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Dianthus chinensis L. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol ex-
tract of Dianthus chinensis L. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated
in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and
time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of cas-
pases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase in-
hibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in
HepG2 cells but did selectively downregulate the expression of bcl-2 and bel-xl, resulting in an increase in the ratio of bax:bcl-2 and
bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase

activation in HepG2 cells.

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most commonly
diagnosed cancer, with more than 1 million deaths reported
annually worldwide [1]. Exposure to aflatoxin B1 and infec-
tion with hepatitis B virus and hepatitis C virus are high-risk
factors for HCC [2—4]. The high prevalence and high death
rate require novel strategies for the prevention and treatment
of hepatic cancer. Natural products with antitumor activity
are a promising approach to cancer prevention.

Plants are valuable sources of bioactive compounds and
are used for medicinal purposes in Asia including Korea.
Recently, oriental medicine has been the focus of scientific
discovery efforts into novel drugs including anticancer agents
[5-9]. Several herb-based components and extracts have
been reported to reduce tumor growth and inhibit metastasis
in the human HCC HepG2 model in vitro and in vivo
(10, 11].

Dianthus chinensis L. (Caryophyllaceae, Rainbow pink) is
commonly known as “Pae-raeng-ee-kot” in Korea. In Korea,
this herb is used as a folk remedy for the treatment of meno-
stasis, gonorrhea, cough, diuretic, and emmenagogue [12].

The chemical components of Dianthus chinensis L. are euge-
nol, phenylethylalcohol [13], melosides A and L [14] and dia-
nchinenosides A, B [15], C, and D [16]. Hypotensive, anthel-
mintic, intestinal peristaltic, antitumor, and antioxidant
activity was documented [12, 13, 17, 18]. However, apoptosis
induction by this herb was never reported. The ethnomedical
information described above formed the basis for the present
study, which was conducted to evaluate the cytotoxic activity
and mechanism of action of the ethanol extract of Dianthus
chinensis L. in HepG2 HCC cells.

2. Materials and Methods

2.1. Plant and Preparation of Extracts. Dianthus chinensis L.
was purchased as a dried herb from OmniHerb Co. (Yeong-
cheon, Korea) and authenticated based on microscopic and
macroscopic characteristics by the Classification and Identif-
ication Committee of the Korea Institute of Oriental Medi-
cine (KIOM). The dried herb (30.26 g) was extracted twice
with 70% ethanol (with 2 h reflux) and the extract was then
concentrated under reduced pressure. The decoction was
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filtered, lyophilized, and stored at 4°C. The yield of dried
extract from starting crude material was approximately
18.57% (w/w). The lyophilized powder was dissolved in 10%
dimethyl sulfoxide and then filtered through a 0.22 ym syr-
inge filter to create a stock solution. EDCL denotes Dianthus
chinensis L. ethanol extract. EDCL was diluted in culture
medium to the final concentration indicated for each
experiment.

2.2. Cell Culture. HepG2 human hepatocarcinoma cells were
obtained from the American Type Culture Collection (Man-
assa, VA, USA). Cells were routinely maintained in Mini-
mum Essential Medium with Earle’s Balanced Salts and L-
glutamine (MEM/EBSS, HyClone, Logan, UT, USA) supple-
mented with 10% fetal bovine serum (Gibco BRL, Gaithers-
burg, MD, USA), 100 U/mL penicillin (Gibco BRL), and
100 ug/mL streptomycin (Gibco BRL) at 37°C in a humidi-
fied atmosphere of 5% CO,. The culture medium was replac-
ed every 2 days.

2.3. Cell Viability Assay. Cells were seeded in 96-well culture
plates at a density of 2 X 10* cells/well and allowed to adhere
at 37°C for 12 h. The following day, several concentrations of
EDCL were added and the cells were further incubated for
48h. Then, cell viability was measured using the CCK-8
assay. 10 uL CCK-8 reagent was added to each well and in-
cubated for 1h at 37°C. Cell viability determination was
based on the bioconversion of tetrazolium into formazan by
intracellular dehydrogenase. Absorbance was measured at
450 nm using a Benchmark Plus Microplate Spectrophoto-
meter (Bio-Rad, Hercules, CA, USA). Cytotoxicity was ex-
pressed as a percentage of the absorbance measured in con-
trol untreated cells.

2.4. Nuclear Staining with Hoechst 33342. Hoechst 33342
(Invitrogen, Eugene, Oregon, USA) staining was used to
observe the apoptotic morphology of cells. Briefly, 5 x 103
cells/mL were seeded in six-well plates and incubated for
24 h. Then, the cells were exposed to different concentrations
of EDCL (50-400 ug/mL) for 48 h. Next, the cells were col-
lected and fixed with 3.7% formaldehyde in phosphate buf-
fered saline (PBS) for 15 min and stained with Hoechst 33342
(10 ug/mL) at room temperature for 10 min. Finally, after the
cells were washed with PBS, morphological changes, includ-
ing a reduction in volume and nuclear chromatin condensa-
tion, were observed by fluorescence microscopy (Olympus
Optical, Tokyo, Japan) and photographed at a 400x magni-
fication.

2.5. Flow Cytometric Analysis for Measurement of Sub-GI
Phase. Cells were seeded in six-well plates at 1 x 10° cells/
well and allowed to attach overnight. After exposure to
EDCL, cells were collected, washed twice with ice-cold PBS
buffer (pH 7.4), fixed with 80% ethanol at 4°C for 2 h, and
then stained with PI/RNase Staining Buffer (BD PharMin-
gen, San Diego, CA, USA) for 20 min in the dark at room
temperature. Apoptotic cell analysis was conducted on a
FACS Calibur flow cytometer (BD Biosciences, San Jose, CA,
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USA) and the data were analyzed using the CellQuest soft-
ware.

2.6. Assay of Caspase-3/7, -8, and -9 Activity. Caspase activity
was assayed using Caspase-Glo assay kits (Promega, Madi-
son, WI, USA) according to manufacturer protocols. Briefly,
cells were seeded at a density of 2 x 10* per well in tripli-
cate wells onto 96-well plates and incubated for 24 h. After-
wards, the cells were exposed to several concentrations of
EDCL (50—400 pg/mL) for 48 h or incubated with 180 yg/mL
of EDCL for 6-48 h. After exposure to EDCL, culture super-
natant (100 yL) was transferred into a white-walled 96-well
plate. An equal volume of caspase substrate was added and
samples were incubated at room temperature for 1 h. Culture
medium was used as a blank control sample and lumines-
cence was measured using an EnVision 2103 Multilabel
Reader (PerkinElmer, Wellesley, MA, USA).

2.7. Protein Preparation and Western Blot Analysis. Cells were
seeded in six-well plates at 1 x 10° cells/well and allowed to
attach overnight. Afterwards, cells were exposed to different
concentrations of EDCL for 48h. Then, the cells were
washed with ice-cold PBS twice and lysed with 1X RIPA
lysis buffer (50 mM Tris-HCI, pH 8.0, 150 mM NaCl, 1%
NP-40, 0.5% sodium deoxycholate, 0.1% SDS and 1 mM
Protease Inhibitor Cocktail) for 30 min on ice. Lysates were
cleared by centrifugation and supernatants were collected.
The total protein content was quantified using the Bradford
method. Proteins (30 pg) were mixed with 2X sample buffer,
incubated at 95°C for 5min, and loaded onto 12% poly-
acrylamide gels. Electrophoresis was performed using the
Mini Protean 3 Cell (Bio-Rad). Proteins separated on the gels
were transferred onto nitrocellulose membranes (Schueicher
& Schell BioScience, Dassel, Germany). Membranes were
blocked for 2h using blocking buffer (10 mM Tris-HCI, pH
7.5, 150 mM NaCl, 0.1% Tween 20, 3% nonfat dry milk)
and incubated at 4°C overnight with primary antibody (all
antibodies were purchased from Cell Signaling Technology,
Beverly, MA, USA). After washing with blocking buffer three
times for 30 min, membranes were probed with horseradish
peroxidase-conjugated goat anti-mouse immunoglobulin G
(IgG) and anti-rabbit IgG (Cell Signaling Technology) for
2h. The membranes were washed for 1h (during which
the wash buffer was changed three times) with Tris-buffered
saline Tween 20 solution and developed with ECL Advance
Western Blotting Detection Kit (GE Healthcare, Little Chal-
font, Buckinghamshire, UK) using a LAS-3000 luminescent
image analyzer (Fuji Photo Film Co. Ltd., Kanagawa, Japan).
Western blot signals were quantified and normalized to f3-
actin by densitometry analysis using the Multi-Gauge pro-
gram of the LAS-3000 imaging system.

2.8. Statistical Analysis. Mean data values are presented with
their deviation (mean + SD) from three independent mea-
surements. Statistical analyses were performed according to
Prism 5 program (GraphPad, San Diego, USA). Analysis of
variance (ANOVA) was followed by Dunett’s test. A value of
P < 0.05 was considered to be statistically significant.
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FIGURE 1: Exposure to EDCL induces growth inhibition in HepG2 cells. (a) Concentration response. Cells were incubated in the presence
or absence of several concentrations of EDCL for 24 and 48 h. (b) Time course. Cells were exposed to 180 ug/mL EDCL over time (6-48 h).
Cell viability was assessed by CCK-8 assay. The data are expressed as the means = SD of triplicate samples. *P < 0.05, **P < 0.01, and

**%*P < 0.001 versus untreated EDCL.

3. Results

3.1. Effect of EDCL on HepG2 Cell Growth. The effect of
EDCL on HepG2 cell growth was assessed using the CCK-
8 assay. Figure 1 shows inhibition of HepG2 cell viability by
several concentrations (50—400 yg/mL) of EDCL and over
time (6—48h). The results show concentration- and time-
dependent inhibition, with ICs, values ranging from
314.98 ug/mL (24 h) to 186.64 ug/mL (48 h) (Figure 1).

3.2. Effect of EDCL on HepG2 Cell Apoptosis. To investigate
the effect of EDCL on the morphology of apoptotic cells,
Hoechst 33342 staining was conducted. Very few apoptotic
cells were observed in the control culture, while the per-
centage of apoptotic cells in the presence of EDCL increased
in an EDCL concentration-dependent manner (Figure 2(a)).
The amount of sub-G1 DNA was analyzed to quantify the
number of dead cells, since dead cells have a lower DNA con-
tent than cells in the G1 phase. Flow cytometric analysis indi-
cated that exposure to EDCL markedly increased the number
of sub-G1 phase cells in a concentration- and time-depen-
dent manner (Figures 2(b) and 2(c)).

3.3. Effect of EDCL on the Apoptotic Mitochondrial Pathway.
The expression level of Bcl-2 family members interacting
directly with mitochondria was studied. Western blotting
(Figure 3(a)) revealed that the translational levels of bax ex-
pression, a proapoptotic protein, remained virtually un-
changed in response to EDCL, whereas bcl-2, bcl-xl, and mcl-
1, which are antiapoptotic proteins, were inhibited by expo-
sure to EDCL. These data show that EDCL alters the bax:bcl-
2 and bax:bcl-xl ratios in HepG2 cells in a concentration-
dependent manner. Since proteins from the IAP family bind
to caspases, leading to caspase inactivation in eukaryotic

cells, the involvement of the IAP family in EDCL-induced
apoptosis was further examined. The results indicated that
the levels of IAP family members, such as cellular inhibit-
or-of-apoptosis protein (cIAP)-1, cIAP-2, and X-linked inhi-
bitor of apoptosis protein (XIAP), were downregulated in
HepG?2 cells exposed to EDCL in a concentration-dependent
manner (Figure 3(b)).

3.4. Effect of EDCL on Caspase Activity. To investigate the
apoptotic cascade induced by EDCL, HepG2 cells were ex-
posed to several concentrations of EDCL (50—400 pg/mL) for
48 h or incubated with 180 yg/mL of EDCL for 6-48 h, after
which caspase-3/7, -8, and -9 activity was measured. The
level of caspase activation in HepG2 cells exposed to EDCL
was compared to that of control untreated cells arbitrarily set
to 1.0. Results showed that EDCL markedly increased cas-
pase-3/7, -8, and -9 activity, with maximum increase
activity at 200 ug/mL. Results also showed that caspase
activity increased over time in response to 180 yg/mL EDCL
(Figures 4(a) and 4(b)). At the concentration of 200 yg/mL,
the activity of caspase-3/7, caspase-8, and caspase-9 increas-
ed by 16.16-, 7.80-, and 14.17-fold, respectively. Further-
more, EDCL induced the degradation of poly (ADP-ribose)
polymerase (PARP, 116 kDa), which is a protein substrate of
caspase-3, and PARP cleavage fragments (89 kDa) increased
over time (Figure 4(c)).

3.5. Effect of Caspase Inhibitor on EDCL-Induced Apoptosis in
HepG2 Cells. To confirm that caspase activation is a key step
in EDCL-induced apoptosis, HepG2 cells were pretreated
with z-vad-fmk (80 uM), a broad-spectrum caspase inhibit-
or, for 1h, and then subsequently exposed to 180 ug/mL
EDCL for 48 h. As shown in Figure 5(a), z-vad-fmk did not
affect cell viability but inhibited the antiproliferative activity
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F1Gure 2: Exposure to EDCL induces apoptosis in HepG2 cells. (a) Cells were incubated in the presence or absence of several concentrations
of EDCL for 48 h. Hoechst stain showed EDCL-induced chromatin condensation (arrow). Magnification, x400. (b) Cells were exposed to
several concentrations of EDCL for 48 h or (c) exposed to EDCL (180 ug/mL) over time. Apoptosis was measured using PI staining and flow

cytometry.

of EDCL. EDCL strongly stimulated caspase protease activ-
ity and pretreating cells with z-vad-vmk nearly abolished
EDCL-induced caspase activity (Figure 5(b)). Furthermore,
blockade of caspase activity by z-vad-vmk prevented EDCL-
induced chromatin condensation (Figure 5(c)), PARP degra-
dation (Figure 5(d)), and increase in sub-Gl population
(Figure 5(e)). These results clearly show that EDCL-induced
apoptosis is associated with caspase activation.

4. Discussion

During the last decade, a considerable amount of research
has focused on cancer cell apoptosis. Apoptosis, or program-
med cell death, is the major control mechanism by which
cells die if DNA damage is not repaired [19]. Apoptosis is
also a critical protective mechanism against carcinogenesis,
eliminating damaged cells or cells proliferating abnormally
in response to carcinogens [20]. Therefore, induction of



Evidence-Based Complementary and Alternative Medicine

EDCL 48h (ug/mL)

0 50 100 200

Bcl-2 “SL

Mol | | — -

ﬁ—actin‘ —_— e —o=s = _|

1.2 1 1.2
g 17 g 1
3 0.8 2 0.8 -
2 06 - 2 06 1
5 06 = 06
3 041 3 041
0.2 0.2 1
0 0 -
0 50 100 200 400 0 50 100 200 400
1.4 1.2 4
£ 1.2 1 14
S 1 £
. £ 0.8
Q0.8 1 g
= & 0.6
= 0.6 A S
S = 0.4 1
= 0.4 A &
0.2 0.2 4
0 - 0
0 50 100 200 400 0 50 100 200 400

(a)

EDCL 48h (yg/mL)
0 50 100 200 400
REEne—
XIAD | s o c— s |

-

bl

cIAP-2

B-actin ‘ ‘

1.2
g g 1
9 * s} *
b * %k T 0.8 * %
= : = S
E % 0.4
© 02
0
0 50 100 200 400 0 50 100 200 400
1.2
g 1 :
= * %
2 08
X
N. 0.6
(=
< 0.4
© 0.2
0
0 50 100 200 400

(b)

F1GuRre 3: Exposure to EDCL downregulates the expression of Bcl-2 and TAP family members in HepG2 cells. Cells were exposed to several
concentrations of EDCL for 48 h. Protein levels were monitored by Western blot analysis. Western blot signals were quantified and normaliz-
ed to B-actin. Values are expressed as means + SD. *P < 0.05, **P < 0.01, and ***P < 0.001 versus untreated EDCL.

apoptotic cell death is a promising emerging strategy for the
prevention and treatment of cancer [21]. The results of the
present study clearly demonstrate that EDCL suppressed
HepG2 cell viability by inducing apoptosis. After exposure to
EDCL, chromatin condensation and apoptotic bodies were
clearly observed. These results suggest that HepG2 cells ex-
posed to EDCL undergo typical apoptosis. Furthermore, flow
cytometric analysis after propidium iodide staining confirm-
ed EDCL-induced apoptosis in HepG2 cells.

Members of the Bcl-2 family of proteins, such as bcl-2,
bcl-xl, mcl-1, and bax, are the most prominent actors in con-
trolling the release of cytochrome ¢ and in mitochondria-
mediated apoptosis [22]. Thus, it has been suggested that the
ratio between the level of proapoptotic bax protein and the
level of antiapoptotic bcl-2 protein determines whether a cell
responds to an apoptotic signal [23]. In this study, EDCL
did not alter the expression of bax in HepG2 cells but did
selectively downregulate the expression of bcl-2 and bcl-
xl, resulting in an increase in the ratio of bax:bcl-2 and
bax:bcl-xl.

The execution of cellular demolition in apoptosis is also
carried out by caspases [24]. The caspase family of proteins is
one of the main executors of the apoptotic process. Caspases
belong to a group of enzymes known as cysteine proteases
and exist within the cell as inactive proforms or zymogens.
These zymogens can be cleaved to form active enzymes fol-
lowing the induction of apoptosis. The IAP family of proteins
blocks apoptosis by directly inhibiting at least two members
of the caspase family of cell death proteases, caspase-3, and
caspase-7. XIAP, cIAP-1, and cIAP-2 can prevent the prote-
olytic processing of procaspase-3, -6, and -7 by blocking the
cytochrome c-induced activation of procaspase-9 [24, 25].
Studies have shown that exposure of HepG2 cells to EDCL
caused proteolytic activation of caspases and down-regu-
lation of XIAP, cIAP-1 and cIAP-2. The enzyme poly(ADP-
ribose) polymerase, or PARP, was one of the first proteins
identified as a substrate for caspases. PARP is involved in
repair of DNA damage and functions by catalyzing the syn-
thesis of poly (ADP-ribose) and by binding to DNA strand
breaks and modifying nuclear proteins. PARP helps cells
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FIGURE 4: Exposure to EDCL shows activation of caspases and degradation of PARP protein in HepG2 cells. (a) Concentration response.
Cells were incubated in the presence or absence of several concentrations of EDCL for 48 h. (b) Time course. Cells were incubated in the pre-
sence or absence of 180 ug/mL EDCL for different lengths of time. Upon completion of each exposure time, caspase activity was assessed
using a Caspase-Glo assay kits assay, as described in Section 2. The data are expressed as the means = SD of triplicate samples. *P < 0.05
and ***P < 0.001 versus untreated EDCL. (c) Cells were subjected to Western blot analysis using anti-PARP and anti-c-PARP antibodies.

Western blot signals were quantified and normalized to f3-actin.

maintain viability, and the cleavage of PARP facilitates cell-
ular disassembly and serves as a marker for cells undergoing
apoptosis [26, 27]. In the present study, we examined
whether the PARP protein, a substrate of caspase-3 [28], was
cleaved in cells exposed to EDCL. As expected, PARP was
clearly degraded in a concentration- and time-dependent
manner that correlated with caspase activation. Under the
same experimental conditions, z-vad-fmk prevented EDCL-
induced apoptosis by blocking caspase activation. These data

indicate that caspases are the key molecules mediating
EDCL-induced apoptosis in HepG2 cells.

In conclusion, this study clearly demonstrates that EDCL
strongly inhibits cell proliferation and induces apoptosis
in HepG2 cells. EDCL induced apoptosis through the
mitoc hondrial pathway, involving the activation of cas
pase-3/7, -8, and -9, the down-regulation of antiapoptotic
proteins, and the degradation of PARP protein. Because
induction of apoptosis is thought to be a suitable anticancer
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F1GURE 5: Caspase inhibition prevents EDCL-induced apoptosis in HepG2 cells. Cells were incubated in the presence or absence of z-vad-
fmk for 1 h before being exposed to EDCL (180 ug/mL). (a) After 48 h of incubation with EDCL, cell viability was assessed using the CCK-8
assay and (b) caspase activity was measured. (c) Hoechst staining shows EDCL-induced chromatin condensation (arrow). Magnification,
%x400. (d) Cells were subjected to Western blot analysis using anti-PARP and anti-c-PARP antibodies. (e) Cells were evaluated for sub-G1
DNA content by flow cytometry. The data are expressed as the means + SD of triplicate samples. *P < 0.05, **P < 0.01, and ***P < 0.001
versus EDCL+z-vad-fmk.



therapeutic mechanism, these results confirm the poten-
tial of EDCL as a chemotherapeutic agent in human hepa-
tocellular carcinoma cells. In vivo studies are needed to fully
establish the potential of EDCL as a chemopreventive and
therapeutic agent in cancer.
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