DRUG DELIVERY T. I & F .
2021, VOL. 28, NO. 1, 2044-2050 e ay or . rancis
https://doi.org/10.1080/10717544.2021.1979124 Taylor & Francis Group

RESEARCH ARTICLE 8 OPEN ACCESS | ™ Gheck forupdates)

Determining the effect of ocular chemical injuries on topical drug delivery
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ABSTRACT ARTICLE HISTORY
Ocular chemical injuries (OCls) commonly cause ocular damage and visual loss and treatment uses Received 6 July 2021
topical therapies to facilitate healing and limit complications. However, the impact of chemical injury Revised 6 September 2021
on corneal barrier function and treatment penetration is unknown. Therefore, the aim of this study  Accepted 6 September 2021
was to determine the effect of OCl on drug penetration and absorption. Porcine corneal explants were
used to assess histological damage, electrical resistance, and the trans-corneal penetration/corneal
adsorption of reference compounds (sodium fluorescein and rhodamine B) and dexamethasone.
Corneal explants were injured with either 1 M sulfuric acid, or 1 M sodium hydroxide. Dexamethasone
penetration was measured using high-performance liquid chromatography (HPLC) and that of fluores-
cein and rhodamine using fluorescence. Dexamethasone corneal adsorption was measured using
enzyme-linked immunoabsorbant assay (ELISA). Both acid and alkaline injuries reduced trans-corneal
electrical resistance. NaOH injury increased hydrophilic fluorescein penetration (NaOH
8.59 + 1.50E-05 cm.min ' vs. Hanks’ Balanced Salt Solution (HBSS) 1.64+ 1.01E-06 cm.min~ ") with little
impact on hydrophobic rhodamine B (1 M NaOH 6.55+245E-04cm.min”' vs. HBSS
4.60+0.972E-04 cm.min~") and dexamethasone penetration (1 M NaOH 3.00 +0.853E-04 cm.min~" vs.
HBSS 2.69 +0.439E-04 cm.min'). By contrast, H,SO, decreased trans-corneal penetration of hydro-
philic fluorescein (H,SO, 1.16+14.2E-07cm.min~') and of hydrophobic dexamethasone (H,SO,
1.88 + 0.646E-04 cm.min~") and rhodamine B (H,SO, 4.60 + 1.42E-05cm.min~"). Acid and alkaline OCI
differentially disrupted the corneal epithelial barrier function. Acid injury reduced penetration of hydro-
phobic dexamethasone and rhodamine B as well as hydrophilic fluorescein, which may translate clinic-
ally into reduced drug penetration after OCI, while alkaline injury increased fluorescein penetration,
with minimal effect on dexamethasone and rhodamine B penetration.
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Introduction Kuckelkorn et al., 2002), with pH change detectable in the
aqueous humor of rabbits one minute after alkaline injury
(Gérard et al., 1999).

Initial management of OCl is irrigation with large volumes
of water or an inert buffer to dilute and remove the chemical
and decrease further damage (Blanch et al., 2018). Topical
formulations used to prevent infection, minimize scarring,
and facilitate healing in the acute phase include antibiotics,
collagenase inhibitors, and corticosteroids (Davis et al., 1997;

Ocular chemical injury (OCl) is an emergency requiring
immediate action and treatment and can be caused by con-
tact with either acid, such as sulfuric acid (battery acid), or
alkali, such as calcium hydroxide (e.g. in cement) (Blanch
et al.,, 2018). As acid and alkaline products are commonplace
in the home and at work, OCl are common, comprising
11.5-22.1% of all ocular injuries (Wagoner, 1997; Sharma
et al., 2018), with an annual incidence of 5.1-5.6 cases per
100,000 population in the USA and UK (White et al., 2015; Fish & Davidson, 2010; Baradaran-Rafii et al., 2017; Paschalis
Ghosh et al., 2019). et al, 2017; Ramponi, 2017; Heng & Hamilton, 2018). These

Contact with acid coagulates ocular surface tissue pro- substances act on the cornea and penetrate the eye to miti-
teins, causing a barrier to further ocular penetration, so that gate intraocular damage. Corneal permeability to some of
weak acids cannot penetrate the biological tissue (Pfister, these substances, such as topical corticosteroids, has been
1983; Singh et al., 2013). In comparison, alkali saponifies cor- studied in health (Nassr et al.,, 2009), but the effect of corneal
neal cell membranes increasing permeability and alkali cor- injury on drug penetration into the eye has not
neal penetration (Pfister, 1983; Brodovsky et al, 2000; been defined.
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We therefore aimed to define the effect of acid and alka-
line corneal injury on corneal absorption (modeling drug
retention in the cornea) and permeability, defined as pene-
tration across the cornea of dexamethasone and to reference
these effects to polar/non-polar compounds in our ex vivo
model of corneal penetration (Begum et al., 2020).

Methods
Corneal injury model

Corneal preparations were carried out as previously
described (Begum et al, 2020). Briefly, porcine eyes were
procured un-scalded and within two hours of death from
Dissect Supplies (Birmingham, UK). Corneas were dissected
from the globe and a 5mm biopsy punch (Stiefel®,
Brentford, UK and WellTech Rapid-Core, Taiwan, China) used
to obtain approximately four corneal discs per cornea, which
were each fitted separately into a CellCrown 96 well insert
(Sigma-Aldrich, Gillingham, UK) with the epithelium facing
up. The insert was placed in a black, clear F-bottom 96 well
plate (Grenier Bio-one, Stonehouse, UK) that had been pre-
filled with 100 uL of Hanks' Balanced Salt Solution (HBSS;
Sigma-Aldrich, Gillingham, UK). Thirty microliters of HBSS was
added over the corneal epithelium of control wells while
30 puL of 1 M sodium hydroxide (NaOH; Thermo Fisher,
Waltham, MA) was added over the corneal epithelium to
induce alkali injury or 30 pL of 1 M sulfuric acid (H,SO,; SLS,
West Bridgford, UK) was added over the corneal epithelium
to induce acid injury. Each solution was applied for 2min
before washing three times with HBSS. Neutral pH was con-
firmed using a pH strip before subsequent test solution
application.

Transcorneal epithelial resistance measurements

Wells of a Millicell 96-reciever plate (Millipore, Watford, UK)
were filled with 200uL HBSS. A 96-well culture plate
(Millipore, Watford, UK) was placed on top of the receiver
plate and the porcine corneal discs were placed epithelial
side up in CellCrown 96 well inserts (Sigma-Aldrich,
Gillingham, UK) which were then placed into 12 wells of the
culture plate. The surface of the discs was then injured as
follows: four with 20 uL of 1 M H,SO,, four with 20 uL of 1 M
NaOH, and four were left uninjured (injury solutions washed
off after 2min as above). The same was added to 12 empty
wells to serve as well-only tests. Corneal discs were covered
with 50 uL HBSS and the transepithelial resistance recorded
using the Millicell® ERS-2 immediately after injury, and again
at 30min and 60min after injury. Between measurements,
the plate was incubated at 37 (+1)°C and 5% CO,. The pro-
cess was repeated with n=4 corneal sections from four dif-
ferent corneas for each injury condition, on two
separate days.
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Hemotoxylin and eosin staining to assess
corneal damage

After acid/alkali injury with NaOH and H,SO, (as described
above), corneal structure was histologically assessed using
hemotoxylin and eosin (H&E) staining. Corneal inserts were
opened, and cornea were gently removed and incubated in
4% paraformaldehyde (TAAB, Aldermaston, UK), then refriger-
ated overnight at 4°C before replacing the PFA with 2mL
15% sucrose (Sigma-Aldrich, Gillingham, UK) and leaving
overnight. This last stage was repeated with a 30% sucrose
solution. Cornea were embedded in OCT (Thermo Fisher,
Waltham, MA) and the blocks frozen in dry ice. Corneal
biopsy sections (15 um) were taken from the corneal blocks
using a cryostat (Model OT, Bright Instruments, Huntingdon,
UK) onto Superfrost Plus™ adhesion microscope slides
(Thermo Fisher, Waltham, MA). Sections were stained by
incubating in Harris hematoxylin (Sigma-Aldrich, Gillingham,
UK) for 5min before washing off with water and immersed
in 1% acid alcohol, before being washed again and
immersed in sodium bicarbonate solution (0.1% sodium
bicarbonate; Thermo Fisher, Waltham, MA). Slides were then
dehydrated with 95% ethanol (VWR, Poole, UK) before alco-
hol eosin Y staining (Sigma-Aldrich, Gillingham, UK) for
one minute followed by rinsing with 70% ethanol and dehy-
dration with ascending concentrations of ethanol. Finally, the
slides were washed with Histo-clear (National Diagnostics,
Nottingham, UK) and hard mounted with VectaMount
Permanent Mounting Medium  (Vector Laboratories,
Peterborough, UK). Images were recorded using the eclipse
TS100 microscope (Nikon, Minato City, Japan) at x20
magnification.

Fluorophore penetration and adsorption

Porcine corneal disks in inserts placed in wells of Millipore
plates were injured with 1 M NaOH, 1 M H,SO,, or HBSS con-
trol as described above. After the injury and wash to neutral
pH, 30 uL of 1% sodium fluorescein (Sigma-Aldrich,
Gillingham, UK) and 50 ug.mL’1 rhodamine B (Sigma-Aldrich,
Gillingham, UK) were applied to the corneal epithelial surface
such that n=3 for each application of HBSS-, 1 M NaOH-,
and 1 M H,SO,-treated cornea. The Millipore plates were
sealed with parafilm and incubated at 37(x1) °C and 5% CO,
for 60 min. The plate inserts with their cornea were carefully
removed and the level of rhodamine B and fluorescein that
had penetrated through the cornea into the underlying HBSS
was measured in the wells of the black-welled plates using
the FLUOstar® Omega (BMG Labtech, Aylesbury, UK) and the
Infinite® M nano (Tecan, Reading, UK) microplate readers,
respectively. For fluorescent analysis, the excitation and emis-
sion filters were set at; Joxc=485nm, lemm=520 nm for fluor-
escein, and Aeye=544NnM, Aermm=620nm for rhodamine B,
and absorbance measurements using the excitation wave-
lengths. Point values had the baseline of HBSS-only
wells removed.

To qualitatively assess fluorophore adsorption into treated
and control corneal tissue, inserts were opened, and corneas
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fixed in 4% paraformaldehyde overnight followed by 15%
sucrose overnight and then a 30% sucrose overnight incuba-
tion all at 4°C. Corneal disks were then embedded within
OCT, frozen and sectioned on a cryostat. Sections (15 pm)
were mounted with VectaSheild Antifade Mounting Medium
containing  4,6-diamidino-2-phenylindole  (DAPI;  Vector
Laboratories, Peterborough, UK). The images were recorded
on a Axioplan 2 imaging (Carl Zeiss, Cambridge, UK) micro-
scope at x20 magnification. The AxioCam HRc (Carl Zeiss,
Cambridge, UK) was used to take the images in conjunction
with Carl Zeiss™ Axio Vision Rel 4.8 software (Carl Zeiss,
Cambridge, UK) for multi-dimensional acquisition.
Fluorescent filters were used to isolate DAPI,
Aexc=377 £25nm, Aemm=447 £30 nm; rhodamine B
Aexc=560£25nM, Aemm=627.5+27.5nm, and fluorescein,
Jexc=475£17.51M, demm=530%21.5 nm.

HPLC measurement of dexamethasone adsorption to
and penetration through injured corneas

Thirty microliters of 0.1mg/mL~"' dexamethasone (Sigma-
Aldrich, Gillingham, UK) were applied to 1 M NaOH-, 1 M
H,SO4-, and HBSS-injured cornea discs as described above.
After 60 min, the corneas were removed as described above
and taken for dexamethasone adsorption analysis and the
concentration in the remaining HBSS was used to assess
dexamethasone penetration across the cornea. To determine
dexamethasone adsorption into the corneal tissue, corneal
discs were removed from the inserts, homogenized in 500 pL
phosphate-buffered saline (PBS) and the homogenate was
frozen in dry ice and stored at —80°C. Later, 80 uL of ethyl
acetate (Alfa Aesar, Thermo Fischer Scientific, Heysham, UK)
was mixed into the thawed homogenate which was then
micro-centrifuged on the IKA® T-10 basic dispersing instru-
ment (ULTRA-TURRAX®, IKA, Oxford, UK) at 4000rpm for
10 min. Supernatant was mixed with an equal volume of 2 M
NaOH, mixed and centrifuged for 1539xg (4000rpm) for
10min. Two hundred microliters of the upper layer was
removed and placed in a fresh Eppendorf tube with 100 pL
of sample resurrection buffer (1x). A 1:2 dilution was con-
ducted in PBS, then a dexamethasone enzyme-linked immu-
noabsorbant assay (ELISA) (Cusabio, Houston, TX) was
performed as detailed in the manufacturer's protocol to
assess adsorption into the corneal tissue.

To measure dexamethasone penetration through the cor-
nea into the underlying HBSS, the HBSS samples were run
through high-performance liquid chromatography (HPLC)
using a Shimadzu detector (Shimadzu, Milton Keynes, UK),
with an acetonitrile ammonium format gradient at an injec-
tion volume of 10 pL, measuring the absorbance at 239 nm
(Chen et al., 2008). Dexamethasone concentration was calcu-
lated by measuring the area under the curve after the base-
line of control HBSS had been removed. To calculate the
molar concentration of dexamethasone in the wells, a cali-
bration curve was first plotted for each experiment using
dilutions of 100%, 10%, 5%, 1%, 0.5%, and 0.1% of the stock
dexamethasone that had been added to the top of the cor-
nea. These curves were created in duplicate.

Statistical analysis

Data were collected and transferred to GraphPad Prism 8 for
macOS (GraphPad Software, La Jolla, CA) for graphical pres-
entation. SPSS Statistics version 24 (IBM Corp., Armonk, NY)
was used for data analysis. Outliers more than three standard
deviations from the mean were excluded. Generalized esti-
mating equations were used to model penetration data to
account for the repeated measures nature of the experimen-
tal design. Statistical significance was determined at p<.05.
Unless otherwise specified, results are displayed as mean-
+ standard error of the mean (std. error).

Results
Disrupted corneal structure after chemical injury

To identify changes in the porcine corneal structure after
chemical injury with T M NaOH and 1 M H,SO,, injured cor-
nea disks were compared to uninjured control HBSS corneal
discs using H&E staining. Control cornea showed a clear
intact epithelium and a well-preserved stroma (Figure 1). In
comparison, the epithelium and stroma were relatively pre-
served after the application of acidic 1 M H,SO, (Figure 1).
The most extensive damage was observed after alkali treat-
ment with 1 M NaOH, which led to extensive loss of the epi-
thelial layer and profound stromal edema (Figure 1), with
coagulation of collagen fibers into thinner layers.

Decreased transcorneal epithelial electrical resistance
after chemical injury

To determine the effect of acid/alkali injury on corneal bar-
rier function, the transcorneal epithelial electrical resistance
(TEER) was measured. Corneal disks were injured with 1 M
H,SO4 and 1 M NaOH for 2min before washing to neutral
pH and compared to HBSS controls. TEER measurements
were then taken immediately after pH normalization, at
30min and 60 min. Over 60 min, the TEER levels remained
consistent when HBSS was applied to the corneal surface
(Omin, 623+111; 30min, 530+109; 60min, 540+137). In
comparison, acid and alkali injury both similarly decreased
TEER (Figure 2), an effect that was detected immediately
after injury (1 M H,SO4 257+149; 1T M NaOH 179+32) and
remained reduced for the 60 min (1 M H,SO, 179+32; 1 M
NaOH 221 + 64).

Altered fluorophore adsorption in acid/alkali-
injured cornea

To assess the effects of chemical injury on compound
adsorption and penetration, we initially assessed the adsorp-
tion into the cornea over 60 min of hydrophobic (fluorescein)
and hydrophilic (rhodamine B) fluorescent dyes after injury
by 1 M H,SO, and 1 M NaOH and compared to HBSS con-
trols. Fluorescent images showed clear fluorescein adsorption
throughout the corneal epithelium and the stroma in HBSS
control corneal discs (Figure 3(A)). After 1 M H,SO, treat-
ment, fluorescein remained on the epithelial surface and did
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Figure 1. Altered structural integrity of the porcine corneal epithelium and stroma after chemical injury with 1 M H,S0,4, or 1 M NaOH when compared to Hanks’
Balanced Salt Solution (HBSS) controls using hemotoxylin and eosin staining. Scale bar 100 um; e: epithelium; s: stroma.

not show adsorption into the epithelium layers or the stroma
(Figure 3(B)). By contrast, after 1 M NaOH injury which
stripped the epithelium, fluorescein was observed through-
out the stroma (Figure 3(C)). When rhodamine B was applied,
the HBSS treated cornea did not show any adsorption into
either the epithelial layers or the stroma (Figure 3(D)). In the
1 M NaOH (Figure 3(E)) injured cornea, there was some stro-
mal adsorption of rhodamine and clear rhodamine B adsorp-
tion to the epithelium and stroma after 1 M H,SO, injury
(Figure 3(F)).

Penetration of hydrophilic and hydrophobic dyes
through the cornea is disrupted by chemical injury

To investigate if chemical injury altered the penetration of
hydrophobic and hydrophilic agents through the cornea, we
measured fluorescein and rhodamine B accumulation in the
HBSS underlying the cornea and calculated a rate of trans-
port. During the 60 min of dye application to the upper cor-
neal surface, the permeability of intact (HBSS applied) cornea
to fluorescein was 1.64+1.01E-06cm.min™"' (Figure 4(A)).
Acid damage by 1 M H,SO, reduced the dye penetration
rate to 1.16 + 14.2E-07 cm.min " (Figure 4(A); p=.012), which
represents 7% of the mean of the uninjured cornea. There
was strong evidence that alkali damage increased the rate of
fluorescein corneal penetration to 8.59+1.51E-05 cm.min™"
(Figure 4(A); p<.001), which is an increase of 5358% from
the mean of the uninjured cornea.

In comparison to the fluorescent images that showed rhoda-
mine B was not as well adsorbed to corneal tissue after HBSS
and 1 M NaOH exposure, there was no change in the rate of
penetration of rhodamine B across the corneal tissue after alka-
line injury (Figure 4(B); HBSS 4.60+0.972E-04cmmin™", 1 M
NaOH 6.55 +2.45E-04 cm.min™', p=.386). In contrast, there was
a strong reduction in the rate of rhodamine B penetration
across cornea damaged by 1 M H,SO, to 4.60+ 1.42E-05cm/
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Figure 2. Reduced transepithelial electrical resistance (TEER) in porcine cornea
injured with acid/alkali when compared to HBSS controls. Comparative transepi-
thelial electrical resistance (TEER) of the cornea after a 2-minute exposure to
HBSS (black), 1 M H,SO,4 (red), or 1 M NaOH (blue) when measured immedi-
ately, at 30 min, and 60 min after the initial exposure. Data are represented as
mean = std. error where n=8.

min (Figure 4(B); p<.001), which represents a 90% reduction
from the mean of the uninjured (HBSS) cornea.

Corneal penetration and adsorption of dexamethasone

To assess a potential clinical impact of OCl on penetration of
a standard ocular medication, we tested the rate of penetra-
tion of dexamethasone through the injured cornea. After
dexamethasone application, permeability through the intact
(HBSS) cornea was 2.69E-04 cm.min~' (Figure 5(A); std. error
4.39E-05; 95% Cl 1.83-3.55). There was weak evidence that
acid damage by H,SO, reduced the rate of corneal
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Figure 3. Fluorescent images demonstrating the altered adsorption of hydrophilic and hydrophobic agents after chemical injury. Porcine cornea injured with 1 M
H,S0, (B, E) and 1 M NaOH (C, F) were compared to HBSS controls (A, B) 60 min after the addition of fluorescein (A-C; hydrophilic, green signal) and rhodamine B
(D-F; hydrophobic, red signal). Sections were counterstained with the nuclear dye DAPI. Scale bar = 100 pum; e: epithelium; s: stroma.

permeability to dexamethasone to 1.88E-04 cm.min™" (Figure
5(A); std. error 6.46E-05; 95% Cl —17.3 to 1.19; p=.088),
which represents a decrease of 30% from the mean of the
HBSS cornea. There was no evidence that alkali damage
affected the rate of corneal penetration (Figure 5(A);
3.00E-04, std. error 8.53E-05, 95% ClI for the difference from
HBSS: 1.12-1.74E-06 cm.min"'; p=.674).

As acid injury reduced corneal dexamethasone penetra-
tion, we examined the effect of H,SO, acid injury on corneal
dexamethasone absorbance, by measuring the concentration
of dexamethasone in homogenized cornea using ELISA.
Intact (HBSS) cornea adsorbed 3.50% of applied dexametha-
sone (std. error 0.47; 95% Cl 2.57-4.42). Acid injury increased
adsorption of dexamethasone into the cornea by 2.29%
(Figure 5(B); std. error 0.638; 95% Cl 3.54-1.04%; p<.001).

Discussion

OCI requires immediate intervention and careful manage-
ment. However, the impact of ocular surface damage on the
penetration and adsorption of topical therapeutics is not

previously defined. We induced chemical injury in porcine
corneal discs with sulfuric acid and sodium hydroxide and
found significant impairments in corneal barrier function
with altered adsorption into and penetration across tissue of
hydrophobic and hydrophilic agents, which were differen-
tially obstructed by alkali and acid injuries. The penetration
of hydrophobic rhodamine B and dexamethasone was
reduced by acid injury and corneal adsorption (drug reten-
tion) increased, which has implications for the use of hydro-
phobic topical therapies as part of OCl treatment strategies.
OCl was replicated in our model by topically applying
either sulfuric acid or sodium hydroxide. These chemicals can
be found in battery acid and industrial cleaners representing
some of the most common injuries. Both alkali and acid
injury significantly altered corneal barrier integrity as meas-
ured by TEER, consistent with previous reports (Guimera
et al., 2012; Fukuda & Sasaki 2016; Uematsu et al. 2016;
Kaluzhny et al., 2018; Begum et al, 2020). Microscopy of
alkali-injured corneas demonstrated significant structural
abnormalities of the epithelium and stroma and the drop in
TEER most likely reflects immediate epithelial damage after
acid or alkaline injury. The damage induced in the alkali
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Figure 4. Altered rate of penetration of fluorescein (A) and rhodamine B (B) across the cornea after HBSS (black), T M H,S0O4 (red), or 1 M NaOH (blue) application
to the corneal surface. Data represent n =3 experiments where n=>5 cornea in each treatment group. Data are presented as mean * std. error where ***p<.001
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Figure 5. Dexamethasone penetration and adsorption analysis. (A) Dexamethasone penetration measured using high-performance liquid chromatography (HPLC)
after 60 min. (B) Dexamethasone corneal adsorption measured by ELISA after H,SO, injury. Data are representative of the mean + std. error where each group con-

sists of n =5 cornea where ***p<.001.

injured cornea was severe, which can be explained by the
saponification of the lipid bilayers causing a breakdown of
both the epithelial and stromal structural integrity, with con-
sequent major perturbation of the barriers to tissue penetra-
tion. After alkali injury, the greatest change in permeability
seen was to the hydrophobic compound, fluorescein (logP
3.92) (Kaler et al., 2007). However, the same effect was not
seen for penetration of the hydrophilic agents rhodamine B
(log P 1.95) (Kaler et al., 2007) or dexamethasone (logP 1.83)
(Lipinski et al, 1997; Lombardo et al., 2000), that showed
similar to levels of penetration to those observed in unin-
jured (HBSS) controls. This suggests that after alkali injury,
the penetration of polar/non-polar agents is differentially

affected and that of hydrophilic agents is not dependent on
the structural integrity of the epithelial lipid membranes.
While similarly affecting TEER, structurally, acidic damage
did not disrupt the corneal epithelium to the same extent as
alkaline damage. In this case, the superficial protein coagula-
tion induced may provide a physical barrier to compound
penetration. Consequently, the hydrophobic fluorescein
adsorbed into the corneal epithelial surface where the pro-
tein coagulation is presumed to occur, suggesting retention
and build-up here rather than penetration across the corneal
tissue. Absorption of the hydrophilic rhodamine B was also
comparably reduced, with a build up at the epithelial surface
and reduced penetration across the cornea. Accordingly,
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penetration of hydrophilic dexamethasone was reduced,
while corneal adsorption was increased. Acid-injury therefore
reduces ocular penetration of both hydrophilic and hydro-
phobic compounds.

We acknowledge the limitations of this study, including
the static nature of the assay without effects of blinking, the
lack of active inflammatory processes in response to injury
(although significant immune cell infiltration would not be
expected within the first 60 minutes after injury) and a lack
of physiologic tear film and ocular surface proteins, which
may exert a buffering function. All three chemicals studied
have a similar relatively low molecular weight, limiting
extrapolation of the results to large molecular weight drugs,
such as potential monoclonal antibody therapies.

In conclusion, acid OCl increased dexamethasone and
rhodamine B corneal adsorption (retention) and reduced
their penetration across the cornea. By contrast, while the
severe compromise of the epithelial layer after alkali OCI did
not affect corneal dexamethasone penetration, it did increase
penetration of the hydrophilic compound sodium
fluorescein.
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