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Abstract

datasets.

Background: With the explosion in the number of methods designed to analyze bulk and single-cell RNA-seq data,
there is a growing need for approaches that assess and compare these methods. The usual technique is to compare

methods on data simulated according to some theoretical model. However, as real data often exhibit violations from
theoretical models, this can result in unsubstantiated claims of a method's performance.

Results: Rather than generate data from a theoretical model, in this paper we develop methods to add signal to real
RNA-seq datasets. Since the resulting simulated data are not generated from an unrealistic theoretical model, they
exhibit realistic (annoying) attributes of real data. This lets RNA-seq methods developers assess their procedures in
non-ideal (model-violating) scenarios. Our procedures may be applied to both single-cell and bulk RNA-seq. We show
that our simulation method results in more realistic datasets and can alter the conclusions of a differential expression
analysis study. We also demonstrate our approach by comparing various factor analysis techniques on RNA-seq

Conclusions: Using data simulated from a theoretical model can substantially impact the results of a study. We
developed more realistic simulation techniques for RNA-seq data. Our tools are available in the seqgendif £ R
package on the Comprehensive R Archive Network: https://cran.r-project.org/package=seqgendiff.
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Background

Due to its higher signal-to-noise ratio, larger range of
detection, and its ability to measure a priori unknown
genes, RNA-seq has surpassed microarrays as the tech-
nology of choice to measure gene expression [1]. With the
advent of single-cell RNA-seq technologies, researchers
now even have the ability to explore expression varia-
tion at the individual cell level [2]. This presents exciting
opportunities for researchers to characterize the expres-
sion heterogeneity between and within organisms, and
has brought about a plentiful flow of new datasets. In
the wake of these new data, an explosion of methods has
been developed to analyze them. In “Application: evaluat
ing differential expression analysis” section, “Application:
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evaluating confounder adjustment” section, “Application:
evaluating effects of library size heterogeneity” section,
and “Application: evaluating factor analysis” section we
provide a large (yet terribly incomplete) list of methods
designed to analyze RNA-seq data.

The typical pipeline to evaluate a method is to first
simulate data according to some theoretical model, then
compare it to competing methods on these simulated data
and show it to be superior in some fashion. This way of
evaluation can be useful to see how a method works in
ideal scenarios. However, real data rarely live in ideal sce-
narios. Real data often exhibit unwanted variation beyond
that assumed by a model [3]. Theoretical distributional
assumptions are also difficult to verify, and are sometimes
mired in controversy [4].

In this paper, we propose an alternative approach.
Rather than generate data with a prespecified signal
according to some modeling assumptions, we take a real
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RNA-seq dataset and add a prespecified signal to it. The
main advantage of our approach is that any unwanted
variation in the real data is maintained in the simulated
data, and this unwanted variation need not be prespec-
ified by the researcher. The way we add signal does
carry assumptions, but they are flexible (Supplementary
Section S1.2, Additional file 1). And we believe that this
way of simulation, compared to simulating under a the-
oretical model, allows researchers to more realistically
evaluate their methods.

This manuscript essentially generalizes the simulation
techniques proposed in [5, 6], and [7]. These previ-
ous papers use binomial thinning (the approach used in
this paper) in the case where there are just two groups
that are differentially expressed (hereafter, the “two-group
model”). Binomial thinning is the process of subsampling
counts using the binomial distribution. This subsam-
pling is applied to different individuals heterogeneously to
add signal to the observed counts. These papers did not
develop methods for more complicated design scenarios,
they did not present user-friendly software implementa-
tions for their simulation techniques, and they did not
justify their simulation techniques as broadly. Here, we
allow for arbitrary experimental designs, we release soft-
ware for users to implement their own simulations, and
we justify our techniques using very flexible assumptions.

There has been some other previous work on “data-
based” simulations in expression analyses. Datasets result-
ing from data-based simulations (sometimes called “plas-
modes” [8]) have been used in microarray studies before
the development of RNA-seq [9, 10]. All RNA-seq data-
based simulation methods have so far operated in the
two-group (or finite-group) model, without any ability to
simulate data from arbitrary experimental designs. Rocke
et al. [11] and [12] randomly shuffled group indicators in
the two-group model, resulting in completely null data,
and methods can be evaluated on their ability to control
for type I error when the data are all null. Rigaill et al. [13],
in addition to generating null data by randomly shuffling
group labels, incorporate multiple datasets to create some
non-null genes within their simulated datasets. Benidt and
Nettleton [14] use a count-swapping algorithm in the two-
group model to create differentially expressed genes when
one already has two treatment groups. Kvam et al. [15,
16], and [17] create non-null genes by multiplying counts
for all individuals in a group by the fold-change in mean
expression. [18] uses a binomial distribution approach
to uniformly decrease the sequencing depth of an entire
dataset (but not to add differentially expressed genes).
Concerning non-data-based methods, [19] and [20] use
real RNA-seq data to estimate the parameters in a data-
generating model before simulating data from the theo-
retical model using these estimated parameter values. Our
work is the first to extend data-based RNA-seq simulation
beyond the finite-group model.
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Our paper is organized as follows. We first list the
goals and assumptions of our simulation scheme (“Goals
and assumptions” section) before motivating it with
four applications (“Application: evaluating differential
expression analysis” section, “Application: evaluating con-
founder adjustment” section, “Application: evaluating
effects of library size heterogeneity” section, and “Appli-
cation: evaluating factor analysis” section) and describing
our process of simulating RNA-seq in detail (“Generating
modified RNA-seq data” section). We then demonstrate
how our approach can more accurately preserve struc-
ture in a real dataset compared to simulating a dataset
from a theoretical model (“Features of real data” section).
We show that this can alter the conclusions of a dif-
ferential expression analysis simulation study (“Effects
on differential expression analysis simulations” section).
We then apply our simulation approach by comparing
five factor analysis methods using the GTEx data [21]
(“Evaluating factor analyses” section). We finish with
a discussion and conclusions (“Discussion” section and
“Conclusions” section).

We adopt the following notation. We denote matrices
by bold uppercase letters (4), vectors by bold lowercase
letters (), and scalars by non-bold letters (2 or A). Indices
typically run from 1 to their uppercase version, e.g. a =
1,2,...,A. Where there is no chance for confusion, we let
non-bold versions of letters represent the scalar elements
of matrices and vectors. So a; is the (i, j)th element of A,
while g; is the ith element of a. We let 14 denote the A-
vector of 1’s and 14« p the A x B matrix of 1’s. The matrix
transpose is denoted by AT.

Methods

Goals and assumptions

We will now describe the goals and assumptions of our
simulation method, which relies on a researcher having
access to a real RNA-seq dataset. Suppose a researcher has
a matrix ¥ € RN of RNA-seq read-counts for G genes
and N individuals. Also suppose a researcher has access to
a design matrix X; € RN*P1 with Py variables. The avail-
ability of X is optional, not essential to the method, and is
mostly for descriptive purposes. We assume the RNA-seq
counts, Y, are generated according to the following model:

Yen ~ Poisson(2%"), and (1)
© =pulf+BX] +AZT+Q,

where

o u € RY isavector of intercept terms for the genes,

® B; € RO*P1 s the corresponding coefficient matrix
Of X1 ,

o Z e RN*K i a matrix of unobserved surrogate
variables,
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® A e R&*K s the corresponding coefficient matrix of
Z,and

e Q@ e REN represents all other unwanted variation
not accommodated by the other terms in the model,

where u, By, Z, A, and € are all unknown. Given the
above data-generating process, suppose a user provides
the following (known) elements:

® X; € RN*P2 4 design matrix with fixed rows (see
note 3 below),

e B, € RO*™, the coefficient matrix corresponding to
X3,

® X3 € RN*Ps 3 design matrix with rows that can be
permuted (see note 3 below), and

e B3 € RO*P3, the coefficient matrix corresponding to
X;.

Our goal is to generate a matrix ¥ € RN from Y such
that

Yen ~ Poisson(2§g"), and
© = i1, + B1X] + BoX] + B3 XJ 1T + AZT + @,
2)

where

e IT € RV*N jsa random permutation matrix, whose
distribution controls the level of association between
the columns of IIX3 and the columns of Z, and

® [ is a new vector of intercept terms for the genes.

We will provide the details on how to generate ¥ from
Y in “Generating modified RNA-seq data” section. But
we would like to first provide some notes below, and
then discuss the applications of being able to generate (2)
from (1).

Note 1: For simplicity we use the Poisson distri-
bution in the main text (Egs. (1) and (2)). How-
ever, our approach is valid under much more gen-
eral assumptions. In particular, we note that if the
counts were generated according to a negative bino-
mial distribution, a zero-inflated negative binomial
distribution, or even a mixture of binomials and
negative binomials, then our simulation scheme still
preserves the structure of the data (Supplementary
Section S1.2, Additional file 1). However, even when
our general modeling assumptions are violated, one
can show (via the law of total expectation) that if
log,(E[Y]) = O, then log,(E] Y]) = O, where
we are taking element-wise logarithms of E[ Y] and
E[Y]. Thus, our procedure will produce the correct
mean log,-fold change in the new dataset, but the
resulting mean/variance relationship might not be as
assumed.
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Note 2: The 2 term in (1) and (2) represents the
realistic and annoying features of the data. In ideal
situations, & = 0gxxn. However, most datasets likely
include non-zero R, and so assessing a method’s abil-
ity to be robust in the presence of 2, without the
researcher having to prespecify €, is the key strength
of our simulation approach.

Note 3: As described below, we include both X, and
X3 in (2) to control different aspects of a simula-
tion study. One may control the level of association
between the columns of X; and X, as these are
both observed and fixed by the user. The inclusion
of X3 and IT allows us to try to control the level of
association between I1X3 and Z.

Before we discuss obtaining (2) from (1), we point out four
potential applications of this simulation approach: (i) eval-
uating differential expression analyses (“Application: eval-
uating differential expression analysis” section), (ii) eval-
uating confounder adjustment approaches (“Application:
evaluating confounder adjustment” section), (iii) evaluat-
ing the effects of library size heterogeneity on differential
expression analyses (“Application: evaluating effects of
library size heterogeneity” section), and (iv) evaluating
factor analysis methods (“Application: evaluating factor
analysis” section).

Application: evaluating differential expression analysis
One of the more common applications of RNA-seq data is
estimating and testing for differences in gene expression
between two groups. Many packages and techniques exist
to perform this task [22—39, among others], and so devel-
oping approaches and software to compare these different
software packages would be of great utility to the scientific
community. Generating data from the two-group model is
a special case of (1) and (2), where

0=pul}+9 3)
O =jl] +baTOT + (4)

and Ilx € RN contains a single indicator variable, indi-
cating membership to one of two groups. Researchers
may specify b and x and evaluate a method’s ability to
(i) estimate b and (ii) detect which genes have non-zero b,.
In many settings, a researcher may want to specify the
distribution of the b,’s (the elements of b). Our software
implementation allows for this. In addition, following [40],
we allow researchers to specify the distribution of b /sy,
where s, is the sample standard deviation of the gth row
of log, (Y 4-0.5), and « is a user-specified constant. Allow-
ing for @ = 0 corresponds to the scenario of specifying
the distribution of the effects, while allowing for o = 1
corresponds to specifying the p-value prior of [41].
Though the two-group model is perhaps the most
common scenario in differential expression analysis, our
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method also allows for arbitrary design matrices. Such
design matrices have applications in many types of expres-
sion experiments [24, 42—-44], and so the ability to sim-
ulate arbitrary designs gives researchers another tool to
evaluate their methods in more complicated scenarios.

Application: evaluating confounder adjustment
Unobserved confounding / batch effects / surrogate vari-
ables / unwanted variation has been recognized as a
serious impediment to scientific studies in the modern
“omics” era [3]. As such, there is a large literature on
accounting for unwanted variation, particularly in RNA-
seq studies [5, 6, 45-72, among others]. The glut of
available methods indicates a need to realistically compare
these methods.

Typically, the form and strength of any unobserved con-
founding is not known. So one way to assess different con-
founder adjustment methods would be to assume model
(1) and add signal to the data resulting in the following
submodel of (2):

O = i1, + B1X] + B3XIOT + AZT + Q. (5)

A researcher would then explore how close a method’s
estimate of Bs is to the truth (assuming the researcher
may use both X; and IIX3 to obtain this estimate).
The researcher can control the correlation between the
columns of I1X3 and the columns of Z by specifying the
distribution of II (as described in “Generating modified
RNA-seq data” section). Intuitively, the stronger the cor-
relation between the columns of X3 and the columns of
Z, the more difficult the confounder adjustment problem.
This approach was used in the two-group model in [5] and
[6], but not for general design matrices.

Application: evaluating effects of library size heterogeneity
“Library size” corresponds to the number of reads an indi-
vidual sample contains. Adjusting for library size is sur-
prisingly subtle and difficult, and thus many techniques
have been proposed to perform this adjustment [73-77].
The most commonly-used techniques can be viewed as
a form of confounder adjustment [5]. For most meth-
ods, this form of confounder adjustment corresponds to
setting one column of A in (1) to be 1 and estimat-
ing the corresponding column in Z using some robust
method that assumes that the majority of genes are non-
differentially expressed.

One way to evaluate the performance of a library size
adjustment procedure is to see how effect size esti-
mates change when the samples are thinned, changing the
library size. First, assume we are operating in the following
submodel of (1):

© = ul], + BiX] + 1627 + Q. (6)
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A researcher may specify (i) additional signal and (ii) a
further amount of thinning on each sample by generating
the following submodel of (2):

O = i1, + BiX] + B3 XIOT + 16x) + 1ga] T + 1627 + @
(7)

= o1}, +BiX] + BsXTIT + 16(z + x2 + Ma3)T + Q.
8)

To evaluate the effectiveness of a library size adjustment
procedure, researchers may observe the effects on the esti-
mates of B3 under various amounts of library thinning
(controlled by altering x5 and x3).

Application: evaluating factor analysis
Factor analysis is a fundamental technique in every statis-
tician’s arsenal. Since its creation by Spearman [78], liter-
ally hundreds of factor analysis / matrix decomposition /
matrix factorization approaches have been developed, and
new approaches are created each year to account for new
features of new data [54, 79-96, to name a very few]. For
RNA-seq, factor analysis methods have found applications
in accounting for unwanted variation [63, 64], estimating
cell-cycle state [97, 98], and general quality assessments
[27]. Thus, techniques to realistically compare various fac-
tor analysis methods would be of great use to the scientific
community. We demonstrate in this section how our sim-
ulation approaches can be used to evaluate factor analysis
methods applied to RNA-seq.

We suppose that the RNA-seq read-counts follow the
following submodel of (1):

©=pulj, +AZT + Q. 9)

We then suppose that the researcher generates a modi-
fied dataset that follows the following submodel of (2):

O = jil], + B:X]OT + AZT + Q. (10)

We assume that a researcher applies a factor analysis to
(10) to estimate a low-rank matrix with K + P3 factors.
That is, the researcher fits the following model,

log,(E[Y]) = p1}, + LFT, (11)

with factor matrix F € RN*®&+P3) and loading matrix
L € RE*XK+P3) obtaining estimates L and F. These esti-
mates are obtained without using I1X3. A researcher may
evaluate their factor analysis by

1. Assessing if any of the columns of F are close to the
columns of X3,

2. Assessing if any of the columns of L are close to the
columns of B3, and

3. Assessing if the column-space of I1X3 is close to the
column-space of F, which would be an important
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consideration in downstream regression analyses

(45, e.g.].

In a factor analysis, the factors and loadings are only
identifiable after imposing assumptions on their structure
(such as sparsity or orthogonality). Thus, researchers may
vary the structure of Bz and I1X3 and observe the robust-
ness of their factor analysis methods to violations of their
structural assumptions.

Generating modified RNA-seq data

We will now discuss the approach of obtaining (2) from
(1). We will use the following well-known fact of the Pois-
son distribution, which may be found in many elementary
probability texts:

Lemma 1 If y ~ Poisson(a) and y|y ~ Bin(y,b), then
y ~ Poisson(ab).

Generalizations of Lemma 1 to negative binomial distri-
butions (and mixtures of negative binomial distributions)
may be found in Section S1.2 of Additional file 1.

In the case when II is drawn uniformly from the space
of permutation matrices, we have the simplified proce-
dure described in Procedure 1. The validity of Procedure 1
follows directly from the modeling assumptions in (1)
and Lemma 1. Since yg, ~ Poisson(2%) and VanlVen ~
Bin(ygu, 29¢), we have that jg, ~ Poisson (2% 4en). If we
set 5gn = Ogn + qgn, then we have

0=0+Q (12)

= (1}, + B1X] + AZT 4+ @) + (B X] + BsXIN™ —el])

(13)
= (p—e) 1], + Bi1X] +BxX] +BsXINT + AZT + @ (14)
= i1}, + B1X] + BoX] + B3XIIIT + AZT 4+ Q. (15)

Equation (13) follows from the definition of ® from
(1) and the definition of Q from Step 4 of Procedure 1.
Equation (15) follows by setting fi to be . — e.

There are two main reasons to subtract the row-wise
maximum from each row in Step 4 of Procedure 1: (i) this
ensures that the binomial probabilities (29¢7) are always
between 0 and 1, and (ii) this allows for minimal count-
thinning while still obtaining our goal of (2). That is, the
binomial probabilities will all be between 0 and 1, but they
will be as close to 1 as possible while still yielding (2),
thereby reducing the amount of discarded counts.

The main disadvantage to Procedure 1 is that the surro-
gate variables (Z) will be independent of the user-specified
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Procedure 1 Basic procedure to generate (2) from (1)
when the permuted design matrix (I1X3) is independent
of the surrogate variables.
Input: Y, X5, X3, By, Bs.
1: Draw IT uniformly from the space of N x N permuta-
tion matrices.
2 Let A = BoX] + B3XTIT.
3: Let e € RY contain the row-wise maximums of A.
Thus, e; = max(Ag1, ..., Aen).
4 LetQ=A —el].
5: Draw Ygu|ygn ~ Bin(ygn, 2%").
Output: Y, 1.

covariates (I1X3). To allow the user to control the level
of association between the surrogate variables and the
user-provided variables, we propose using Procedure 2
to choose II, rather than drawing IT uniformly from the
space of permutation matrices. In brief, the user specifies
a “target correlation” matrix, R € RP>*K, where r;; is what
the user desires to be the correlation between the ith col-
umn of I1X3 and the kth column of Z. We then estimate
the surrogate variables either using a factor analysis (such
as the truncated singular value decomposition) or surro-
gate variable analysis [45, 49]. Note that this estimate of Z
is only used to permute the rows of X3 and is otherwise
not included in the simulated data. We then draw a new
random matrix U € RN*Ps from a conditional normal
distribution assuming that each row of U and Z is jointly
normal with covariance matrix (16), thus the correlation
between the columns of U and Z will be approximately R.
We then match the rows of X3 with the rows of U using
the pair-wise matching algorithm of [99], though our soft-
ware provides other options to match pairs via either the
Gale-Shapley algorithm [100] or the Hungarian algorithm
[101]. This ensures that I1X3 is as close to U as possible.
We denote the permutation matrix that matches the rows
of X3 with the rows of U by II.

The resulting covariance matrix (16) used in
Procedure 2 is not guaranteed to be positive semi-
definite. Rather than demand the user specify an
appropriate target correlation matrix (which might be in
general difficult for the typical user), we modify the target
correlation matrix using Procedure 3 to iteratively shrink
R until the Schur complement condition for positive
semi-definiteness [102] is satisfied.

Procedure 2 is a compromise between letting the user
specify the full design matrix X3 and letting the user spec-
ify the correlation between the columns of IIX3 and Z.
A user might want to specify the correlation between
IIX3 and Z to evaluate factor analyses in the pres-
ence of correlated factors (“Application: evaluating factor
analysis” section), or to evaluate how well confounder
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Procedure 2 Procedure to draw a permutation matrix
such that the surrogate variables are correlated with the
permuted design matrix.
Input: Y, X, X3, R, and K.

1. Let A € RP3*Ps be the empirical correlation matrix

between the columns of X3.
2: Adjust R by Procedure 3.
3. Estimate Z € RE*X in one of two ways:

i. By surrogate variable analysis [45, 49, 63], using
(1n,X1) as the design matrix and 1y as the null
design matrix.

ii. By a factor analysis on the residuals of a regression
oflog, (Y + 0.5) on (1n,X1).

Call the centered and scaled estimates of the surrogate
variables (so that the columns each have mean 0 and
variance 1) Z.

4: Draw the rows of U € RN*P3 from a conditional nor-
mal distribution, assuming the nth rows of U and Z
are jointly N(Op, 4, X), where

A R
x= (RT IK)

5. Match the rows of the centered and scaled matrix X3
with the rows of the centered and scaled matrix U by
pair-matching [99] using Euclidean distance. Call the
resulting permutation matrix II, such that row i of
IT1X3 matches with row i of U.

Output: II.

(16)

Procedure 3 Procedure to scale the target correlation
matrix so that the overall correlation matrix is positive
semi-definite.

Input: A, R,and € € (0,1].

. Let € be the smallest eigenvalue of A — RRT.

2: Sett =1.

3: while £ < 0do

4 T < max(t —¢,0).

5

6

—

Let € be the smallest eigenvalue of A — TRRT.
. end while
Output: /TR.

adjustment approaches cope in the presence of correlated
confounders (“Application: evaluating confounder adjust-
ment” section). In the simple case when X3 and Z are
drawn from a normal distribution, Procedure 2 will per-
mute the rows of X3 so that I1X3 and V4 consistently has
the correct correlation structure (Theorem S1 in Addi-
tional file 1). However, for general design matrices this will
not be the case. Procedure 4 (implemented in our soft-
ware) provides a Monte Carlo algorithm to estimate the
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true correlation given the target correlation. Basically, the
estimator approximates the expected value (conditional
on Z) of the Pearson correlations between the columns of
I1X; and the columns of Z. We justify this in an intuitive
way by the law of total expectation. Consider « a single col-
umn of I1X3 with empirical mean and standard deviation
of % and s. Similarly consider z a single column of Z with
empirical mean and standard deviation of z and s,. Then

N by -
cor(x,,z,) ~ E [Z (xn—x)(Zn—Z)}

SxS
=1 X9z

o G — ) (20— 2)

TR T

SxSz
n=1

The estimator in Procedure 4 is a Monte Carlo approxi-

mation to the internal expectation in (17). We explore this

correlation estimator through simulation in Supplemen-
tary Section S2.1, Additional file 1.

Procedure 4 Monte Carlo procedure to estimate the true
correlation matrix given the target correlation matrix.
Input: Z, X3, ¥,and B € N.

1: forbin1,2,...,Bdo

2. Draw U as in Step 4 of Procedure 2.

3. Derive II as in Step 5 of Procedure 2.

4 Set R, € RP*K to be the Pearson correlation

matrix between the columns of I1X3 and Z.

5. end for

6 Set R= (R, + - -- + Rp)/B.
Output: R

All simulation methods introduced in this paper are
implemented in the seqgendiff R package, available on
the Comprehensive R Archive Network: https://cran.r-
project.org/package=seqgendiff.

Results

Features of real data

Real data exhibit characteristics that are difficult to cap-
ture by simulations. In this section, we demonstrate how
our binomial thinning approach maintains these features,
while simulating from a theoretical model results in unre-
alistic simulated RNA-seq data.

We took the GTEx muscle data [21], and filtered out
all genes with a mean read-depth of less than 10 reads.
This resulted in a dataset containing 18,204 genes and
564 individuals. We then randomly assigned half of the
individuals to one group and half to the other group,
and used our seqgendiff software to add a N(0,0.8%)
log,-fold-change between groups to 25% of the genes. We
similarly used the powsimR software [19] to generate data
according to a theoretical negative binomial model (with
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parameters estimated from the GTEx muscle data), again
by adding a N (0, 0.8?) log,-fold-change between the two
groups in 25% of the genes. The parameters estimated
and used by powsimR include the mean normalized read
counts per gene, the estimated library size factor per sam-
ple, and a nonparametric estimate of the mean/dispersion
relationship of the counts. powsimR uses the mean nor-
malized read counts, the estimated size factors, and the
user-provided log,-fold changes to provide a mean for
the negative binomial distribution. Based on this mean, it
uses the estimated mean/dispersion relationship to pro-
vide a dispersion parameter for the negative binomial
distribution.

The results below are from one simulation, but the
results are robust and consistent across many datasets.
The reader is encouraged to change the random seed in
our code to explore the robustness of our conclusions.

The structure of the powsimR dataset is very differ-
ent from that observed in the seqgendiff and GTEx
datasets. There seems to be more zeros in the powsimR
dataset than in the seqgendiff and GTEx datasets
(Supplementary Figure S2, Additional file 1), even though
we simulated the powsimR dataset under the negative
binomial setting and not the zero-inflated negative bino-
mial setting. Scree plots of the three datasets show that
there are a lot more small factors influencing variation
in the segqgendiff and GTEx datasets than in the
powsimR dataset (Fig. 1). The main source of variation in
the powsimR dataset comes from the group membership,
while other (unwanted) effects dominate the variation in
the seqgendiff dataset (Fig. 2). It is only the fourth
principle component in the seqgendiff dataset that
seems to capture the group membership (Supplementary
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Figure S3, Additional file 1). Though this unwanted vari-
ation exists, with such a large sample size voom-limma
[26] can accurately estimate the effects (Supplementary
Figure S4, Additional file 1). The voom plots (visualiz-
ing the mean-variance trend [26]) are about the same in
the GTEx and seqgendiff data, but the distribution of
the square-root standard deviations appears more sym-
metric in the powsimR dataset (Fig. 3). There is also
an uncharacteristic hook in the mean-variance trend in
the powsimR dataset for low-counts. These visualizations
indicate that seqgendiff can generate more realistic
datasets for RNA-seq simulation.

Effects on differential expression analysis simulations
The differences in real versus simulated data (as discussed
in “Features of real data” section) have real implica-
tions when evaluating methods in simulation studies. To
demonstrate this, we used the GTEx muscle data to simu-
late RNA-seq data from the two-group model as in “Fea-
tures of real data” section. We did this for N = 10 indi-
viduals, G = 10,000 genes, setting 90% of the genes to be
null, and generating the log,-fold change from a N'(0, 0.8%)
distribution for the non-null genes. We simulated 500
datasets this way using both seqgendif f and powsimR.
Each replication, we applied DESeq2 [27], edgeR [103],
and voom-limma [26] to the simulated datasets. We eval-
uated the methods based on (i) false discovery proportion
when using Benjamini-Hochberg [104] to control false
discovery rate at the 0.05 level, (ii) power to detect non-
null effects based on a 0.05 false discovery rate control
threshold, and (iii) mean squared error of the estimates.
We wanted to make sure that the datasets gener-
ated from powsimR and seqggendiff were comparable,

Index

the GTEx and segqgendif £ datasets are almost identical
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Fig. 1 Scree Plots. Scree plots for the GTEx dataset (black), powsimR dataset (orange), and the seggendi £ £ dataset (blue). The singular values for
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seqggendiff dataset (right). The first and second principle components of the powsimR dataset are very different from those of the GTEx and

so we measured the proportion of variance explained
(PVE) by the group membership for each gene, which we
define as

V(Ix3bsg)/V (log, ¥, + 0.5)), (18)

where b3g is log,-fold change for gene g, y, € RN is the

gth row of Y, and V(-) returns the empirical variance of
a vector. When we looked at the median (over the non-
null genes) PVE across the datasets, the seqgendiff
datasets and powsimR datasets had the same median
PVE on average, though there was higher variability in the
median PVE among the seqgendiff datasets (Supple-
mentary Figure S5, Additional file 1).

Boxplots of the false discovery proportion for each
method in each dataset can be found in Figure 4. Both the
powsimR and seggendiff datasets indicate that only
voom-limma can control false discovery rate adequately
at the nominal level. However, the results based on the
seggendiff datasets indicate that there is a lot more
variability in false discovery proportion than indicated by
the powsimR datasets. In particular, it does not seem
uncommon for seqgendiff to generate datasets with
false discovery proportions well above the nominal rate.
If a researcher were using only the theoretical datasets
generated by powsimR, they would be overly confident
in the methods’ abilities to control false discovery pro-
portion. Supplementary Figure S6 of Additional file 1 also
indicates that methods generally have much more variable
power between the seqgendiff datasets than between
the powsimR datasets. Interestingly, the seqgendif£
datasets indicate that methods tend to have smaller mean
squared error than indicated by the powsimR datasets
(Supplementary Figure S7, Additional file 1).

In Additional file 1, we also compared our simula-
tion method to SimSeq [14] when evaluating differential

expression analysis methods. We used the GTEx data [21]
for both SimSeq and seqgendiff. SimSeq does not
allow researchers to control the effect sizes of simulated
non-null genes, as it depends on the presence of an avail-
able indicator variable that already exhibits differential
expression in a real dataset. So we adjusted the effect sizes
produced by seqgendiff to match those present in the
GTEx data, and we found that the two data-based simula-
tion methods behave similarly (Supplementary Figure S16,
Additional file 1). It bodes well that seqgendiff pro-
duces similar results to other data-based approaches. The
advantages, then, of seqgendiff over SimSeq are

1. seggendiff can use effect sizes different than
those that are already present in the observed
indicator variable, while SimSeq cannot.

2. Because the effect sizes are unknown in the available
indicator variable, SimSeq is unable to evaluate the
estimation accuracy of effect sizes. seqgendif £
can evaluate estimation accuracy.

3. seggendiff can use more complicated designs
than the finite-group model. SimSeq is limited to
the finite-group model.

4. simSeq cannot guarantee that genes that are
intended to be differentially expressed in a simulated
dataset are indeed differentially expressed. This
depends on the quality of the available indicator
variable.

5. Asa minor advantage, seqgendiff is also much
faster than SimSeq. On a 2.6 GHz quad-core PC
running Linux with 32 GB of memory,
seggendiff took an average of 0.2 seconds to
simulate a dataset, while SimSeq took an average of
51.1 seconds to simulate a dataset. A boxplot of
simulation times is presented in Supplementary
Figure S17 of Additional file 1.
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Evaluating factor analyses

As we hope we have made clear, there are many
approaches to differential expression analysis (“Applica-
tion: evaluating differential expression analysis” section),
confounder adjustment (“Application: evaluating con-
founder adjustment” section), library size adjustment
(“Application: evaluating effects of library size hetero
geneity” section), and factor analysis (“Application: evalu-
ating factor analysis” section). We believe it to be beyond
the scope of this work to exhaustively evaluate all of

these methods — especially since new methods are being
developed each year. Rather, we hope our simulation pro-
cedures will be used by the research community to more
realistically evaluate and benchmark their approaches to
RNA-seq data analysis.

However, as a final highlight to the utility of our simu-
lation approaches, we demonstrate these simulation tech-
niques in one application: evaluating factor analysis meth-
ods in RNA-seq (“Application: evaluating factor analy-
sis” section). We have chosen to highlight this particular
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application because it uses the more general simulation
techniques beyond the two-group model, which were first
demonstrated in [5].

We chose to focus on the following methods based
on (i) previous use in expression studies, (ii) software
availability, (iii) popularity, and (iv) ease of use.

Principle component analysis (PCA) [79],

Sparse singular value decomposition (SSVD) [93],
Independent component analysis (ICA) [84],

Factors and loadings by adaptive shrinkage (flash), an
empirical Bayes matrix factorization approach
proposed in [96], and

5. Probabilistic estimation of expression residuals
(PEER) [54], a Bayesian factor analysis used in the
popular PEER software to adjust for hidden
confounders in gene expression studies.

B e

All factor analysis methods were applied to the log,-
counts after adding half a pseudo-count. To simulate
RNA-seq data, we took the muscle GTEx data [21] and
removed all genes with less than an average of 10 reads
per sample. Each replicate, we added a rank-1 term. That
is we assumed model (9) for the muscle GTEx data, then
generated RNA-seq data such that

O =pll, +bsx] T + AZT + , (19)
where we simulated the components of x3 and the non-
zero components of b3 from independent normal dis-
tributions. We varied the following parameters of the
simulation study:

1. The sample size: N € {10, 20, 40}

2. The signal strength: the standard deviation of the
loadings (the b3,’s) was set to one of {0.4, 0.8}, with
higher standard deviations corresponding to higher
signal. These values were chosen to have the median
PVE vary greatly between the two settings
(Supplementary Figure S8, Additional file 1),

3. The sparsity: the proportion of loadings (the b3,’s)
that are 0 was set to one of {0, 0.9}, and

4. The target correlations of the added factor with the
first unobserved factor: r € {0,0.5}.

This resulted in 24 unique simulation parameter set-
tings. We also used 1000 genes each replication. For
each setting, we ran 100 replications of generating data
from model (19), and fitting the factors with the five
methods under study assuming model (11) after we
estimated the number of hidden factors using parallel
analysis [105].

We chose three metrics to evaluate the performance of
the different factor analysis methods:

1. The minimum mean squared error between ITx3 and
the columns of F. To account for scale and sign
unidentifiability, the estimated factors and the added
factor were all scaled to have an £2-norm of 1 prior to
calculating the mean squared error. This measure is
meant to evaluate if any of the estimated factors
corresponds to the added factor.

2. The minimum mean squared error between b3 and
the columns of L. We again accounted for scale and
sign unidentifiability by calculating the mean squared
error after scaling the estimated and true loadings to
have an ¢2-norm of 1.
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3. The angle between Ilx3 and its projection onto the
column space of F. This measure is meant to
evaluate if the estimated factor matrix includes ITxs
among its unidentified factors.

The results are presented in Supplementary Figures S9—
S14 of Additional file 1. Based on these figures, we have
the following conclusions:

1. PEER performs very poorly when either the sparsity
is high or when there are few samples. It also
performs less well when the factors are correlated. A
possible explanation is that PEER assumes a normal
distribution on the factors and loadings, which is
violated in the high-sparsity regime and is observed
in the low-sparsity regime. Though, this does not
explain its poor performance in small sample size
settings.

2. SSVD estimates the loadings very poorly in
low-sparsity regimes. This is to be as expected as
SSVD assumes sparsity on the loadings. Surprisingly,
though, it outperforms PCA in high sparsity regimes
only when both the sample size and signal are also
large.

3. ICA performs very poorly in low sparsity regimes.
This is to be as expected as the normal distributions
placed on the factors and loadings are a worst-case
scenario for ICA. However, there is no scenario
where ICA performs significantly better than PCA.

4. flash performs adequately in all scenarios and
performs best in high-sparsity and high-signal
regimes.

5. PCA performs adequately in most scenarios, and is
only truly outperformed in high sparsity high signal
regimes.

Based on these initial explorations, we would recommend
users not use PEER, SSVD, or ICA and instead try either
PCA or flash.

In Section S2.2 of Additional file 1, we evaluate the
above factor analyses using a single cell dataset from 10X
Genomics [106]. The results indicate that PCA, SSVD,
and flash perform comparably in all simulation settings,
while PEER and ICA have worse performance in some
simulation settings. Though the results were less clear
than when using the GTEx data.

Discussion

We have focused on a log-linear model because of the
large number of applications this generates (“Applica-
tion: evaluating differential expression analysis” section,
“Application: evaluating confounder adjustment” section,
“Application: evaluating effects of library size hetero-
geneity” section, and “Application: evaluating factor anal
ysis” section). This linearity (on the log-link scale) is
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represented by the structure of the Q matrix in Proce-
dure 1. However, it is possible to replace Q by any arbitrary
G x N matrix that has non-positive entries. This might
be useful for simulations that study adjusting for non-
linear effects, such as bias due to GC content [107]. This
also might be useful for evaluating non-linear dimen-
sionality reduction techniques such as UMAP [108] and
t-SNE [109], as this allows you to introduce non-linear
effects into an RNA-seq dataset. However, these non-
linear effects would still be present only on the log-scale.

Our simulation procedures may be applicable beyond
evaluating competing methods. Vieth et al. [19] used their
simulation software to estimate power given the sam-
ple size in a differential expression analysis, and thus to
develop sample size suggestions. Our simulation meth-
ods may be used similarly. Given a large RNA-seq dataset
(such as the GTEx data used in this paper), one can
repeatedly down-sample the number of individuals in the
dataset and explore how sample size affects the power of
a differential expression analysis.

Similarly, [18] already demonstrated that binomial thin-
ning may be used for sequencing depth suggestions. That
is, a researcher may repeatedly thin the libraries of the
samples in a large RNA-seq dataset and explore the effects
on power, thereby providing sequencing depth sugges-
tions. Unlike [18], which does this subsampling uniformly
over all counts, we allow researchers to explore the effects
of heterogeneous subsampling (as in “Application: evalu-
ating effects of library size heterogeneity” section). This
might be useful if, say, researchers have more individuals
in one group than in another and so wish to explore if they
can sequence the larger group to a lower depth without
affecting power.

In this manuscript, we have discussed our simulation
techniques in the context of RNA-seq. However, our
techniques would also be applicable to the comparative
analysis of metagenomics methods [110]. Instead of quan-
tifying gene expression, metagenomics quantifies gene
abundances within metagenomes. Our simulation tech-
niques could be applied in this context by taking a real
metagenomics dataset and adding signal to it by binomial
thinning.

Conclusions

We developed a procedure to add a known amount of
signal to any real RNA-seq dataset. We only assume
that this signal comes in the form of a generalized lin-
ear model with a log-link function from a very flexi-
ble distribution. We demonstrated how real data contain
features that are not captured by simulated data, and
that this can cause important differences in the results
of a simulation study. We highlighted our simulation
approach by comparing a few popular factor analysis
methods. We found that PCA and flash had the most
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robust performances across a wide range of simulation
settings.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512859-020-3450-9.

Additional file 1: This PDF file contains theoretical considerations,
simulation summaries and figures, and additional simulation details.
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