user interface (GUI) for visualising the activities in 3D. The researcher can define contexts
and set ranges of acceptable values for the sensors in the smart home. However, the tool is not available
freely in the public domain.

SIMACT [27] is a 3D smart home simulator designed for activity recognition. SIMACT has
many pre-recorded scenarios that were captured from clinical experiments, which can be used to
generate datasets for the recognition of ADLs. SIMACT is a 3D open-source and cross-platform project
developed with Java and uses the Java Monkey Engine (JME) [28] as its 3D engine.

DiaSim [29] is a simulator developed using Java for pervasive computing systems that can deal
with heterogeneous smart home devices. It has a scenario editor that allows the researcher to build the
virtual environment to simulate a certain scenario.

The Context-Aware Simulation System (CASS) [30] is another tool that aims at generating context
information and testing context-awareness applications in a virtual smart home. CASS allows the
researcher to set rules for different contexts. A rule can be, for example, turn the air conditioner
on if a room reaches a specific temperature. The tool can detect conflicts between the rules of the
pre-defined contextual scenarios and determine the best positioning of the sensors. CASS provides
a 2D visualisation GUI for the virtual smart home.
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The Context-Awareness Simulation Toolkit (CAST) [31] is a simulation tool designed to test
context-awareness applications and provides visualisations of different contexts. The tool generates
context information from the users in a virtual smart home. CAST was developed with the proprietary
technology Adobe Flash and is not available in the public domain.

2.2.2. Interactive Approach

Contrary to the previous approach, the interactive approach can capture more interesting
interactions and fine details. This approach relies on having an avatar that can be controlled by
a researcher, human participant or simulated participant. The avatar moves and interacts with
the virtual environment, which has virtual sensors and/or actuators. The interactions could be
done passively or actively. One example of passive interactions is having a virtual pressure sensor
installed on the floor, and when the avatar walks on it, the sensor should detect this and emit
a signal. Active interactions involve actions such as opening a door or turning the light on or off.
The disadvantage of this approach, however, is that it is a time-consuming approach to generate
sufficient datasets, as all interactions must be captured in real time.

Park et al. [32] presented a virtual space simulator that can generate inhabitants’ data for
classifications problems. In order to model inhabitant activities in 3D, the simulator was built using
Unity3D [33].

The Intelligent Environment Simulation (IE Sim) [34] is a tool used to generate simulated datasets
that capture normal and abnormal ADLs of inhabitants. It allows the researcher to design smart homes
by providing a 2D graphical top-view of the floor plan. The researcher can add different types of
sensors such as temperature sensors, pressure sensors, etc. Then, using an avatar, the simulation can
be conducted to capture ADLs. The format of the generated dataset is homeML [20]. To the knowledge
of the authors, IE Sim is not available in the public domain.

Ariani et al. [35] developed a smart home simulation tool that uses ambient sensors to capture
the interactions of the inhabitants. The tool has a map editor that allows the researcher to design
a floor plan for a smart home by drawing shapes on a 2D canvas. Then, the researcher can add ambient
sensors to the virtual home. The tool can simulate binary motion detectors and binary pressure
sensors. To simulate the activities and interactions in the smart home, they used the A* pathfinding
algorithm [36], to simulate the movement of the inhabitants. During the simulation, all interactions are
sampled at 5 Hz and stored into an XML file.

UbiREAL [37] is a Java-based simulation tool that allows the development of ubiquitous
applications in a 3D virtual smart space. It allows the researcher to simulate the operations and
communications of the smart devices at the network level.

V-PlaceSims [38] is a simulation tool that allows a smart home designer to design a smart home
from a floor plan. Then, it allows multiple users to interact with this environment through a web
interface. The focus of this tool is the improvement of the designs and management of the smart home.

In addition to the above outlined simulation tools, there are other commercial simulation tools
targeting the industry, such as [39–41].

Generally, the model-based approach allows the researcher to generate large datasets in short
simulation time, but sacrifices the granularity of capturing realistic interactions. On the other hand,
the interactive approach captures these realistic interactions, but sacrifices the short and quick
simulation time, and therefore, the generated datasets are usually smaller than the ones generated by
the model-based approach.

2.3. Analysis

Synnott et al. [6] identified several challenges that face the smart home simulation research.
One of the key challenges is that many of the available simulation tools [9,11,30,37,38,42–44]
focus on testing applications that provide context awareness and visualisation rather than
focusing on generating representative datasets. Few of the available tools focus on generating
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datasets [1,12,45,46]. Another key challenge is to have the flexibility and scalability to add
new/customised types of smart devices, change their generated output(s), change their positions
within the smart home, etc. The multiple inhabitants’ support is also one of the limitations facing the
currently-available tools, as this feature is known to be difficult to implement [6].

The review of available smart home simulation tools reveals that the majority of the reported
work lacks the openness and availability of the software implementation, which hinders their benefit
to the wider research community. Moreover, less than half of the reviewed tools (10 out of 23) do
not support multiple operating systems, which can be an issue when working with research teams
and/or test subjects. Table 1 shows the analysis and comparison of our proposed tool, OpenSHS,
with the existing simulation tools. SIMACT [27] and UbiWise [44] were the only open-source and
cross-platform simulation tools available; however, the data generation approach used in that tool is
based on a pre-defined script that the researcher plays back within the 3D simulation view.

Apart from the work by [47], this analysis shows that none of the reviewed simulation tools
follows a hybrid approach, i.e., a tool that combines the ability of model-based tools to generate large
datasets in a reasonable time while keeping the fine-grained interactions that are exhibited by the
interactive tools.

Our review shows that fewer simulation tools focus on generating datasets, while the majority of
the reviewed tools focus on visualisation and context-awareness applications.

Supporting the simulation of multiple inhabitants is a tricky task, especially for the tools that
focus of generating datasets. Most of these tools have an avatar controlled by a single participant at
a given time. To have multiple participants conducting a simulation at the same time is one of the
identified challenges.

Table 1. Analysis of smart home simulation tools. OpenSHS, open-source, cross-platform 3D smart
home simulator.

Tool/Author(s) Date Open-Source 3D Cross-Platform Approach Focus Multi-Inhabitants Fast-Forwarding

OpenSHS 2017 Yes Yes Yes Hybrid Dataset generation Partially Yes

Park et al. [32] 2015 No Yes Yes Interactive Visualisation No Yes

PerSim 3D [26] 2015 No Yes Yes Model-based Dataset generation No Not applicable

IE Sim extended [47] 2015 No No No Hybrid Dataset generation No Yes

IE Sim [34] 2014 No No No Interactive Dataset generation No No

Kormányos et al. [48] 2013 No No No Model-based Visualisation No Not applicable

Ariani et al. [35] 2013 No No No Interactive Dataset generation Yes No

Fu et al. [11] 2011 No No Yes Interactive Visualisation Yes No

Jahromi et al. [49] 2011 No No No Model-based Visualisation No Not applicable

Buchmayr et al. [1] 2011 No No No Interactive Dataset generation No No

SimCon [45] 2010 No Yes Yes Interactive Dataset generation No No

YAMAMOTO [42] 2010 No Yes Not reported Interactive Visualisation No No

SIMACT [27] 2010 Yes Yes Yes Model-based Visualisation No Not applicable

Poland et al. [12] 2009 No Yes Yes Interactive Dataset generation No No

ISS [50] 2009 No No No Interactive Visualisation Yes No

DiaSim [29] 2009 No No Yes Model-based Visualisation No Not applicable

V-PlaceSims [38] 2008 No Yes No Interactive Visualisation Yes No

Armac et al. [9] 2007 Not reported No Not reported Interactive Visualisation Yes No

CASS [30] 2007 No No No Model-based Visualisation Yes Not applicable

Krzyska et al. [46] 2006 No No Yes Interactive Dataset generation Yes No

CAST [31] 2006 No No No Model-based Visualisation No Not applicable

UbiREAL [37] 2006 No No Yes Interactive Visualisation Yes No

TATUS [43] 2005 No Yes Not reported Interactive Visualisation Yes No

UbiWise [44] 2002 Yes Yes Yes Interactive Visualisation Yes No

When comparing OpenSHS against the available simulation tools reviewed in Table 1, unlike the
majority of such tools, our tool is based on Blender and Python, which are open-source and
cross-platform solutions; this offers the following benefits:
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• Improving the quality of the state of the art datasets by allowing the scientific community to
openly converge on standard datasets for different domains,

• Easier collaborations between research teams from around the globe,
• Faster developments and lower entry barriers,
• Facilitates the objective evaluations and assessments.

Our tool allows the simulations to be conducted in 3D from a first-person perspective. The only
open-source tools we could identify in the literature were SIMACT [27,44]. However, neither of these
tools focuses on generating datasets. SIMACT does not allow the participant to create specialised
simulations. Instead, it relies on pre-recorded data captured from clinical trials.

IE Sim [34] was extended to use a probabilistic model (Poisson distribution) to augment the
interactively recorded data by IE Sim. Therefore, the extended version of IE Sim uses a hybrid
approach. However, IE Sim is a 2D simulator, which takes part of the realism out of the simulation.
This might be a problem when 3D motion data are important to the researcher, for example in anomaly
detection algorithms, as identified by [47].

The fast-forwarding feature makes the simulation less cumbersome especially when the simulation
has long periods of inactivity, as in elder-care research. This feature is relevant to interactive and hybrid
approaches. OpenSHS’s fast-forwarding mechanism streamlines the performance of the simulation
and allows the participant to skip in time while conducting a simulation.

Although, OpenSHS currently supports the simulation of one smart home inhabitant,
however multiple inhabitants’ simulations are partially supported. The current implementation of
this feature does not allow real-time simulation of multiple inhabitants. Instead, The first inhabitant
records his/her activities, and then, the second inhabitant can start another simulation. The second
inhabitant will be able to see the first inhabitant’s actions played back in the virtual environment.

The approach that OpenSHS uses to generate datasets can be thought of as a middle
ground between the model-based and interactive approaches. The replication mechanism that
OpenSHS adapts allows for a quick dataset generation, similar to the model-based approaches.
Moreover, the replications have richer details, as the activities are captured in real time, similar
to the interactive approaches. Overall, the advantages of OpenSHS can be summarised as follows:

1. Accessibility: The underlying technologies used to develop OpenSHS allowed it to work
on multiple platforms, thus ensuring a better accessibility for the researchers and the
participants alike.

2. Flexibility: OpenSHS gives the researchers the flexibility to simulate different scenarios according
to their needs, by adding and/or removing sensors and smart devices. OpenSHS can be easily
modified and customised in terms of positioning and changing the behaviour of the smart devices
in the virtual smart home to meet the needs of a research project.

3. Interactivity: Capturing the interactions between the participant and the smart home in OpenSHS
was done in a real-time fashion, which facilitates the generation of richer datasets.

4. Scalability: Our simulation tool is scalable and easily extensible to add new types of smart devices
and sensors. OpenSHS has a library of smart devices that we will keep developing and updating
as new types of smart devices become available.

5. Reproducibility: By being an open-source project, OpenSHS does have the advantage of
facilitating reproducibility and allowing research teams to produce datasets to validate other
research activities.

3. OpenSHS Architecture and Implementation

This paper proposes a new hybrid, open-source and cross-platform 3D smart home simulation tool
for dataset generation, OpenSHS [51], which is downloadable from http://www.openshs.org under
the GPLv2 license [52]. OpenSHS tries to provide a solution to the issues and challenges identified by
Synnott et al. [6]. OpenSHS follows a hybrid approach, to generate datasets, combining the advantages

http://www.openshs.org
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of both model-based and interactive approaches. This section presents the architecture of OpenSHS
and the technical details of its implementation, which is based on Blender [53] and Python. In this
section, we will refer to two entities, the researcher and the participant. The researcher is responsible for
most of the work with OpenSHS. The participant is any person volunteering to simulate their activities.

Working with OpenSHS can be divided into three main phases: design phase, simulation phase
and aggregation phase. The following subsections will describe each phase.

3.1. Design Phase

In this phase, as shown in Figure 2, the researcher builds the virtual environment, imports the
smart devices, assigns activities’ labels and designs the contexts.

Figure 2. The design phase.

3.1.1. Designing Floor Plan

The researcher designs the 3D floor plan by using Blender, which allows the researcher to easily
model the house architecture and control different aspects, such as the dimensions and the square
footage. In this step, the number of rooms and the overall architecture of the home are defined
according to the requirements of the experiment.

3.1.2. Importing Smart Devices

After the design of the floor plan, the smart devices can be imported into the smart home from
the smart devices library, offered by OpenSHS. The current version of OpenSHS includes the following
list of active and passive devices/sensors:

• Pressure sensors (e.g., activated carpet, bed, couch, etc.),
• Door sensors,
• Lock devices,
• Appliance switches (TV, oven, fridge, etc.),
• Light controllers.

The smart devices library is designed to be a repository of different types of smart devices and
sensors. This list is extensible, as it is programmed with Python. Moreover, the researcher can build
a customised sensor/device.

3.1.3. Assigning Activity Labels

OpenSHS enables the researcher to define an unlimited number of activity labels. The researcher
decides how many labels are needed according to the experiment’s requirements. Figure 4 shows
a prototype where the researcher identified five labels; namely, ‘sleep’, ‘eat’, ‘personal’, ‘work’ and
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‘other’. This list of activity labels represents a sample of activities, which the researchers can tailor to
their needs.

3.1.4. Designing Contexts

After designing the smart home model, the researcher designs the contexts to be simulated.
The contexts are specific time frames that the researcher is interested in simulating, e.g., morning,
afternoon, evening contexts. For instance, if the researcher aims to simulate the activities that
a participant performs when he/she comes back from work during a weekday, then the researcher
will design a context for that period. Finally, the researcher specifies the initial states of the devices for
each context.

3.2. Simulation Phase

Figure 3 shows the overall architecture of the simulation phase. The researcher starts the tool
from the OpenSHS interface module, which allows the researcher to specify which context to simulate.
Each context has a default starting date and time, and the researcher can adjust the date and time
if he/she wants. Every context has a default state for the sensors and the 3D position of the avatar.
Then, the participant starts simulating his/her ADLs in that context. During the simulation time,
the sensors’ outputs and the state of different devices are captured and stored in a temporary dataset.
OpenSHS adapts a sampling rate of one second by default, which the researcher can re-configure as
required. Once the participant finishes a simulation, the application control is sent back to the main
module to start the simulation of another context.

The simulation phase aims to capture the granularity of the participants’ realistic interactions.
However, capturing these fine-grained activities in extended periods of time adds a burden on the
participant(s) and sometimes becomes infeasible. OpenSHS offers a solution that mitigates this issue
by adapting a fast-forwarding mechanism.

Figure 3. The simulation phase.

3.2.1. Fast-Forwarding

OpenSHS allows the participant to control the time span of a certain activity: fast-forwarding.
For example, if the participant wants to watch the TV for a period of time and does not want to
perform the whole activity in real time (since there are no changes in the readings of the home’s
sensors), the participant can initiate that activity and spawn a dialogue to specify how long this activity
lasts. This feature allows the simulation process to be quick and streamlined. The tool will simply copy
and repeat the existing state of all sensors and devices during the specified time period. Figure 4 shows
the activity fast-forwarding dialogue during a simulation.
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Figure 4. The activity selection and fast-forwarding dialogue.

3.2.2. Activities Labelling

The researcher is responsible for familiarising the participant with the available activity labels to
choose from. During a simulation and before transitioning from one activity to another, the participant
will spawn the activity dialogue shown in Figure 4 to choose the new activity from the available list.
To ensure a clean transition from one activity to another, OpenSHS will not commit the new label at
the exact moment of choosing the new label. Instead, the new label will be committed when a sensor
changes its state. For example, in Figure 6, the transition from the first activity (sleep) to the second
(personal) is committed to the dataset when the sensor bedroomLightchanges its state, even though
the participant did change the label a couple of seconds earlier.

3.3. Aggregation Phase

After performing the simulation by the participants, the researcher can aggregate the participants’
generated sample activities, i.e., events, in order to produce the final dataset. The results of the
simulation phase forms a pool of sample activities for each context. The aggregation phase aims to
provide a solution for the generation of large datasets in short simulation time as shown in Figure 5.
Hence, this work develops an algorithm that replicates the output of the simulation phase by drawing
appropriate samples for each designated context.

This feature encapsulates the model-based approach’s advantage with the interactive approach
adapted by the simulation phase, which allows OpenSHS to combine the benefits of both approaches,
a hybrid approach.

Figure 5. The aggregation phase.
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3.3.1. Events Replication

It was evident from the beginning of the development of this project that it is not feasible for
a participant to sit down and simulate his/her ADLs for a whole day. Moreover, we wanted to capture
the interactions between the inhabitant and the smart home in real time. At the same time, we wanted
the process to be less tedious and as streamlined as possible. These requirements brought up the
concept of real-time context simulations. Instead of having the user simulating his/her ADLs for
extended periods of time, the user simulates only a particular context in real time. For example, let us
assume we are interested in an ‘early morning’ context, and we want to capture the activities that
the inhabitant is doing in this time frame, such as what is usually done in the weekdays compared to
the weekends in the same context (the ‘early morning’ context). The user will only perform sample
simulations of different events in real time. The greater the number of samples simulated, the richer
the generated dataset will be.

To gain more insight into how OpenSHS works, we have built a virtual smart home environment
consisting of a bedroom, a living room, a bathroom, a kitchen and an office. Each room is equipped
with several sensors totalling twenty-nine sensors of different types. The sensors are binary, and they
are either on or off at any given time step.

The result of performing a context simulation can be illustrated by Figure 6. The sample consists
of three activity labels, namely ‘sleep’, ‘personal’ and ‘other’. Each activity label corresponds to a set of
sensors’ readings. The sensors’ readings in the previous figure are readings of binary sensors, and the
small circles correspond to an ‘ON-state’ of that sensor.

bathroomCarp

bathroomDoor

bathroomDoorLock

bathroomLight
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bedTableLamp

bedroomCarp
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Figure 6. Twenty-nine binary sensors’ output and the corresponding activity labels.

It is not realistic to aggregate the final dataset by trivially duplicating the contexts samples.
There is a need for an algorithm that can replicate the recorded samples to generate a larger dataset.
We have designed a replication algorithm for extending and expanding the recorded samples. A small
number of simulated events can be extended without affecting their logical order.

To explain the replication algorithm, it is best illustrated by an example. Table 2 shows a set of five
samples with their activity labels for a certain context. The first sample has five activities, the second
sample has three activities, and so on. When the researcher aggregates the final dataset, the samples
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of every context are grouped by the number of activities in each sample. Therefore, for the previous
example, Sample 1 will be in one group; Samples 2 and 3 will be in a second group; and Samples 4
and 5 will be in a third group. Then, a random group will be chosen, and from that group, a sample
will be drawn for each activity. For example, let us take the second group, which contains Samples 2
and 3. The number of activities in this group is three. Therefore, for the first activity, we will either
pick the ‘sleep’ activity from Sample 2 or the ‘sleep’ activity from Sample 3. The same procedure will
be done for the second and third activities. The output will resemble what is shown in Table 3.

Table 2. A set of recorded samples for a particular context.

Samples Activities

1 sleep personal work eat other

2 sleep personal other

3 sleep personal other

4 sleep eat personal other

5 sleep eat personal other

Table 3. Ten replicated copies based on the samples from Table 2.

i Activity 1 Activity 2 Activity 3 Activity 4 Activity 5

1 sample 1 sleep sample 1 personal sample 1 work sample 1 eat sample 1 other

2 sample 4 sleep sample 5 eat sample 5 personal sample 4 other

3 sample 3 sleep sample 3 personal sample 2 other

4 sample 3 sleep sample 3 personal sample 2 other

5 sample 5 sleep sample 4 eat sample 5 personal sample 5 other

6 sample 1 sleep sample 1 personal sample 1 work sample 1 eat sample 1 other

7 sample 2 sleep sample 2 personal sample 2 other

8 sample 5 sleep sample 5 eat sample 5 personal sample 5 other

9 sample 4 sleep sample 4 eat sample 4 personal sample 5 other

10 sample 2 sleep sample 2 personal sample 2 other

The context samples shown in Table 2 will produce 25 unique replicated copies. In general,
the number of unique replicated copies for a single context can be calculated by the Equation (1). Let G
denote the number of the groups of unique length of activities; let Sg denote the number of samples
for the group g; and let A denote the number of activities within a sample Sg. The total number of
unique replicated copiesR is:

R =
G
∑
g=1
SAg (1)

OpenSHS can modify the original duration of a performed activity by shortening and/or
expanding it. To preserve the structure of a certain activity, we look for the longest steady and
unchanged sequence of readings. Then, our algorithm randomly chooses a new duration for this
sequence. The new modified sequence length can vary between 5% of the original sequence length,
up to its full length. The researcher can use this feature by passing the variable-activities option
to the aggregation parameters, as will be shown next.

The researcher can configure a number of parameters to control the generated output, such as:

• days: the number of days to be generated;
• start-date: specifies the starting date for the dataset;
• time-margin: the variability of the starting time for the replicated events; for example,

assuming we have a sample that was recorded at 7:30 a.m. and we specified the time margin to
be 10 min; the replicated sample could start any time from 7:25 a.m. up to 7:35 a.m.;
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• variable-activities: make the duration for each activity variable.

3.3.2. Dataset Generation

After running the aggregation algorithm, the researcher can combine all of the scenarios, generated
by different participants, into one final comma separated values (CSV) dataset output. Table 4 shows
a sample generated dataset.

Table 4. A sample of the final dataset output.

Timestamp Bed Table Lamp Bed Bathroom Light Bathroom Door . . . Activity

2016-04-01 08:00:00 0 1 0 0 . . . sleep

2016-04-01 08:00:01 0 1 0 0 . . . sleep

2016-04-01 08:00:02 0 1 0 0 . . . sleep

2016-04-01 08:00:03 0 1 0 0 . . . sleep

2016-04-01 08:00:04 1 1 0 0 . . . sleep

2016-04-01 08:00:05 1 0 0 0 . . . sleep

2016-04-01 08:00:06 1 0 0 1 . . . personal

2016-04-01 08:00:07 1 0 0 1 . . . personal

2016-04-01 08:00:08 1 0 1 1 . . . personal

2016-04-01 08:00:09 1 0 1 1 . . . personal

2016-04-01 08:00:10 1 0 1 1 . . . personal
...

...
...

...
...

...

The time-margin parameter does add a level of sophistication to the timing of the recorded
activities. This is useful for applications that rely heavily on the time dimension of activities, for
example in anomaly detection research.

3.4. Implementation

OpenSHS implementation relies on Blender and its game engine. Blender’s game engine is
programmable by Python.

3.4.1. Blender

Blender was chosen to build the majority of the simulation tool and to act as an infrastructure for
OpenSHS. The reasons for this choice can be summarised as:

• Open-source: Blender is an open-source 3D modelling and animation software and an
actively-developed project by the open-source community. It allows the user to create 3D models
and visual effects. The game engine component of Blender allows the user to build complex 3D
interactive games and script them with Python, which is an important feature for OpenSHS.

• Cross-platform: Blender is available for the three major operating systems; namely, GNU/Linux,
Microsoft Windows and Apple macOS. Blender uses OpenGL [54] for its game engine, which is
also a cross-platform 3D technology available for the major operating systems.

• The Blender game engine: Blender’s game engine allowed us to add the interactivity to the
simulations. The physics engine facilitates the simulation of different types of real sensors and
devices. For example, blender has a ‘near’ sensor, which will only be activated when the 3D
avatar controlled by the user is physically near other objects in the scene. Therefore, such a sensor
could be used to simulate a proximity sensor easily.

3.4.2. Python

The interaction with the simulation tool is done by controlling a 3D avatar that navigates the
smart home space through a first-person perspective similar to most first-person games. Figure 7
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shows the 3D avatar navigating the living room. Since Blender’s game engine uses Python as a
programming language, we developed all of the logic and interactions between the avatar and the
virtual environment with it. Moreover, all of the OpenSHS modules are programmed by Python.

Figure 7. Navigating the smart home space through the first-person perspective.

4. OpenSHS Usability

Measuring the usability of a software tool is a challenging and tricky task, since it involves
subjective qualities and depends on the context used. John Brooke [55] defines it as “The general
quality of the appropriateness to a purpose of any particular artefact”. He developed the widely-used
System Usability Scale (SUS), which is a questionnaire consisting of ten questions that measure various
aspects of the usability of a system. The score of SUS ranges from 0–100.

To assess OpenSHS usability, we conducted a usability study using SUS. Our sample consists of
graduate students and researchers interested in smart home research. We carried out multiple sessions,
and in each session, we started by introducing OpenSHS and then by presenting its functionalities.
After that, we answered any questions the participants had in mind. Afterwards, we allowed the
participants to use OpenSHS and explore its features. Finally, the participants were asked to answer a
few questions, such as how frequently do they use their computer on daily basis and whether they play
first-person 3D video games or not. Then, the participants were asked to fill out the SUS questionnaire.

We carried out two usability studies: one from the perspective of the researchers and the other
from the perspective of the participants using OpenSHS. The researchers’ group was asked to evaluate
OpenSHS usability throughout the three phases (design, simulation, aggregation). The participants
group was only requested to evaluate the simulation phase.

For the researchers’ group, we collected data from 14 researchers: 85.7% were male and 14.3%
female. The average age of the researchers was 36 (minage = 31, maxage = 43). All of the researchers
reported that they do use their computers on a daily basis, and 93% of them did play 3D first-person
games. The aspects that the SUS questionnaire investigates can be summarised as:

1. Frequent use (FU): I think that I would like to use this system frequently.
2. System complexity (SC): I found the system unnecessarily complex.
3. Ease of use (EU): I thought the system was easy to use.
4. Need for support (NS): I think that I would need the support of a technical person to be able to

use this system.
5. System’s functions integration (FI): I found the various functions in this system were

well integrated.
6. System inconsistencies (SI): I thought there was too much inconsistency in this system.
7. Learning curve (LC): I would imagine that most people would learn to use this system

very quickly.
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8. How cumbersome the system is (CU): I found the system very cumbersome to use.
9. Confidence in the system (CO): I felt very confident using the system.

10. Need for training before use (NT): I needed to learn a lot of things before I could get going with
this system.

Figure 8 shows the results of our SUS questionnaire for the researchers’ group. The odd-numbered
statements contribute positively to the overall score if the participant agrees with them (Figure 8a).
On the other hand, the even-numbered statements contribute negatively if the researcher agrees with
them (Figure 8b). Calculating the score of our sample revealed that the average SUS score of OpenSHS
is 71.25 out of 100 (scoremin = 40, scoremax = 85).
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1
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4

5
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e

(b)

Figure 8. The result of System Usability Scale (SUS) questionnaire for the researchers’ group.
(a) The positive components; (b) the negative components.

For the participants’ group, 31 participants were asked to answer the SUS questionnaire:
77.5% were male, 22.5% female, and the average age of the participants was 27 (minage = 21,
maxage = 36). Ninety seven percent did play first-person games, and all of the participants reported
that they use their computers on a daily basis. Figure 9 shows the participants’ group results. The SUS
score for this group is 72.66 out of 100 (scoremin = 50, scoremax = 87).
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Figure 9. The result of System Usability Scale (SUS) questionnaire for the participants group.
(a) The positive components; (b) the negative components.
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The usability results for both groups are promising, but at the same time, they indicate that
there is room for improvements. Both groups agree that the learning curve (LC) component of the
questionnaire needs improvement. The results also show the need for support from a technical person
to use the system.

5. Future Work

For future work, we plan to include full multiple inhabitants support in real time.
Moreover, the smart devices library has few specialised sensors that will be updated in the future to
include new types of sensors and devices. Another feature that could improve the design phase of
the smart home is the addition of a floor plan editor. Taking into consideration that OpenSHS is an
open-source project, released under a free and permissive license, the project could envisage quick and
rapid development that would facilitate the support of the aforementioned features.

The more realistic the simulation is, the less the need for building actual smart homes to carry out
research. Following the growing advancements in computer graphics, virtual reality (VR) is becoming
more accessible and affordable. BlenderVR [56] is an open-source framework that extends Blender and
allows it to produce immersive and realistic simulations. Since OpenSHS is based on Blender, one of
our future goals is to investigate the incorporation of BlenderVR into our tool to provide more true to
life experiences for the smart home simulation and visualisation. In terms of accessibility, we aim to
make OpenSHS as accessible as possible. Nowadays, the web technologies and web browsers can be
a good platform to facilitate the wider distribution of OpenSHS. Technologies such as WebGL [57] can
be used to run OpenSHS in different web browsers, and Blender can export to these technologies.

Currently, the labelling of activities is performed by the participant during the simulation phase.
OpenSHS does not perform automatic recognition of these activities. As part of our future work,
we plan to investigate the possibility of adding automatic recognition of the participants’ activities.

6. Conclusions

Many smart home research projects require the existence of representative datasets for
their respective applications and research interests and to evaluate and validate their results.
Many simulation tools available in the literature focus on context-awareness, and few tools have
set dataset generation as their aim. Moreover, there is a lack of open-source simulation tools in the
public domain. We developed OpenSHS, an open-source, 3D and cross-platform simulation tool for
smart home dataset generation. OpenSHS has many features that allow the researchers to easily design
different scenarios and produce highly intricate and representative datasets. Our tool offers a library
of smart sensors and devices that can be expanded to include future emerging technologies.

OpenSHS allows the researchers to generate seeds of events rapidly. We have presented
a replication algorithm that can extend the simulated events to generate multiple unique large datasets.
Moreover, conducting a simulation with a participant can be done in a reasonable time, and we
provided tools that streamline the process, such as fast-forwarding.

Our tool divides the dataset generation process into three distinct phases, design, simulation and
aggregation. In the design phase, the researcher creates the initial virtual environment by building
the home, importing smart devices and creating contexts. In the simulation phase, the participant
uses the virtual home to generate context-specific events. In the final stage, the researcher applies the
replication algorithm to generate the aggregated dataset.

We conducted a usability study using the System Usability Scale (SUS) to assess how usable
OpenSHS is. The results of this study were promising, yet they left room for more improvements.

One of the identified issues in smart home simulations tools is having support for multiple
inhabitants. This is a challenging task both for the simulation tool and for the participants. Currently,
OpenSHS offers partial support for multiple inhabitants. To increase the realism of the simulations,
we plan to integrate VR technologies into OpenSHS in the future. The accessibility for both the
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researchers and the participants is an important feature. Hence, we plan to port the implementation of
OpenSHS to run in a web browser.
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