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Abstract

Game theory based methods designed to solve the problem of community structure

detection in complex networks have emerged in recent years as an alternative to classical

and optimization based approaches. The Mixed Nash Extremal Optimization uses a gen-

erative relation for the characterization of Nash equilibria to identify the community struc-

ture of a network by converting the problem into a non-cooperative game. This paper

proposes a method to enhance this algorithm by reducing the number of payoff function

evaluations. Numerical experiments performed on synthetic and real-world networks

show that this approach is efficient, with results better or just as good as other state-of-

the-art methods.

Introduction

Game theory plays an important role in modeling and solving real-world conflicting situa-

tions. In recent years game theory concepts have been used to address the network community

structure detection problem as a game [1, 2]. This problem has multiple applications in eco-

nomics, politics, sociology, biology, physics, and chemistry. Its importance arises from the fact

that the community structure offers structural and functional information about the network

that cannot be derived from other indicators. Intuitively, a community is described as a group

of nodes that are highly connected to each other and sparsely connected to the outside. One of

the main challenges related to this problem comes from the lack of a universally accepted for-

mal definition for the community structure encompassing all aspects that emerge from the

intuitive description above. A comprehensive survey of the problem, including possible defini-

tions for the community structure, can be found in [3].

Game theory models strategic and conflicting situations offering a variety of solution

concepts that are known as game equilibria. The most popular example is the Nash equilib-

rium, which models a situation of a game in which no player has any incentive for unilateral

deviation [4]. The Nash equilibrium has been used to characterize the network community

structure by considering a game in which nodes are players that strategically choose their

community to maximize their payoffs. But this approach leads to multi-player games that
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are difficult to solve when the payoff functions do not have nice mathematical properties. A

heuristic model that computes Nash equilibria for such games has been proposed and

adapted for the community detection problem in [1, 5] for static unweighted networks, and

in [2] for dynamic networks. The model is based on extremal optimization and a generative

relation for strategy profiles that enables their comparison [6], guiding the search towards

game equilibria.

This paper proposes a reduced version of the generative relation—requiring less payoff

function evaluations—for Nash equilibria characterization. We first provide a formal proof

that this relation, which only takes into account a fraction of players when comparing two

strategy profiles, can also characterize the Nash equilibria of the game. Numerical experiments

are performed to evaluate this approach; results are compared with those provided by other

state-of-art methods from the literature.

Methods

The community structure detection problem is usually described as searching for a partition

over the set of network nodes such that nodes within each set are more connected to each

other than to nodes in other sets of the partition. While the concept of community as a social

term is straight forward, its formalization is not trivial. Several attempts to define it can be

found in the literature [7–14], but none of them captures all aspects embedded in the intuitive

definition above.

A popular attempt defines the community structure as the optimum value of a fitness func-

tion defined to capture the network structure; the advantage of considering such a function is

that heuristic methods can further be used to compute the optimal structure. Examples of such

functions are: the modularity [15], the community score [16], the community fitness [17], and

the modularity density [18]. However, none of these functions represent the real structure for

all types of networks as their optimal values do not always correspond to the known commu-

nity structure [19, 20].

A recent approach considers the community structure as the equilibrium of a mathematical

game. Game theoretic approaches usually transform the community detection problem into a

game in which nodes have the roles of players that have to choose a community to maximize

their payoffs. The first game-based models use the modularity function [15] to derive payoffs

for players [21, 22]. Game theoretic models have been proposed mostly for networks with

overlapping communities [21, 23, 24] and for dynamic networks [2, 25]; models based on

cooperative games theory have been proposed in [26–28]; other game based approaches can be

found in [1, 5, 29].

In [29] the game is defined also over the set of nodes, i.e. nodes are players that maximize a

payoff computed as the number of neighbors the node has in a community and a fraction of its

neighbors that are connected among themselves. The authors propose a method to compute

the Nash equilibria of this game, called Nash Stability based Community Detection (Nash-

CoDe). Numerical results are reported in terms of modularity and coverage for a set of real-

world networks.

Another formal game theoretic approach for unweighted networks constructs a hedonic

game [22] in which nodes are the players and payoffs are computed using a local modularity

function. The advantage of this approach is that the properties of the payoffs guarantee the

existence of a Nash equilibrium for this game. The authors also design a community detection

algorithm (CDG) that alternates three mechanisms to find the equilibrium. Numerical results

are reported on a set of real-world networks and synthetic networks.

Nash equilibria and the network community structure detection problem
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Reduced nash ascendancy

Consider a game Γ = (N, S, U), where N is the set of players, N = {1, . . ., n}, S ¼
Qn

i¼1
Si is the

set of strategy profiles of the game with Si the set of strategies of player i, and U ¼ fuigi2N ; ui :

S! R the player’s payoff functions. A Nash equilibrium (NE) is a strategy profile such that

there is no player that can improve his payoff by changing his strategy while all other players

maintain theirs unchanged. Currently there are a plethora of methods that compute the Nash

equilibria of a game. Among them an interesting class is formed of the methods based on evo-

lutionary computation as they are supposed to be highly adaptable to various payoff functions

and, more important, do not require nice mathematical properties for them [6, 30–32]. In [6]

the basis for the direct search for Nash equilibria by evolutionary algorithms is designed by the

proposal of a generative relation called the Nash ascendancy relation that can be used to char-

acterize and furthermore compare strategy profiles of the game with respect to NEs. A quality

operator k : S� S! N computed as the number of players that would improve their payoffs

by unilaterally switching their strategies from one strategy profile to the other is used:

kðs; qÞ ¼ cardfi 2 NjuiðsÞ � uiðqi; s� iÞ; si 6¼ qig; ð1Þ

where card{} denotes the cardinality of a set, and

ðqi; s� iÞ ¼ ðs1; s2; . . . ; si� 1; qi; siþ1; . . . ; snÞ:

Operator k is used to define the Nash generative relation that enables the comparison of two

strategy profiles with respect to the NE:

• if k(s, q)< k(q, s) we say that s Nash ascends (or Nash dominates) q, and that s is considered

better than q in Nash sense;

• if k(s, q)> k(q, s) we say that s is ascended (or Nash dominated) by q in Nash sense;

• if k(s, q) = k(q, s) then s and q are indifferent to each other in Nash sense.

A strategy profile that is not ascended/dominated by any other is called in this context Nash

non-ascended/non-dominated (NND). In [6] it is shown that if a game has at least one NE,

then the NND set coincides with the set of NEs of the game. In the absence of Nash equilibria,

the NND set can offer useful information about practical solutions that have properties similar

to Nash equilibria to problems that were not previously approached by game theoretic tools.

However, the ascendancy relation requires up to 2 � n payoff function evaluations for each

pair (s, q); this can become computationally expensive when dealing with large games. In this

paper we are exploring the possibility of replacing the Nash ascendancy relation described

above with a reduced version [33], which requires less payoff function evaluations when com-

paring two strategy profiles. The main result of this section is the formal proof that the reduced

version also characterizes the Nash equilibria of the game, i.e. in the presence of the Nash equi-

librium the set of non-dominated solutions with respect to this relation is equal to the set of

equilibria.

The reduced relation considers only a fraction p of the nodes when computing k, where

p 2 (0, 1] such that np = [p � n]> 0, where [�] denotes the integer part. We denote by Ip� N,

Ip = {i1, i2, . . ., inp
} any set of np players, and I p � PðNÞ the set of all subsets Ip of N having size

np. Operator kp : S� S� I p ! R is defined as:

kpðs; q; IpÞ ¼ cardfi 2 IpjuiðsÞ � uiðqi; s� iÞ; si 6¼ qig: ð2Þ

Nash equilibria and the network community structure detection problem
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Definition 1. We say that strategy profile s p–Nash ascends q with respect to Ip 2 I p if

kpðs; q; IpÞ < kpðq; s; IpÞ: ð3Þ

If p = 1, the p–Nash ascendancy relation is the same as the Nash ascendancy relation.

Definition 2. Strategy s 2 S is p–Nash non-ascended (p–Nash non-dominated) if there is no q
2 S and no Ip 2 I p such that

kpðq; s; IpÞ < kpðs; q; IpÞ:

We denote the set of p–Nash non-dominated solutions of Γ as pNND.

Proposition 1. For any s, q 2 S we have:

X

Ip2Ip

kpðs; q; IpÞ ¼ Cnp � 1

n� 1 kðs; qÞ; ð4Þ

where Cnp � 1

n� 1 denotes the binomial coefficient.
proof. Let k(s, q) = l and I = {i1, . . ., il} the set of l players that can improve their payoffs by

unilaterally deviating from s to q. Then each player ij belongs to Cnp � 1

n� 1 sets Ip 2 I p and we can

write:

X

Ip2Ip

kpðs; q; IpÞ ¼ Cnp � 1

n� 1 � l ¼ Cnp � 1

n� 1 kðs; qÞ:

Proposition 2. Any p–Nash non-dominated solution is a Nash non-dominated solution.

proof. Let s 2 pNND, and q 2 S. Then, based on Prop. 1, we have

kðs; qÞ ¼
1

Cnp � 1

n� 1

X

Ip2Ip

kpðs; q; IpÞ �
1

Cnp � 1

n� 1

X

Ip�N

kpðq; s; IpÞ ¼ kðq; sÞ ð5Þ

meaning that s 2 NND.

This result can be extended in the following manner:

Proposition 3. Let p, r 2 [0, 1] with r> p. Then 8Ir 2 I r:

krðs; q; IrÞ ¼
1

Cnp � 1

nr � 1

X

Ip�Ir

kpðs; q; IpÞ ð6Þ

proof. Let kr(s, q, Ir) = l, l< nr and I = {i1, . . ., il} the set of l players from Ir that can improve

their payoffs by unilaterally deviating from s to q. Then each player ij belongs to Cnp � 1

nr � 1 subsets

Ip� Ir and we can write:

X

Ip�Ir

kpðs; q; IpÞ ¼ Cnp � 1

nr � 1 � l ¼ Cnp � 1

nr � 1 krðs; q; IrÞ:

By considering r = 1 in Propositionn 3 we obtain the result in Proposition 1. Moreover,

based on proposition 3 we can also formulate the following result:

Proposition 4. Let p, r 2 [0, 1] with r> p. Then any p–Nash non-dominated solution is also
a r–Nash non-dominated solution.

proof. The proof is straight-forward from Proposition 3 and similar to that of Proposition 2.

Proposition 5. Any Nash equilibrium of Γ is a p-Nash non-ascended solution, p 2 (0, 1].

proof. The proof is direct from the definition of the NE.

From Propositions 2, 5, and based on [6] it follows that p–Nash non-dominated solutions

are also Nash equilibria for the game, if such an equilibrium exists. Thus, approximating p–

Nash equilibria and the network community structure detection problem
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Nash non-dominated solutions leads to the same results as approximating Nash non-domi-

nated solutions by using the Nash ascendancy relation.

Community structure detection game

In this paper we approach the game proposed in [5] with the reduced variant of the generative

relation used to characterize Nash equilibria. Given a network G = (V, E), where V is the set of

vertices and E is the set of edges, consider the following game G~¼ ðN; S;UÞ [5], where:

• N is the set of players represented by network nodes, N = V = {1, 2, . . ., n}; where n is the net-

work size;

• S = S1 × S2 × � � � × Sn the set of strategy profiles, and Si the set of strategies of player i; in this

case Si represents the set of possible communities node i may choose from; an element s 2 S
is a possible community structure; we write s = (C1, C2, . . ., Cn), Ci represents the community

of node i, i 2 {1, 2, . . ., n}; we denote strategies Ci by using integers, Ci 2 {1, . . ., Cmax} where

Cmax is a maximum value expected for the number of communities in the network, and with

Cw ¼ fi 2 N jCi ¼ wg, w = 1, . . ., Cmax the community containing all nodes having Ci = w, i
2 {1, . . ., n}; for example, Ci = 2 indicates that player i belongs to community 2 with all other

nodes j 2 N with Cj = 2, and we will denote by C2 the community containing all nodes i 2 N
with Ci = 2.

• U is the payoff function, U = (u1, u2, . . ., un) where ui : S ! R is the payoff function of player

i 2 N, computed as the node’s contribution to its community Cw, where Ci = w [1, 17]. We

compute the payoff ui(C1, C2, . . ., Ci, . . ., Cn) of node i relative to community Cw as the differ-

ence between the community fitness of Cw with node i included in it and its fitness when i is

excluded:

uiðC1;C2; . . . ;Ci; . . . ;CnÞ ¼ f ðCw [ figÞ � f ðCw n figÞ; withCi ¼ w: ð7Þ

The fitness f ðCÞ of community C in Eq (7) [17] is:

f ðCÞ ¼
P

j2Ck
in
j

ð
P

j2Cðkin
j þ kout

j ÞÞ
a ;

where kin
j is the internal degree of node j in community C (the number of links connecting

node j to other nodes in C), kout
j is the external degree of node j with respect to community C

(the number of links connecting node j to nodes outside of C), and α is a parameter control-

ling the size of the community. In what follows we will consider α = 1.

Example 1. Consider the network in Fig 1 and two different community structures (Figs 1

and 2).

In the first situation (Fig 1) we have:

f ðC1Þ ¼
2þ 2þ 2

ð2þ 0Þ þ ð2þ 0Þ þ ð2þ 1Þ
¼

6

7
; f ðC2Þ ¼

12

13

and the payoff of the third node (player) is the following:

u3ð1; 1; 1; 2; 2; 2; 2Þ ¼
6

7
�

1þ 1

ð1þ 1Þ þ ð1þ 1Þ
¼

5

14
:

Nash equilibria and the network community structure detection problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0174963 May 3, 2017 5 / 24

https://doi.org/10.1371/journal.pone.0174963


In the second case (Fig 2):

f ðC0
1
Þ ¼

2

7
; f ðC0

2
Þ ¼

8

13
:

The payoff for the third player is:

u3ð1; 1; 2; 2; 2; 2; 1Þ ¼
8

13
�

2þ 2þ 2

ð2þ 2Þ þ ð2þ 1Þ þ ð2þ 1Þ
¼

1

65
:

We have k(s, q) = 0, because u3(s) ≰ u3(1, 1, 2, 2, 2, 2, 2) and u7(s) ≰ u7(1, 1, 1, 2, 2, 2, 1) (we
need to verify only these two inequalities, because si = qi for i = 1, 2, 4, 5, 6). On the other hand k
(q, s) = 2, because u3(q)� u3(1, 1, 1, 2, 2, 2, 1) and u7(q)� u7(1, 1, 2, 2, 2, 2, 2). So we can say
that s Nash ascends q, or that s is better than q in Nash sense.

If we consider p = 0.50 and Ip = {3, 1, 5} we obtain kp(s, q, Ip) = 0 and kp(q, s, Ip) = 1, which
means that s 0.50-Nash ascends strategy profile q with respect to Ip.

While we cannot guarantee the existence of the Nash equilibrium for this game [21, 23], we

can attempt to approximate it by using a search heuristic with the generative relation for charac-

terization of Nash equilibria [6]. Particularly, the assumption that the NNDs of game G~ represent

Fig 1. The communities C1 ¼ f1; 2;3g (red), C2 ¼ f4; 5;6;7g (blue) form the strategy profile s = (1, 1, 1,

2, 2, 2, 2).

https://doi.org/10.1371/journal.pone.0174963.g001

Fig 2. The communities C0
1
¼ f1; 2;7g (red), C0

2
¼ f3; 4;5;6g (blue) form the strategy profile q = (1, 1, 2,

2, 2, 2, 1).

https://doi.org/10.1371/journal.pone.0174963.g002

Nash equilibria and the network community structure detection problem
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the community structure of the network was empirically tested in [1] by means of numerical

experiments performed on synthetic and real-world networks by using the Mixed Nash Extre-

mal Optimization (MNEO) algorithm. MNEO showed superior performance compared to

other methods in identifying the community structure for some networks considered difficult.

Computation method: p-Mixed Nash Extremal Optimization

In order to test the p-ascendancy relation, we adapt the Mixed Nash Extremal Optimization

[1] to use of the p–ascendancy relation instead of the Nash ascendancy. Thus, the only modifi-

cation made to MNEO, which is described in what follows, is the replacement, in line 4 of

Algorithm 1, of the Nash ascendancy relation with the p–Nash ascendancy relation (Definition

1) with respect to a randomly generated set Ip. The particular set Ip 2 I p of nodes that are

tested whenever two individuals are compared by using the reduced Nash ascendancy relation

is randomly generated each time a comparison is performed. p is a parameter of the method

and we denote by pMNEO the reduced version of MNEO.

Encoding. Each individual Pj encodes a network structure as a vector of integers of size n,

Pj = (pj1, . . ., pjn), for node i, pji represents the community of node i for individual j. Each indi-

vidual searches for a fixed number of communities, which is set within a minimum possible

value, Cmin, and a maximum one, Cmax.

Populations. pMNEO evolves a population P and an archive A; individuals in A preserve

the best solutions found so far by each individual in P. Paired individuals (Pj, Aj) from the two

populations follow the rules of extremal optimization: individual Pj explores the search space;

the best value found by Pj is preserved in Aj, j ¼ 1;M , where M is the size of the two

populations.

Extremal optimization. Individuals in population P explore the search space following

the rules of an EO-based iteration: for each individual Pj, the ℓ nodes having the worst fitnesses

are randomly assigned to different communities. If the newly obtained partition P0j p-Nash

ascends the corresponding archive member Aj relative to a randomly generated Ip 2 N, it will

replace it. If not, the search continues next iteration from P0j (Algorithm 1).

Algorithm 1 The Extremal Optimization iteration.

Input:CurrentpopulationP, archiveA;
Parameters:numberof nodesto be changedℓ;
ArchivememberAj, j ¼ 1;M, preservesthe best solutionfoundso far by Pj.
1: for each individualPj in P do
2: Selectthe ℓ nodeshavingthe lowestpayoffsfrom Pj;
3: Randomlyassignanothercommunityto each selectednode—create

offspringP 0j;
4: if P 0j p–NashascendsAj (Alg. 2) then
5: set Aj :¼ P 0j;
6: end if
7: set Pj ¼ P 0j
8: end for

The p-Nash ascendancy relation is implemented as described in Algorithm 2. An important

aspect of this relation is that at line 4 it tests if node i is in the same community in both P and

A: if it is so, we do not attempt to compare payoff values, even though they might be different

because of the rest of the structures, i.e. equal strategies in P and in A do not imply equal pay-

offs, but they are not compared as they are not included in kp(P, A, �) Eq (3).

Nash equilibria and the network community structure detection problem
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Algorithm 2 p-Nash ascendancy relation

Input:IndividualsP and A; Probabilityp
Output:1 if P p-NashascendsA, -1 if A Nash ascendsP, 0 if they are indiffer-
ent to each other.
1: Set kp(P, A) = 0;kp(A, P) = 0;
2: for h = 0;h < np = np;h++do
3: Randomlyselectnode i;
4: if Pi < >Ai then
5: if ui(P)<ui(Ai, P−i) then
6: kp(P, A)++;
7: end if
8: if ui(A)<ui(Pi, A−i) then
9: kp(A, P)++;
10: end if
11: end if
12: end for
13: if kp(P, A)<kp(A, P) then
14: return1; (P p–NashascendsA)
15: else
16: if kp(A, P)<kp(P, A) then
17: return-1; (A p–NashascendsP)
18: else
19: return0; (P and A are indifferentto each other)
20: end if
21: end if

Diversity preserving mechanism. pMNEO uses the mixing mechanism used by MNEO

designed to preserve the node degrees in the network and proposed in [34]. Two links are ran-

domly chosen, deleted, and the nodes are re-connected in a different manner. Links are

selected randomly with a probability ρ controlling the magnitude of change in the network.

pMNEO alternates the search on the original network for Λ iterations with the search on the

modified network for λ iterations.

Outline of pMNEO. Algorithm 3 presents an outline of pMNEO.

Algorithm 3 Outline of p- Mixed Network Extremal Optimization.

1: Randomlyinitializeall individualsin P and A;
2: Evaluateall individualsin P and A;
3: for NrGen from 0 to MaxGendo

4: Set ‘ngen ¼ max 1; 1

10
� n � ðn � 2Þ

� NrGen
MaxGen

h in o

5: Run an EO iteration(alg.1);
6: if Λ iterationswere performedon the originalnetworkthen
7: Mix networkwith probabilityρ;
8: Randomlyre-initializepopulationA;
9: Evaluateall individualsin P and A;
10: end if
11: if Networkis mixedand λ iterationswere performedthen
12: Restorenetworkto originalstructure;
13: Randomlyre-initializepopulationA;
14: Evaluateall individualsin P and A;
15: end if
16: end for
17: Output:individualfrom A havingthe best modularity;

Nash equilibria and the network community structure detection problem
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Output. The individual with best modularity Q [15]. The modularity function is not used

to guide the search, but only to select the best individual in the final population and is com-

puted as:

Q ¼
1

2m

X

ij

Aij �
didj

2m

� �

dðCi;CjÞ; ð8Þ

where the sum runs over all pairs of vertices i and j, A is the adjacency matrix, m the total num-

ber of links in the network, di the degree of node i, Ci the community of node i and δ(Ci, Cj)

equals 1 if nodes i and j belong to the same community and 0 otherwise. When two commu-

nity structures are compared, a higher modularity value presumably indicates a better

solution.

Parameters. pMNEO uses the following parameters:

• fraction p of nodes that are evaluated during the p–Nash ascendancy relation test;

• Population size M;

• Maximum number of iterations MaxGen;

• ρ—network mixing probability;

• Λ and λ—number of iterations MNEO performs the search on the original network and the

modified one, respectively;

• Cmin and Cmax—minimum and maximum number of communities searched for.

Results

We illustrate the effect of using the reduced generative relation within pMNEO by means of

numerical experiments performed on a Cournot oligopoly and on synthetic and real-world

networks with known community structures.

Experimental set-up

Cournot oligopoly. The Cournot oligopoly is a well known competitive market game,

suitable as a benchmark for testing equilibria detection methods as it presents one known

equilibrium, and it is scalable.

Let qi, i = 1, . . ., n quantities of an homogeneous product—produced by n companies

respectively. We consider the market clearing price as

PðQÞ ¼ a � Q;

where Q is the aggregate quantity on the market. We have

PðQÞ ¼

( a � Q; for Q < a;

0; for Q � a:

If the total cost for the company i of producing quantity qi is C(qi) = cqi, i.e. there are no

fixed costs and the marginal cost c is constant, c< a, and that companies choose their quanti-

ties simultaneously, the payoff for the company i is its profit:

uiðq1; q2; :::; qnÞ ¼ qiPðQÞ � CðqiÞ:

Nash equilibria and the network community structure detection problem
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If Q ¼
Pn

i¼1
qi; the Cournot oligopoly has one Nash equilibria that can be computed by

qi ¼
a � c
nþ 1

; 8i 2 f1; :::; ng:

We will use the Cournot oligopoly to illustrate the behavior of pMNEO when considering

different probabilities for the generative relation. However, since convergence to local equilib-

ria is not an issue in this case, we do not need the mixing mechanism to ensure diversity. We

denote by pMNEO− the algorithm used to perform numerical experiments on the Cournot

oligopoly.

Parameter settings for the Cournot oligopoly We tested pMNEO− for 10, 50, 100, 500,

and 1000 players, by using 10 individuals encoding a strategy profile of the game; in our exper-

iments we set a = 24, c = 9, MaxGen = 104, S = [0, 10]n. Tested values for probability p are 0.25,

0.50, 0.75, and 1. Each generation we compute and report the distance to the Nash equilibrium

of the game.

Community structure detection. Benchmarks pMNEO is tested on the GN and LFR syn-

thetic benchmarks [35, 36] (generated using the code available at https://sites.google.com/site/

andrealancichinetti/software) and on four real world datasets with known community struc-

ture: the bottle-nose dolphin network [37], the football network [36], the Zachary karate club

network [38], and the books about US politics network (http://www.orgnet.com, last accessed

9/3/2015). A set of three networks with unknown community structure is also tested: risk map
[39], jazz [40], and contiguous USA [41].

The GN benchmark consists of eight network sets having 128 nodes grouped in 4 commu-

nities of 32 nodes; each node has a degree of 16. Each set is characterized by the number of

links a node has outside its community, zout 2 {1, 2, . . ., 8}, and contains 30 networks.

Three sets of LFR benchmarks were generated: one set having 128 nodes, and 2 with 1000

nodes, each of them consisting of 5 sets containing 30 networks with different mixing parame-

ters μ 2 {0.1, 0.2, . . ., 0.5}. The mixing parameter μ is the ratio between the number of links a

node has outside its community and its degree. The LFR parameters are: average vertex degree

20, maximum vertex degree 50, community size [10, 50] for the S (small) set with 128 and 1000

nodes, and [20, 100] for the B (big) set with 1000 nodes.

Parameters pMNEO has only one specific parameter apart from MNEO, the fraction p of

nodes used within the p-Nash ascendancy relation. Four values of p were tested: 25%, 50%,

75%, and 100%. When p = 100%, pMNEO is the same with MNEO. The termination condition

was set as the maximum number of generations for each benchmark, indicated with the

numerical results for each set. In order to assess if there are differences between results

obtained by using these values, all other parameters are maintained constant (with values indi-

cated in [1]), i.e.: population size 50, probability ρ for the network mixing mechanism 0.02, Λ
= 30, and λ = 10. The parameters Cmin and Cmax were set to include the real number of com-

munities and to allow 25% of the population to use it as a parameter.

Comparison with other methods The results obtained by pMNEO are compared to the fol-

lowing state-of-the-art algorithms: OSLOM [42], Infomap [43], Modularity optimization

(ModOpt) [44], and the Louvain method [45] (for these algorithms we use the code and

parameter settings available at https://sites.google.com/site/andrealancichinetti/software,

downloaded on March 2014). Each of these algorithms are known to be fast and efficient.

Performance measure A reliable performance measure for assessing the quality of the

results offered by different community detection methods is the normalized mutual informa-

tion (NMI)1 [17]. The NMI can be used when the community structure is available; the higher

the value of the NMI, the better the solution; the maximum value of 1 indicates that the

Nash equilibria and the network community structure detection problem
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compared structures are identical. Thus, if a result is compared to the known structure, a NMI

value of 1 indicates that the correct structure has been found.

NMI values obtained by different methods are compared by using the Wilcoxon signed-

rank non-parametric test. Thus we consider the NMIs reported in 30 independent runs for

each real network and for the 30 networks of each GN or LFR set, by each method. The Wil-

coxon sign rank assesses if there is a significant difference between two sample means; the null

hypothesis that two samples come from the same population can be rejected with a level of sig-

nificance α = 0.05 if the computed p-value is smaller than 0.05.

Also in order to evaluate the quality of the reported solution from the equilibria point of

view, we verify for each one if there are any players that would improve their payoffs by unilat-

eral deviation, and report the fraction of this number to the number of nodes in the network.

In this manner we can assess if pMNEO actually computes Nash equilibria of the community

structure detection game.

Results and discussion

Cournot oligopoly. The results reported by pMNEO− on the Cournot oligopoly are pre-

sented in Figs 3–5. Fig 3 presents boxplots of minimum distance to NE for all the player set-

tings. There are no significant differences between results reported when using different p
values. Fig 4 complements this information by showing the evolution of the distance to NE

with similar behavior for all p values. Fig 5 however, shows significant differences between the

duration of runs (in seconds) for all p values, supporting the hypothesis that the use of the

reduced generative relation yields faster, but just as good, results for the Cournot oligopoly.

Community structure detection. NMI values computed for the results obtained by

pMNEO by using the four different values of p as well as with the other methods for all consid-

ered networks are presented as boxplots accompanied by black-white matrices representing

Wilcoxon h-values for each pair of methods tested in order to make the assessment about the

statistical significance of possible differences straightforward (a white square in the matrix

indicate no statistical differences in results while a black one indicates significant differences).

The numbers 1 to 8 indicate the methods as they are ordered in the box-plots in the left.

Results obtained on networks with clear community structures are presented in the Sup-

porting information. Thus, for the GN benchmarks with zout� 5 all methods compute the

Fig 3. Distance to Nash equilibrium for the Cournot oligopoly and different p values. The null hypothesis that there is no statistical difference between

means of results could not be rejected by using a Wilcoxon sum-rank test (0.05 significance level).

https://doi.org/10.1371/journal.pone.0174963.g003
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correct structure (S1 Fig). For zout = 6 and 7 (Fig 6), pMNEO correctly identifies the structure

for all values of p, with the exception of one network for p = 25% and zout = 7. For zout = 8,

which is the most difficult set in the GN benchmark, all results obtained by pMNEO are signif-

icantly better than those obtained by the other methods. Regarding other results in literature

obtained with an EO based method [46], we find that they report the fraction of nodes cor-

rectly classified as 1 for zout values from 1 to 6 and decreasing to approx. 0.8 to zout = 8.

For the LFR set with 128 nodes and μ� 0.3, results are similar with those for the GN (S2

Fig). For the most difficult set, having μ = 0.5, pMNEO results are significantly better than

those reported by Infomap and OSLOM. The results obtained for the LFR sets with 1000

nodes (Fig 7 and S3 Fig) show that all eight methods are competitive as they are all capable to

identify the community structure with NMI values close to 1 (equal to 1 for Infomap).

All results obtained on the synthetic networks show no significant difference among the

values of the p parameter. Thus, we may conclude that, for networks presenting similar

Fig 5. Duration of the runs (in sec.). The null hypothesis that differences between mean values are not significant was rejected by using a Wilcoxon sum-

rank test with a significance level of 0.05.

https://doi.org/10.1371/journal.pone.0174963.g005

Fig 4. Evolution of the distance to NE in all cases: again no significant diference between the four p values is observed.

https://doi.org/10.1371/journal.pone.0174963.g004
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structures with the tested ones, the Nash ascendancy relation can be replaced with the reduced

variant considering even only 25% of the nodes when comparing two strategy profiles. The

evolution of NMI values over time for the GN zout = 8 set, represented in Fig 8, shows that for

this network set the evolution is similar, with overlapping trends, for all p values.

Fig 9 presents the results obtained for the four real-world networks tested. They show that

for all p settings, pMNEO results are the same or better than those obtained by the other meth-

ods. Again, there is no statistical difference among results obtained for different p values in

most cases.

Most other methods based on game theory in literature do not present extensive numerical

results to allow comparisons. In [28] experiments are performed on the GN and LFR 1000 S

sets, using their method, SNS-CD, and also the Game algorithm in [21] and NashCoDe in

[29]. On the GN set, SNS-CD reports a NMI equal to 1 for zout� 7 and decreases below 0.5 for

zout = 8. According to their results, Game and NashCoDE reported an NMI of 0 for all GN

sets. In the case of LFR 1000 S, SNS-CD reports best results among game theoretic based

approaches, with NMI values of approx. 0.95 for μ = 0.1, 0.2, and 0.85 for μ = 0.3, 0.4 and

decreasing below 0.5 for μ = 0.5. pMNEO results are better than all these (Figs 6, 7 and S1 Fig)

for all tested p values.

Is it Nash equilibrium? While computing the Nash equilibrium is recognized to be chal-

lenging task, verifying that a strategy profile is a Nash equilibrium is a computationally expen-

sive, yet trivial: we need to check for each player if unilateral deviations increase their payoff.

When the strategy set is discrete, we can verify this by exhaustive search. To do so, for all results

Fig 6. GN zout = 6, 7, 8; boxplots of NMI values for all methods considered (left). On the right, the black-

white matrix represents Wilcoxon h values for each pair of methods considered, numbered in the order they

appear in the boxplot. A black square indicates a statistical difference between results. For zout = 8 results

obtained with all values of p are significantly better than all other methods considered.

https://doi.org/10.1371/journal.pone.0174963.g006
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reported by pMNEO we counted the number of nodes (players) that would improve their pay-

offs by changing community. In order to compare results among networks with different sizes

we divided this number to the network size. Results are presented in Tables 1 and 2.

Results in Table 1 show that for all small networks the reported solutions are Nash equilib-

ria for all p values. For the LFR sets with 1000 nodes, where the algorithm did not reach a NMI

value of 1, there are nodes that can improve their payoffs by changing communities (more for

LFR small). For the real world networks, we find that the solutions are Nash equilibria. Look-

ing at Table 2 we find that even when the real community structure is not available, the pro-

vided solutions (with a high modularity value) are good approximations of Nash equilibria.

Furthermore, for real-world networks where the concept of ‘real community structure’ is

debatable [47], these results that have the Nash equilibrium property of stability against unilat-

eral deviations may actually provide a more realistic approach to this concept. For example,

the books dataset is constructed from online data by considering books as nodes and edges are

Fig 7. LFR small, 1000 nodes; boxplots of NMI values for all methods considered (left). On the right, the

black-white matrix represents Wilcoxon h values for each pair of methods considered, numbered in the order

they appear in the boxplot. A black square indicates a statistical difference between results.

https://doi.org/10.1371/journal.pone.0174963.g007
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Fig 8. Evolution of the mean NMI values over time for the GN zout = 8 set and different p values.

https://doi.org/10.1371/journal.pone.0174963.g008

Fig 9. Real-world networks; boxplots of NMI values for all methods considered (left). On the right, the

black-white matrix represents Wilcoxon h values for each pair of methods considered, numbered in the order

they appear in the boxplot. A black square indicates a statistical difference between results.

https://doi.org/10.1371/journal.pone.0174963.g009
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Table 1. Fraction of nodes that can improve their payoffs by unilateral deviation in solutions reported by pMNEO for networks with known commu-

nity structure. A zero value indicates that reported solutions are indeed Nash equilibria of game ~G. We report average values ± standard deviations and confi-

dence limits of the mean.

μ p = 0.25 p = 0.5 p = 0.75 p = 1

GN

zout:1-8 mean ± stdev 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

LFR 128

0.1-0.5 mean ± stdev 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

LFR 1000 big

0.1 mean ± stdev 0.01 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.01 ± 0.01

min 0.00 0.00 0.00 0.00

CL mean 0.01 0.02 0.00 0.01 0.00 0.01 0.00 0.01

0.2 mean ± stdev 0.00 ± 0.00 0.01 ± 0.02 0.00 ± 0.01 0.00 ± 0.01

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.01

0.3 mean ± stdev 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01

0.4-0.5 mean ± stdev 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

LFR 1000 small

0.1 mean ± stdev 0.10 ± 0.05 0.11 ± 0.04 0.12 ± 0.04 0.17 ± 0.11

min 0.05 0.05 0.07 0.04

CL mean 0.07 0.14 0.08 0.14 0.09 0.15 0.09 0.24

0.2 mean ± stdev 0.14 ± 0.06 0.12 ± 0.06 0.11 ± 0.08 0.09 ± 0.05

min 0.07 0.03 0.00 0.01

CL mean 0.10 0.18 0.08 0.17 0.05 0.16 0.06 0.13

0.3 mean ± stdev 0.11 ± 0.07 0.10 ± 0.08 0.12 ± 0.09 0.08 ± 0.06

min 0.03 0.01 0.05 0.00

CL mean 0.06 0.16 0.04 0.15 0.05 0.18 0.04 0.12

0.4 mean ± stdev 0.07 ± 0.03 0.07 ± 0.04 0.05 ± 0.03 0.06 ± 0.03

min 0.03 0.00 0.01 0.01

CL mean 0.05 0.10 0.04 0.10 0.03 0.07 0.03 0.08

0.5 mean ± stdev 0.06 ± 0.04 0.04 ± 0.03 0.04 ± 0.03 0.05 ± 0.04

min 0.02 0.01 0.01 0.01

CL mean 0.03 0.08 0.02 0.06 0.02 0.07 0.02 0.08

Real networks

books mean ± stdev 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dolphins mean ± stdev 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(Continued )
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linking books that have been co-purchased by same buyers. The ‘real’ structure is considered

to be set by the book’s political content. However, by studying the ‘real’ structure we can find

nodes that have no link with other nodes in the community they are assigned to, which makes

their ‘correct’ identification impossible (Figs 10 and 11). In this situation the equilibrium

approach provides an alternative solution that may offer information about the real and not

the expected structure of the network.

Efficiency. One of the reasons the reduced Nash ascendancy relation was considered was

to decrease the number of payoff function evaluations. Reducing this number up to only 25%

should also reduce the running time of pMNEO. Fig 12 illustrates for each set the average

duration necessary to run the experiments for different p values as percentage of the average

duration for the p = 100% case. Results are similar for all the sets: reducing to 25% the percent

of nodes that are used in the reduced ascendancy relation leads to an approximatively 10%

decrease in running time. We may conclude that using the Nash ascendancy relation influ-

ences the running time less than other components of the extremal optimization algorithm.

In order to assess if there is indeed an economy in payoff function evaluations, we counted

the number of payoff function calls that were actually performed from the pNash ascendancy

procedure (Alg. 2). Results are presented in Fig 13. The first thing to notice is that values

Table 1. (Continued)

μ p = 0.25 p = 0.5 p = 0.75 p = 1

fotball mean ± stdev 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

karate mean ± stdev 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

https://doi.org/10.1371/journal.pone.0174963.t001

Table 2. Fraction of nodes that can improve their payoffs by unilateral deviation in solutions reported by pMNEO for real world networks with

unknown community structure. A zero value indicates that reported solutions are indeed Nash equilibria of game ~G. We report average values ± standard

deviations and confidence limits of the mean also for modularity Q.

Network p = 0.25 p = 0.5 p = 0.75 p = 1

riskmap Q 0.62 ± 0.00 0.61 ± 0.00 0.61 ± 0.01 0.61 ± 0.00

mean ± stdev 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

jazz Q 0.44 ± 0.00 0.44 ± 0.00 0.44 ± 0.00 0.44 ± 0.00

mean ± stdev 0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.01

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01

contiguous USA Q 0.58 ± 0.00 0.58 ± 0.01 0.58 ± 0.01 0.58 ± 0.01

mean ± stdev 0.01 ± 0.01 0.00 ± 0.01 0.01 ± 0.01 0.00 ± 0.01

min 0.00 0.00 0.00 0.00

CL mean 0.00 0.02 0.00 0.01 0.00 0.02 0.00 0.01

https://doi.org/10.1371/journal.pone.0174963.t002
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Fig 10. Political books dataset: The ‘real’ community structure is represented. We can see yellow

nodes that have more colored links than yellow, indicating more links in the other two communities.

https://doi.org/10.1371/journal.pone.0174963.g010

Fig 11. Political books dataset: A solution reported by pMNEO with NMI = 0.52 and verified to be a

Nash equilibrium; some of the ‘difficult’ nodes are placed in a different community.

https://doi.org/10.1371/journal.pone.0174963.g011
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Fig 12. Differences in running times for the four tested p values as percentage of the running time for

the p = 100% case for each network set.

https://doi.org/10.1371/journal.pone.0174963.g012

Fig 13. Number of payoff function calls in Alg. 2, 10 individuals. Notches indicate confidence limits of the

mean.

https://doi.org/10.1371/journal.pone.0174963.g013
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reported for different p values on the same network do not have the same ratio between them

as the p values themselves. The explanation for that is that the payoff function call in Alg. 2 is

performed only if the selected player has different strategies in the two tested profiles (line 4).

A significant difference would indicate the utility of considering the reduced generative rela-

tion for the community structure detection problem.

The Wilcoxon sum-rank test shows that the differences between p = 0.25 and p = 1 are sig-

nificant for all networks (Table 3), while looking at NMI results reported for these values do

not differ significantly (only in few cases). Table 3 also shows that most significant differences

appear when comparing 0.25 with the others, and least differences between 0.75 and 1. These

results show that even if the gain in running time -which also depends on the implementation

—may not seem remarkable, there are benefits in using the reduced generative relation.

Compared with the other methods, however, pMNEO is slower, like many other evolution-

ary techniques. A typical run for a network with 1000 nodes, population of 50 individuals and

6000 generations takes about one hour on a Intel(R) Core(TM) Quad CPU Q9400 @2.66GHz,

while for Oslom and Infomap it takes minutes. However, the results obtained on difficult net-

work show that pMNEO is a more refined method with potential to reveal structures that are

not discoverable by other methods.

Conclusion

We explore the possibility of using a reduced version of the Nash ascendancy relation within

an extremal optimization method designed to identify the community structure of a network.

The reduced ascendancy relation takes into account only a fraction of the network nodes when

comparing two strategy profiles. We show that p–Nash non-ascended solutions are also Nash

equilibria of the game. We address the practical concern that using the reduced relation may

not yield results as good as the Nash ascendancy relation when maintaining the same number

of iterations by using numerical experiments. Results show that there are very few significant

differences in results between different values for the fraction of nodes and that the perfor-

mance of pMNEO is significantly better than that of other state-of-the-art methods on the

tested benchmarks.

Regarding the running time, the differences between different probability levels are low: an

average decrease of 10% in running time when switching from p = 100% to p = 25%. This

result indicates that the Nash ascendancy relation, while indeed computationally expensive,

does not influence the running time of pMNEO as much as other components of the method.

Table 3. Wilcoxon sum-rank results regarding differences in payoff function calls for the tested p values. An * indicates significant difference.

Network 0.25! 0.5 0.25! 0.75 0.25! 1 0.5! 0.75 0.5! 1 0.75! 1

karate – – * – * –

riskmap – – * – – –

USA – * * – – –

dolphins * * * – * *

books * * * * * *

football * * * * * –

GN * * * * * –

jazz * * * * * –

LFR 1000 * * * * * *

https://doi.org/10.1371/journal.pone.0174963.t003
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However, the reduced version does offer a less computational expensive alternative to the

Nash ascendancy relation, that can be used to enhance other heuristics that attempt to solve

the community structure detection problem using game theoretic approaches.

Supporting information

S1 Fig. GN zout = {1, . . ., 5}; boxplots of NMI values for all methods considered (left). On

the right, the black-white matrix represents Wilcoxon h values for each pair of methods con-

sidered, numbered in the order they appear in the boxplot. A black square indicates a statistical

difference between results. As these networks have very well defined community structures, all

methods are capable to identify the correct structure.

(EPS)

S2 Fig. LFR small, 128 nodes; boxplots of NMI values for all methods considered (left). On

the right, the black matrix represents Wilcoxon h values for each pair of methods considered,

numbered in the order they appear in the boxplot. A black square indicates a statistical differ-

ence between results.

(EPS)

S3 Fig. LFR big, 1000 nodes; boxplots of NMI values for all methods considered (left). On

the right, the black-white matrix represents Wilcoxon h values for each pair of methods con-

sidered, numbered in the order they appear in the boxplot. A black square indicates a statistical

difference between results.

(EPS)

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific

Research and Innovation, CNCS – UEFISCDI, project number PN-II-RU-TE-2014-4-2332.

Author Contributions

Conceptualization: LRI GN.

Data curation: GN SMA.

Formal analysis: GN SMA LRI.

Funding acquisition: LRI.

Investigation: GN SMA LRI.

Methodology: LRI GN.

Project administration: LRI.

Resources: GN SMA.

Software: LRI GN SMA.

Supervision: LRI.

Validation: LRI GN SMA.

Visualization: GN SMA LRI.

Nash equilibria and the network community structure detection problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0174963 May 3, 2017 21 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174963.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174963.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174963.s003
https://doi.org/10.1371/journal.pone.0174963


Writing – original draft: LRI GN.

Writing – review & editing: LRI.

References
1. Suciu M, Lung R, Gasko N. Mixing Network Extremal Optimization for Community Structure Detection.

In: Ochoa G, Chicano F, editors. Evolutionary Computation in Combinatorial Optimization. vol. 9026 of

Lecture Notes in Computer Science. Springer International Publishing; 2015. p. 126–137. Available

from: http://dx.doi.org/10.1007/978-3-319-16468-7_11

2. Lung RI, Chira C, Andreica A. Game Theory and Extremal Optimization for Community Detection in

Complex Dynamic Networks. PLoS ONE. 2014; 9(2):e86891. https://doi.org/10.1371/journal.pone.

0086891 PMID: 24586257

3. Fortunato S. Community detection in graphs. Physics Reports. 2010; 486:75–174. https://doi.org/10.

1016/j.physrep.2009.11.002

4. Nash JF. Non-cooperative games. Annals of Mathematics. 1951; 54:286–295. https://doi.org/10.2307/

1969529

5. Lung RI, Gog A, Chira C. A Game Theoretic Approach to Community Detection in Social Networks. In:

Nature Inspired Cooperative Strategies for Optimization, NICSO 2011, Cluj-Napoca, Romania, October

20-22, 2011; 2011. p. 121–131. Available from: http://dx.doi.org/10.1007/978-3-642-24094-2_8

6. Lung RI, Dumitrescu D. Computing Nash Equilibria by Means of Evolutionary Computation. Int J of

Computers, Communications & Control. 2008; III(suppl.issue):364–368.

7. Barabási AL. Linked-the new science of networks; 2002.

8. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in net-

works. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101

(9):2658–2663. https://doi.org/10.1073/pnas.0400054101 PMID: 14981240

9. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Physical review E.

2004; 69(2):26113. https://doi.org/10.1103/PhysRevE.69.026113

10. Molecular KK, Molecular KK. Letters To Nature. Nature. 2005; 433(February):895–900.

11. Mokken RJ. Cliques, clubs and clans. Quality & Quantity. 1979; 13(2):161–173. https://doi.org/10.1007/

BF00139635

12. Hu Y, Chen H, Zhang P, Li M, Di Z, Fan Y. Comparative definition of community and corresponding

identifying algorithm. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics. 2008; 78

(2):1–7.

13. Gao Z, Lu Z, Chen W, Zhong J, Bi Y. The Maximum Community Partition Problem in Networks. In: 2013

International Conference on Social Intelligence and Technology. IEEE; 2013. p. 28–36. Available from:

http://www.scopus.com/inward/record.url?eid=2-s2.0-84881123765&partnerID=tZOtx3y1

14. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks: Structure and dynamics.

Physics Reports. 2006; 424(4-5):175–308. https://doi.org/10.1016/j.physrep.2005.10.009

15. Newman MEJ. Modularity and community structure in networks. Proceedings of the National Academy

of Sciences. 2006; 103(23):8577–8582. https://doi.org/10.1073/pnas.0601602103

16. Pizzuti C. GA-Net: A genetic algorithm for community detection in social networks. In: Parallel Problem

Solving from Nature X. Springer; 2008. p. 1081–1090.

17. Lancichinetti A, Fortunato S, Kertész J. Detecting the overlapping and hierarchical community structure

in complex networks. New Journal of Physics. 2009; 11(3):033015. https://doi.org/10.1088/1367-2630/

11/3/033015

18. Li Z, Zhang S, Wang RS, Zhang XS, Chen L. Quantitative function for community detection. Phys Rev

E. 2008; 77:036109. https://doi.org/10.1103/PhysRevE.77.036109
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